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Abstract. In this work we consider the simultaneous solution of large linear systems of the
form Ax(j) = b(j); j = 1; : : : ; K where A is sparse and non-Hermitian. Our single-seed approach uses
QMR to solve the seed system j and generate biorthogonal Krylov subspaces. Approximate solutions
to the non-seed systems are simulanteously generated by minimizing their appropriately projected
residuals. After the initial seed system has converged, the process is repeated by choosing a new seed
from among the remaining non-converged systems and using the previously generated approximate
solutions as initial guesses for the new seed and non-seed systems. We give theory supporting our
observation in practice of super-convergence of (non-initial) seed systems as compared to the usual
QMR process. The computational advantage of our method over using QMR to solve each system
individually is illustrated on two examples. Finally, we propose a block QMR variant which combines
the advantages of this approach and those of the block QMR with de
ation scheme of Freund and
Malhotra. The computational savings of our block method are shown in examples.
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1. Introduction. In many applications one desires the solution of multiple lin-
ear systems of the form

Ax(j) = b(j); j = 1; : : : ;K:(1)

involving the same N �N coe�cient matrix A but K di�erent right hand sides b(j);
all of which are available simultaneously. Such problems arise, for instance, in the
numerical solution of frequency-domain electromagnetic wave scattering; here, the
right hand sides might correspond to incident �elds over the scatterer induced either
by plane waves at various angles of incidence or by excitation sources at di�erent
locations.

Systems involving large, sparse matrices make good candidates for solution by
iterative Krylov subspace methods since storage is kept to a minimum and matrix-
vector products can be done e�ciently. However, the naive approach of solving each
of the K linear systems independently using a Krylov subspace method does not take
advantage of the fact that the b(j)'s, and hence the x(j)'s, may be closely related
due to the underlying physical nature of the problem. By closely related, we mean
that the solution to the jth system has large components in the initial directions
of the k-dimensional (k � N ) Krylov subspace generated from one of the other
systems. Projection-type techniques for both the Hermitian and non-Hermitian cases,
discussed in more detail below, that speci�cally exploit such shared information have
been proposed (e.g., see [4, 21, 19] and the references therein).

Another alternative is to use a block Krylov subspace algorithm, to solve the
systems simultaneously [12, 18, 3, 7]. Essentially these methods seek solutions in
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block Krylov subspaces, or some de
ated version thereof, generated by the matrix A
and the N � K matrix R = B � AX0; here the columns of B are the b(j) and the
columns ofX0 are the initial estimates for each of the systems. However, this approach
can be slightly more expensive in terms of storage than projection techniques because
the length of the recurrences to update the iterates depends on the number of right
hand sides, or, in the case of de
ation [7], the number right hand sides corresponding
to the de
ated Krylov sequences. Also, if a de
ation technique is used, a de
ation
tolerance must be speci�ed in advance, and we have found in experiments that the
performance and convergence of the systems depends in a somewhat unpredictable
manner on this value. Therefore, we �rst pursue the idea of a single-seed projection
type of technique and then present a block variant of our algorithm that actually
exploits the best properties of the block QMR algorithm while preserving the basic
properties of our sequential projection type of technique.

Speci�cally, the idea of a projection technique is to �rst select one of the systems
as \seed" and solve it by an iterative Krylov subspace method. As the relevant
subspaces are generated, the approximations to the other systems are simultaneously
updated by projecting the residual onto a particular subspace and by either enforcing
a Galerkin-type condition [10, 20] or by minimizing the projected residual [19]. Such
methods are sometimes referred to as Lanczos-Galerkin approaches [16].

Smith [20] and Joly [10] both consider a projection approach based on BiCG for
non-symmetric A. In [10] a similar approach for CGS is also given. However, the
BiCG-projection approach can exhibit the potentially erratic convergence behavior
observed when applying BiCG to a single linear system (see the results in [19]).
Simoncini and Gallopoulos [19] also present an approach to solving (1) when A is
nonsymmetric. They use an Arnoldi process to generate a orthogonal basis for some
Krylov subspace of dimension, say l, for the residual of the seed system, then project
the non-seed residuals onto that space. To improve the approximating among the
systems they employ a hybrid method which exploits the generated GMRES residual
polynomial.

Our algorithm is similar to the project-minimize approach but has certain advan-
tages over the algorithm in [19]; namely, we do not need to store the basis vectors,
we do not need to predetermine a subspace dimension, and the approximate solutions
and residuals are cheaply computed and available at every stage of the algorithm be-
cause they are updated with short-term recurrences. As noted above, the success of
our single-seed method over the approach of solving each system separately depends
on the closeness among the right hand sides. Therefore, we also propose an extension
of our algorithm, based on the BL-QMR algorithm presented in [7], which is more
e�cient when the right hand sides are not all close.

This paper is organized as follows. In x2, we give the necessary background on
the QMR approach. We give an outline of our approach in x3 and in x4 we give theory
supporting our choice of algorithm. A block variant of our QMR-projection algorithm
is reported in x5. Section 6 gives numerical results and x7 reports conclusions and
future work.

2. The QMR Algorithm. The quasi-minimal residual (QMR) algorithm was
introduced by Freund and Nachtigal in [8] for the purpose of solving non-Hermitian
linear systems with single right hand sides. The original algorithmwas based on three-
term recurrences. In [9], the authors propose a mathematically equivalent algorithm
which employed coupled two term recurrences. Since the latter variant has been found
to be more numerically stable for solving linear systems, in numerical experiments we
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use this implementation. However, to simplify the notation in this section and in x3,
and to be consistent with the notation in section x5, we will follow the notation in
[8]. Further, for simplicity, we consider only the version without lookahead, but note
that our algorithm could be adapted to account for lookahead.

In the remainder of the paper, the notation k�k always refers to the Euclidean norm
k � k2. The superscript T is used to denote the transpose operation and superscript �
is used to denote the conjugate transpose operation.

A Krylov subspace of dimension k generated by a matrix G and a vector q is
de�ned according to

Kk(G; q) = spanfq;Gq;G2q; : : : ; Gk�1qg:
The QMR algorithm is a Krylov-subspace based iterative method which can be used
to solve non-Hermitian linear systems of the form

Ax = b; A 2 CN�N :
At the kth iteration, the current solution estimate has the form

xk = x0 + Vkzk;(2)

where x0 denotes the initial guess and

Vk = [v1; v2; : : : ; vk]

is an N � k matrix whose columns are basis vectors for Kk(A; v1) with v1 = r0=kr0k
and r0 = b � Ax0. The length k vector zk is the vector of expansion coe�cients,
and will be chosen as the solution to a particular minimization problem, as discussed
below. Those basis vectors are generated via the nonsymmetric Lanczos process (see
[17]), and are constructed to be biorthogonal to vectors wi; i = 1; : : :k which form a
basis for Kk(AT ; w1)1. The columns of the N � k matrix Wk are the wi.

From biorthogonality it follows that

WT
k+1Vk+1 = Dk+1; Dk+1 = diag(�1; : : : ; �k+1):(3)

Also as a result of the Lanczos algorithm we obtain the relation

AVk = Vk+1 �Tk(4)

where �Tk is a (k + 1) � k tridiagonal matrix. Using (2), (3), and (4), and setting
� = kr0k, we have that at the kth iteration the residual, rk = b � Axk, is given by
[17]

b�Axk = b�A(x0 + Vkzk)(5)

= r0 � AVkzk

= �v1 � Vk+1 �Tkzk

= Vk+1(�e1 � �Tkzk);

where e1 denotes the �rst unit vector. Since the columns of Vk+1 are not orthonormal,
we have

krkk � kVk+1kk�e1 � �Tkzkk:
1Here we always takew1 � v1, but note that other choices are possible. A version of the algorithm

is also possible using Kk(A
�; w) for the second Krylov subspace.
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The QMR algorithm determines zk by minimizing the norm of the quasi-residual term;
that is,

zk = argmin
z
k�e1 � �Tkzk:

Since �Tk is tridiagonal (k+1)�k, this problem is readily solved using QR factorization
where the orthonormal matrix Q is determined via Givens rotations [8].

We make the following alternate observation. From (5), we have

rk = Vk+1(�e1 � �Tkzk);

and therefore

D�1
k+1W

T
k+1rk = (D�1

k+1W
T
k+1Vk+1)| {z }

Ik+1

(�e1 � �Tkzk);

where Ik+1 denotes the identity matrix of dimension k + 1 which follows from (3).
Finally we observe

kD�1
k+1W

T
k+1rkk = k�e1 � �Tkzkk:

Thus, the zk which de�nes the kth QMR iterate can also be thought of as the one that
minimizes the norm of the residual projected onto a smaller dimensional subspace. We
will make use of this alternate de�nition of the QMR iterates in subsequent sections.

3. The QMR-Projection Algorithm. In this section we describe a single seed
QMR-projection algorithm for solving linear systems of the form (1). Our algorithm
proceeds as follows. First, we select one system, say system j, to serve as \seed"
and apply QMR (without lookahead) to the seed system. In the following, we use

rj;l0 to denote the initial residual to system l, where l denotes the number of any of

the non-converged systems given the starting guess xj;l0 . We use rj;lk to denote the
residual of system l after k iterations. Since di�erent choices of seed lead to di�erent
Krylov subspaces and hence di�erent iterates, the superscript j is used to denote
that this is the residual at the kth iteration for system l when system j was used as
seed. By the beginning of the kth iterate, QMR has generated biorthogonal bases
for two k-dimensional Krylov subspaces, Kk(A; r

j;j
0 ) and Kk(AT ; rj;j0 ). We denote the

respective bases by the vectors vj;i and wj;i, i = 1; : : : ; k: the subscript j is used to
indicate that this particular set was generated using system j as seed. These vectors
are the columns of the N �k matrices Vj;k and Wj;k, respectively. The corresponding
k + 1 � k tridiagonal matrix is denoted as �Tj;k (compare to (4)). By the end of the
kth iterate, QMR has also generated the unnormalized versions of the vectors vj;k+1
and wj;k+1 for use in the k + 1st iteration.

Let us comment on the values of xj;l0 . If we suppose that j was the seed system
and converged after m steps and that the index of the next seed has index j�, then

we set xj
�;l
0 = xj;lm for all indecies l such that system l has not already converged.

From the previous section, we have that the kth iterate corresponding to the seed
system is given by

xj;jk = xj;j0 + Vj;kz
j;j
k ;

where

zj;jk = argmin
z
k�e1 � �Tj;kzk:
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Now we also want the kth iterate of the (non-converged) non-seed system, say system

l, to lie in xj;l0 +Kk(A; r
j;l
k ). In other words, we want

xj;lk = xj;l0 + Vj;kz
j;l
k ; l 6= j:(6)

Next we must decide how we will de�ne zj;lk . Note that

rj;lk = b(l) �Axj;lk(7)

= b(l) �A(xj;l0 + Vj;kz
j;l
k )

= rj;l0 � AVj;kz
j;l
k

= rj;l0 � Vj;k+1 �Tj;kz
j;l
k :

Therefore, using biorthogonality we have

D�1
j;k+1W

T
j;k+1r

j;l
k = D�1

j;k+1W
T
j;k+1r

j;l
0 � �Tj;kz

j;l
k ;

so that

kD�1
j;k+1W

T
j;k+1r

j;l
k k = kD�1

j;k+1W
T
j;k+1r

j;l
0 � �Tj;kz

j;l
k k:

Finally, we use the above equality to determine zj;lk :

zj;lk = argmin
z
kD�1

j;k+1W
T
j;k+1r

j;l
0 � �Tj;kzk:(8)

In the following section we will describe how to e�ciently solve equation (8) and give

short term recurrence updates for xj;lk and rj;lk .

3.1. Computational Issues. Let us address how to e�ciently compute the
iterates and residuals of the non-seed systems. As above, we will use the index l
to denote an arbitrary non-seed system and j to denote the seed system. We will
de�ne gj;lk+1 = D�1

j;k+1W
T
j;k+1r

j;l
0 , where the k + 1st component of gj;lk+1 is the scalar


j;lk+1 =
1

�j;k+1
wT
j;k+1r

j;l
0 .

Let the QR decomposition of �Tj;k be

�Tj;k = Q�
j;k

�
Rj;k

0

�
(note that Rj;k is k � k upper triangular with upper bandwidth 2) where, using the
notation of [8],

Qj;k = Gj;k

�
Gj;k�1 0

0 1

�
: : :

�
Gj;1 0
0 Ik�1

�
;

and Gj;i has the form

Gj;i =

2
4 Ii�1 0 0

0 cj;i sj;i
0 ��sj;i cj;i

3
5 ; where cj;i 2 R; sj;i 2 C; c2j;i + jsj;ij2 = 1:

Note that the QR decomposition of �Tj;k can be easily and quickly obtained from the
QR decomposition of �Tj;k�1. We can use this QR factorization of �Tj;k to solve (8):

zj;lk = argmin
z
kQj;kg

j;l
k �

�
Rj;k

0

�
zk:
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De�ning "
tj;lk
� j;lk+1

#
= Qj;kg

j;l
k+1;

we obtain

zj;lk = R�1
j;kt

j;l
k :(9)

Note that this implies

kD�1
j;k+1W

T
j;k+1r

j;l
0 � �Tj;kz

j;l
k k = j� j;lk+1j:(10)

Next, using gj;lk+1 = [(gj;lk )T ; 
j;lk+1]
T we observe that

"
tj;lk
� j;lk+1

#
= Gj;k

"
Qj;k�1g

j;l
k


j;lk+1

#
= Gj;k

2
64 tj;lk�1

� j;lk


j;lk+1

3
75 :

Hence, by de�nition of Gj;k, t
j;l
k di�ers from tj;lk�1 only in its last entry, which we shall

denote by yj;lk . Further, � j;lk+1 and yj;lk can be updated from 
j;lk+1 and � j;lk :"
yj;lk
� j;lk+1

#
=

�
cj;k sj;k
��sj;k cj;k

� "
� j;lk


j;lk+1

#
:(11)

As in Equation 4.8 of [8], we de�ne Pj;k = [pj;1; pj;2; : : : ; pj;k] � Vk;jR
�1
j;k. Since

Rj;k is upper triangular with bandwidth 2, there is a short term recurrence relation
for the pj;k [8]. Using (6) and (9), we have that the kth iterate of the lth system is
given by

xj;lk = xj;lk�1+ yj;lk pj;k:(12)

From this, we derive an iterative update for the rj;lk that does not require any addi-
tional matrix-vector products per iteration as follows.

Lemma 3.1. The residual at the kth iteration corresponding to the lth system is
given by

rj;lk = rj;lk�1 � yj;lk fj;k where fj;k � Apj;k;

and can be computed in O(N ) 
ops.
Proof: First, we note that the residual update formula follows directly from (12)

and the de�nition rj;lk = b(l) �Axj;lk . Now denote the entries in Rj;k by

Rj;k =

2
66666666664

�j;1 "j;2 �j;3 0 : : : 0

0 �j;2 "j;3
. . .

. . .
...

...
. . . �j;3

. . .
. . . 0

...
. . .

. . .
. . . �j;k

...
. . .

. . . "j;k
0 : : : : : : : : : 0 �j;k

3
77777777775
:
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From Pj;k = Vj;kR
�1
j;k, it follows (see Section 4 of [8]) that

pj;k =
1

�j;k
(vj;k � "j;kpj;k�1� �j;kpj;k�2);

where it is understood that pj;n = 0 for n � 0. Hence, fj;k is updated iteratively
according to

fj;k =
1

�j;k
(mj;k � "j;kfj;k�1 � �j;kfj;k�2);

where mj;k � Avj;k; fj;n = 0 for n � 0. However, since mj;k has already been
computed in the course of the iteration, it need not be recomputed. Therefore, to
form rj;lk only 3 vector sums and 4 scalar-vector products need to performed. Since
the lengths of the vectors are N , the result follows. 2

3.2. Seed Selection. Clearly, the success of our QMR-projection approach at
reducing the total number of matrix-vector products needed to solve all the systems
to the desired tolerance depends on which and in what order systems are selected as
seed. We use the approach in [19]; namely, we choose the seed index j such that the
norm of the residual of the corresponding system is larger than all the remaining non-
converged systems. Developing more informed selection heuristics remains a subject
for future research.

4. Convergence Theory. Suppose that QMR has been run once and that the
initial seed system has converged after m steps. Our algorithm proceeds by choosing
another seed and using as its initial guess that solution obtained via projection as the
�rst system was solved. One of the main results of this section is that the rate of
convergence of this second seed system behaves as if the extreme ends of the spectrum
of A is cut o�, provided that the previous Krylov subspace contains the extreme right
eigenvectors well. The proof technique follows along the lines of the proof of Lemma
3.2 in [4]. The notation �2(�) denotes the 2-norm condition number of the argument.

In the following, we assume A is diagonalizable with eigendecompositionA = Z�S
where S = Z�1. Here � = diag(�1; : : : ; �N ) with j�1j � j�2j � : : : j�N j > 0. We use
s�j to denote the jth row of S; that is, sj is a left eigenvector of A. Without loss of
generality, we may assume that we have normalized so that ksjk = 1. Under these
de�nitions, we have the following.

Theorem 4.1. Consider two systems Ax(1) = b(1) and Ax(2) = b(2). Let x2;20 be
the starting vector for the 2nd system obtained via our projection approach after m
steps of QMR has been run using the �rst system as seed; that is, x2;20 = x1;2m .

De�ne I = f1; : : : ; ng; for n < N arbitrary but �xed and

Zn = spanfzj : j 2 Ig:
De�ne �x2;20 such that x(2)� �x2;20 is the projection of x(2)�x2;20 on Z?n . Let �x

2;2
i be the

ith iterate of the GMRES applied to system 2 with initial guess �x2;20 . Then for any i
we have

kb(2) �Ax2;2i k � �2(V2;i+1)(kb(2) � A�x2;2i k+ �)

where

� =
X
k2I

j~p(�k)jjz�jP?
mr

1;2
0 j
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~p is a particular i-degree polynomial with constant term one, and
P?
m � I �AV1;m( �T �1;m

�T1;m)�1 �T1;mD
�1
1;m+1W

T
1;m+1 with R(P?

m ) = (AV1;m)?.

Proof: By de�nition we have Z?n = spanfsj : j 62 Ig. Hence

b(2) �Ax2;20 =
NX
k=1

�k�ksk(13)

b(2) �A�x2;20 =
NX

k=n+1

�k�ksk(14)

for some expansion coe�cients �k. Now if �x2;2i is the ith GMRES iterate with �x2;20
as the initial guess, there exists a polynomial ~pi of degree less than or equal to i with
~pi(0) = 1 such that

b(2) � A�x2;2i =
NX

k=n+1

�k�k~pi(�k)sk;(15)

where ~pi satis�es

~pi = arg min
p2��i
kp(A)(b(2) �A�x2;20 )k:(16)

Here, ��i denotes the set of all polynomials with degree less than or equal to i with
constant term 1. From Theorem 7.1 in [17], we have a bound on the ith QMR residual
in terms of the ith GMRES residual:

kb(2) � Ax2;2i k � �2(V2;i+1)kb(2) �Ax̂2;2i k(17)

= �22(V2;i+1) min
p2��i

kp(A)(b(2) � Ax2;20 )k

where x̂2;2i is the ith iterate of GMRES with starting guess x2;20 .
Now

min
p2�i
kp(A)(b(2) �Ax2;20 )k � k~pi(A)(b(2) � Ax2;20 )k(18)

= k
NX
k=1

�k�k~pi(�k)skk:

Substituting this into (17) and using (15) gives

kb(2) �Ax2;2i k � �22(V2;i+1)k
NX
i=1

~pi(�k)�k�kskk(19)

� �2(V2;i+1)

 
k

NX
k=n+1

~pi(�k)�k�kskk+ k
X
k2I

~pi(�k)�k�kskk
!

= �2(V2;i+1)

 
kb(2) �A�x2;2i k+ k

X
k2I

~pi(�k)�k�kskk
!

� �2(V2;i+1)

 
kb(2) �A�x2;2i k+

X
k2I

j~pi(�k)jj�k�kj
!
:
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Using the de�nition of x2;20 as x1;2m , it is easy to show

b(2) � Ax2;20 = (I �AV1;m( �T
�
1;m

�T1;m)
�1 �T �1;mD

�1
1;m+1W

T
1;m+1)r

1;2
0 = P?

mr
1;2
0 :

It is easy to see that P?
m is a projector since (P?

m )2 = P?
m . Additionally, it is clear

that N (P?
m ) is spanned by the columns of AV1;m. Therefore the range R(P?

m ) is

(AV1;m)?. From (13) and the above equation we have P?
mr

1;2
0 =

PN
k=1 �k�ksk. Using

z�j sk = �jk we obtain

jz�jP?
mr

1;2
0 j = j�j�j j:(20)

Substituting (20) into (19), we obtain the desired result. 2
Now let us discuss why we expect � to be small. Suppose that ci; i = m+1; : : : ; N

are a basis for (AV1;m)
?. Then P?

mr
1;2
0 can be written as

PN
i=m+1 �ici for some

numbers �i where c
�
iAV1;m = 0.

Next, let T1;mU1;m = U1;m�1;m be the eigendecomposition of T1;m, where T1;m
denotes the tridiagonalm�m leading submatrix of �T1;m. The condition c�iAV1;m = 0
implies c�iAV1;mU1;m = 0 as well. Now since QMR is built on top of the unsymmetric
Lanczos process, in exact arithmetic if m is large enough we expect the Ritz vectors
given by the columns of V1;mU1;m to contain good approximations to the n extremal
right eigenvectors (the zk such that k 2 I) of A [1, 5, 6]. Thus, the ci must be nearly
orthogonal to Zn. In other words, the ci lie mostly in Z?n .

We have jz�jP?
mr

1;2
0 j = j

PN
i=m+1 �iz

�
j cij for j 2 I. Since ci is mostly contained in

Z?n and z�j sk = 0 for j 2 I and k 62 I then z�j ci must be small. It follows that � is
small if m is su�ciently large.

Using the de�nition of ~pi in (16), we have in analogy with the standard GMRES
upper bound for diagonalizable matrices [17], the following corollary:

Corollary 4.2. Let Sn denote the N � (N � n) matrix with columns sj for
j 62 I. Then

kb(2) � Ax2;2i k2 � �2(V2;i+1)

0
@min

p2�i
max
�k

k=n+1;:::;N

jp(�)j kSnk (
NX

k=n+1

j�k�kj2)1=2 + �

1
A

= �2(V2;i+1)(min
p2�i

max
�k

k=n+1;:::;N

jp(�)j kSnk kPZ��r0k+ �)

with � de�ned as in Theorem 4.1 and P = [en+1; : : : ; eN ]T .
Proof: The proof follows from the result of the theorem by �rst writing (15) as

Sn~p(�̂)
PN

k=n+1 �k�kek, where �̂ is diag(�n+1; : : : ; �N ), and then taking norms. To
get the second equality, use the identity ek = PZ�sk. 2

Thus if m is large enough, then second seed system converges as if the extremal
end of the spectrum of A has been cut o�.

Next, we bound the residual norms of the non-seed systems.
Theorem 4.3. Let j denote the index of the seed system and l denote the index

of a (non-converged) non-seed system. Then

krj;lk k �
p
k+1

 
j
j;l1 j

�����
k�1Y
i=0

sj;k�i

�����+
k�1X
i=0

j
j;lk�i+1jjcj;k�ij
�����
i�1Y
m=0

sj;k�m

�����
!

(21)

+
p
N�k�1khj;lk k

9



where hj;lk = [
j;lk+2; : : : ; 

j;l
N ]T .

Proof: Using (7) we have

rj;lk = rj;l0 � Vj;k+1 �Tj;kz
j;l
k(22)

= Vj;k+1(g
j;l
k+1 � �Tj;kz

j;l
k ) + V ?

j;k+1h
j;l
k ;

where V ?
j;k+1 = [vj;k+2; : : : ; vj;N ]. Taking norms, we get

krj;lk k � kVj;k+1kkgj;lk+1 � �Tj;kz
j;l
k k+ kV ?

j;k+1khj;lk k:(23)

Since Vj;k+1 and V ?
j;k+1 have k + 1 and N � k � 1 columns of Euclidean norm 1,

respectively, we have

kVj;k+1k �
p
k + 1; kVj;k+1k �

p
N � k � 1:(24)

From (10) and (11), noting that by de�nition � jl1 = 
j;l1 , it follows that

kgj;lk+1 � �Tj;kz
j;l
k k � j
j;l1 j

�����
k�1Y
i=0

sj;k�i

�����+
k�1X
i=0

j
j;lk�i+1jjcj;k�ij
�����
i�1Y
m=0

sj;k�m

����� :(25)

Finally applying (25) and (24) to (23), we obtain the desired result. 2

In order for us to interpret the above result, let us consider from [8, Proposition
4.1a], the upper bound on the residual norm of the seed system at iteration k:

krj;jk k �
p
k + 1krj;j0 k

�����
k�1Y
i=0

sj;k�i

����� ;(26)

where krj;j0 k
���Qk�1

i=0 sj;k�i

��� = j� j;lk+1j is the norm of the quasi-residual of the seed system

which is being minimized at every iteration. Therefore, if the norm of the quasi-
residual is quickly decreasing with k then jQk�1

i=0 sj;k�ij must quickly be decreasing
with k. But this implies that the �rst term in parenthesis of (21) is rapidly being
reduced by the same amount.

Note that since rj;j0 = Vj;k+1krj;j0 ke1, we have

D�1
j;k+1W

T
j;k+1r

j;j
0 = krj;j0 ke1:

Using notation consistent with that for the non-seed systems, krj;j0 k = j
j;j1 j and
j
j;jk j = 0; k > 1: Hence, if the systems are closely related, in the sense described in

the introduction, we expect (and found in practice) j
j;lk j to be small for l 6= j as k
increases; this implies the last term in (21) is small. The middle term in (21) is also

small by virtue of the fact that the largest j
j;lk�i+1j values (only for i � k, assuming
closeness) are multiplied by terms � 1.

5. Block Variant. The goal of this section is to develop a multiple seed variant
of the projection based algorithm introduced in x3. Since our multiple seed algorithm
will be based on the block QMR algorithm (BL-QMR) of [7], we �rst need to present
some properties of their algorithm together with some notation.
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5.1. BL-QMR Background. The BL-QMR algorithm of Freund and Malhotra
attempts to solve (1) in the following way. First, given K vectors ri and p vectors li,
they de�ne

R = [r1; : : : ; rK]; L = [l1; : : : ; lp]:

The block Krylov sequences generated by R;A and L;AT are�
R;AR;A2R; : : : ; Aj�1R; : : :

	
and ;

�
L;ATL; : : : ; (AT )j�1L; : : :

	
:(27)

However, if Aj�1ri (likewise (AT )j�1li) is linearly or nearly linearly dependent on
the previous vectors, so are all Akri (likewise (AT )kli) for k � j. Thus, Freund
and Malhotra propose scanning the vectors in the two sequences in (27) from left to
right and deleting those which are linearly or nearly linearly dependent on previous
ones. In the process they obtain de
ated Krylov sequences whose vectors are linearly
independent. Following [7], we refer to the n-dimensional subspaces generated by
these de
ated sequences as Kdl

n (R;A) and Kdl
n (L;A

T ). Note that in the presence of
no de
ation, Kdl

n (R;A) and Kdl
n (L;A

T ) are spanned by the �rst n columns of (27)
with n � jK or n � jp, respectively.

Within BL-QMR is a Lanczos-type of algorithm which incorporates the de
a-
tion as mentioned above in order to generate biorthogonal bases for Kdl

n (R;A) and
Kdl
n (L;A

T ): that is, two sequences of right and left Lanczos vectors

v1; : : : ; vn and w1; : : : ; wn; n = 1; 2; : : :

such that

spanfv1; : : : ; vng = Kdl
n (R;A)

spanfw1; : : : ; wng = Kdl
n (L;A

T )

wT
j vk =

�
0; ifj 6= k

�j 6= 0; ifj = k
:

Putting the vi into the columns of an N � n matrix Vn and the wi into the columns
of an N � n matrix Wn, we have by biorthogonality

WT
n Vn = Dn � diag(�1; : : : ; �n); n = 1; 2; : : : :

Also, the matrix equation relating the v0s is

AV� = VnT� + V̂ dl
� ; � � 1

where � = n �mcr and mcr is de�ned by the fact that K �mcr is the total number
of de
ations performed in the v sequence up to iteration n in the Lanczos algorithm.
Further, T� is n� � with lower bandwidth K + 1 and upper bandwidth p+ 1. Also,

V̂ dl
� = V dl

� + E� where V dl
� is N � � but has only K � mcr nonzero columns corre-

sponding to vectors that were de
ated and E� has nonzero entry in row i column
p + j; j = 1; : : : only if a de
ation of the ith w occurs for i > K. We note that if
deftol is the de
ation tolerance then kV dl

� k � deftol
p
K �mcr. For further details,

the reader is referred to [7].

Now let us assume R = [r
(1)
0 ; r

(2)
0 ; : : : ; r

(K)
0 ]; that is, the matrix R contains the

initial residuals of each of the K systems we would like to solve. Thus, the v0s

11



correspond to the initial residuals. The way the de
ation strategy in [7] works is
that if a v is de
ated, the corresponding linear system is also set aside; then upon
convergence of the remaining systems, the solution to the de
ated system is updated
using the solutions of the other systems. Thus, in what follows we consider only
the updates to the non-de
ated linear systems, and we denote with a subscript cr
submatrices of the originals with mcr columns that correspond to these systems

Recall that when QMR is applied to a single linear system, the �th iterate is an
appropriate linear combination of the Lanczos vectors, plus the initial guess. Similarly,
the block QMR iterate is de�ned as

X�;cr = X0;cr + V�Z; Z 2 C��mcr :

As with QMR, then, we need to �nd the matrix Z which determines the appropriate
linear combination. Following [7], the residual block R�;cr related to X�;cr satis�es

R�;cr = Bcr � AX�;cr

= R0;cr �AV�Z

= R0;cr � VnT�Z � V̂�;dlZ

= Vn

��
�cr
0

�
� T�Z

�
� V̂�;dlZ;

where �cr is m1 �mcr de�ned by taking the appropriate columns of �, with

Vm1
� + V0;dl = R

andm1 is the number of columns of R (recall R hasK columns) which are not de
ated
as the �rst K Lanczos vectors are created (m1 � K).

Because the columns of Vn are not unitary and V̂�;dl has non-zero columns, one
cannot �nd Z such that kR�;crk is minimal. Rather, we seek Z = Z� such that

Z� = arg min
Z2C��mcr

k
�
�cr
0

�
� T�Zk:

Since T� is banded, the standard approach based on the QR factorization of T�
is used to implicitly determine Z� and ultimately determine short term recurrences
for X�;cr. Following [7] we have

T� = (Q(�))�
�
R(�)

0

�

for a unitary n � n matrix Q(�) and a non-singular, � � �, upper triangular matrix
R(�). Thus,

Z(�) = (R(�))�1t� where

�
t�
��

�
= Q(�)

�
�cr
0

�
:

Finally,

X�;cr = X0;cr + V (�)(R(�))�1t�(28)

= X��1;cr + p�y
T
� ;(29)
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where p� and yT� are given by equations (5.13) and (5.10) of [7]:

p� = (v� �
��1X
i=j�

pi�i)=��(30)

�
yT�
��

�
= Q�

�
���1
0

�
:(31)

The �i are scalars corresponding to the last column of R
(�) and Q� (not to be confused

with Q(�)) is a particular matrix of Givens rotations described in (5.2) of [7].

5.2. Block QMR-ProjectionMethod. In a manner similar to x3, we describe
a block QMR-projection approach to solving (1) that combines the advantageous
properties of both algorithms.

Suppose that we select a subset of size m < K linear systems to serve as \seed"
from among the originalK. Let Im1

be the index set i1; : : : ; im of the chosen systems.
We use Icm1

to denote the indecies from 1 to K which are not in Im1
. We put the

b(j) with j 2 Im1
into the m columns of the matrix B(1). We put the remaining

J = K � m right hand sides (corresponding to non-seed systems indexed by Icm1
)

into the columns of the matrix B(2). We de�ne X
(1)
0 as the matrix [x

(i1)
0 ; : : : ; x

(im)
0 ] of

initial guesses for the m seed systems, and X(2)
0 as the matrix of initial guesses for the

non-seed systems. The corresponding initial block residuals are R
(1)
0 = B(1) �AX

(1)
0

and R
(2)
0 = B(2) �AX

(2)
0 .

The idea is to set R (and L) de�ned in the previous section to R
(1)
0 and run

BL-QMR to solve the seed systems while using a projection idea to update the non-
seed systems. Once BL-QMR on the seed systems converges, the process is repeated
by choosing a new subset, indexed by Im2

� Icm1
, of the non-converged, non-seed

systems. The systems indexed by Im2
now serve as seed, where the columns of X(1)

0

are now understood to be the estimated solutions, generated in the �rst round of
projected BL-QMR, to the systems with indecies in Im2

. The remaining systems,

indexed by Icm2
= Icm1

nIm2
, are updated by projection. In the following,X

(1)
� (R

(1)
� )

denotes the �th block iterate (residual) of the current block seed while X
(2)
� (R

(2)
� )

denotes the �th block iterate (residual) of the current non-seed block. We shall further
assume that m is the number of current seed systems and J is the number of current
non-converged, non-seed systems. The numbers m and J can change at each round.

At iteration �, we desire our non-seed systems lie in the current Krylov subspace:

X(2)
� 2 X(2)

0 +Kdl
� (R

(1)
0 ; A):

Since the columns of V� span this subspace, this means we want

X(2)
� = X

(2)
0 + V�Z

(2)
�

for some �� J matrix Z
(2)
� . Now we must decide how to de�ne Z(2)

� . We observe

R(2)
� = B(2) �A(X

(2)
0 + V�Z

(2)
� )

= R
(2)
0 �AV�Z

(2)
�

= R
(2)
0 � VnT�Z

(2)
� � V̂dlZ

(2)
�
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Using biorthogonality we have

D�1
n WT

n R
(2)
� = D�1

n WT
n R

(2)
0 � T�Z

(2)
� �D�1

n W T
n V̂dlZ

(2)
� :

Then

kD�1
n W T

n R
(2)
� k � kD�1

n WT
n R

(2)
0 � T�Z

(2)
� k+ kD�1

n WT
n V̂dlZ

(2)
� k:

Note that if no de
ations have occurred, V̂dl is zero, so we have equality rather than
inequality. Therefore, in analogy with the single seed algorithm of x3, we de�ne

Z(2)
� � min

Z2C��J
kD�1

n W T
n R

(2)
0 � T�Zk:

Using the QR factorization T� = Q(�)R(�) as described in the previous section
we have

Z(2)
� = argmin

Z
kQ(�)G� �

�
R(�)

0

�
Zk

where G� is the n� J matrix G� = D�1
n WT

n R
(2)
0 . If"

t
(2)
�

�
(2)
�+1

#
= Q(�)G�(32)

we obtain

Z(2)
� = (R(�))�1t(2)� ;(33)

so that

kD�1
n WT

n R
(2)
0 � T�Z

(2)
� k = k� (2)�+1k:(34)

Using

G� =

�
G��1

gT�

�
;

together with (32) and the de�nition of Q(�) in 5.1 of [7], it is easy to show that

"
t
(2)
�

�
(2)
�+1

#
=

�
I��1 0
0 Q�

�264 t
(2)
��1

�
(2)
��1

gT�

3
75 =

2
64 t

(2)
��1

Q�

"
�
(2)
��1

gT�

# 375 :(35)

Thus, t
(2)
� di�ers from t

(2)
��1 only in its last row, which we call (y

(2)
� )T :

t(2)� =

"
t
(2)
��1

(y(2)� )T

#
where (y(2)� )T 2 C1�J :

From the above relation and (35) it follows that to obtain (y
(2)
� )T one only needs to

perform a product with Q�:"
(y

(2)
� )T

�
(2)
�

#
= Q�

"
�
(2)
��1

gT�

#
;
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which, since Q� by de�nition is a product of mcr Givens rotations, is an easy task.
With pi de�ned as in (30), it is now easy to show that the �th non-seed block

iterate is

X(2)
� = X

(2)
��1 + p�(y

(2)
� )T :

Thus, we may readily show

R(2)
� = R

(2)
��1 � Ap�(y

(2)
� )T :(36)

However, using the de�nition of p�, we �nd an update formula for the block residual
which does not actually require any additional matrix-vector products.

Lemma 5.1. R
(2)
� can be updated from R

(2)
��1 in at most O(N (J+2m)) additional


oating point operations.
Proof: By substituting (30) into (36), we obtain the following formula for updating

R
(2)
� :

R(2)
� = R

(2)
��1 � f�(y

(2)
� )T ; with fi � Api =

1

�i
(Avi �

i�1X
k=j�

�kfk):(37)

Consider forming f�. Now the matrix-vector product Av� is computed in the course
of the Lanczos process at iteration � and need not be recomputed. Therefore, it is
clear that to compute the length N vector f� requires at most O(2mN ) 
ops since
(�� j�) � 2m by de�nition (see Section 5 of [7]). Noting that the computation of the

outer product f�(y
(2)
� )T requires O(JN ) operations, the proof is complete. 2

We note that a similar update is valid for R(1)
� :

R(1)
� = R

(1)
��1 � f�(y

(1)
� )T :(38)

5.3. Issues in Practical Computation. Clearly, the performance of our mul-
tiple seed algorithm in terms of savings of matrix-vector products depends on which,
and how many, systems are chosen to be seed. De
ation in BL-QMR solves the
problem of removing redundancy if systems with starting residuals which are nearly
linearly dependent are chosen as seed. Ideally, however, we would like to choose as
seed systems some subset of the non-converged systems which are in some sense opti-
mally independent in order to increase the chance that the solutions to the non-seed
systems will lie nearly in the Krylov subspaces generated by the seed systems, thereby
ensuring the e�ectiveness of the projection process.

In our examples, we used the following heuristics to determine which and how
many seed systems to use. First, we set deftol=1e-8, B = [b(1); : : : ; b(K)] and X0 = 0
and used the initialization phase of BL-QMR to determine which of the K right hand
sides would be kept and which would be de
ated. Suppose k1 � K of these were kept
and that Bk1 is the matrix containing these as its columns. Then, as k1 � K � N ,
we computed a compact pivoted QR factorization of Bk1 ,

~Bk1 � Bk1� = QR Q 2 CN�k1 ; R 2 Ck1�k1

to determine which of the remaining were most independent. Here, � is just a per-
mutation matrix which serves to permute the columns of Bk1 such that the �rst few
columns of Bk1� are the most independent. In particular, if � denotes the diago-
nal entries of R and if j�(1)j=j�(i)j > 105 for any 1 � i � k1; then we discard the
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corresponding column of ~Bk1 . The remaining m columns of ~Bk1� serve as the seed
systems. On the next round of projected BL-QMR, however, we simply decided on a
new number of seeds to use (m  dm=2e), and took those with the largest m relative
residuals to serve as seed. More e�cient means of determining m for each round and
for determining the m seeds need to be determined in the future; clearly if K is very
large, our heuristic would be too expensive.

One additional problem that we encountered in practice in using either our single
seed or our multiple seed algorithm was that loss of biorthogonality could a�ect the

accuracy of the 
jln = (1=�j;n)w
T
j;nr

jl
0 , or g

T
n = (1=�n)w

T
nR

(2)
0 . This loss of accuracy

would thereby adversely a�ect the convergence of the computed solution. To avoid
this di�culty for the block projection algorithm, we used the following fact. If no
de
ations were performed up to the �th iteration when solving the single seed system,
we have

R
(2)
��1 = R

(2)
0 � Vn�1T��1Z

(2)
��1;

and therefore

gTn =
1

�n
wT
nR

(2)
��1 =

1

�n
wT
nR

(2)
0 ;

where it is understood that R(2)
j = R

(2)
0 ; j < 0. Thus, at the beginning of iteration

� � 1, we computed gTn based on the current residual estimate, then updated the
residual estimate using Lemma 5.1. If de
ations do occur, observe

gTn =
1

�n
wT
nR

(2)
��1 �

1

�n
wT
n V̂dlZ

(2)
� :

In our examples, the second term was on the order of the de
ation tolerance. This
was because V̂dl = Vdl since no w de
ations occurred for indecies larger than J . Hence
non-zero columns of Vdl were nearly linear combinations of the �rst m1 v's for which
1
�n
wT
nv = 0. In this work we choose to ignore the second term rather than go to the

extra expense of computing inner products with the non-zero columns of V̂dl.
Likewise, for the single seed algorithm we use


jln =
1

�j;n
wT
j;nr

jl
0 =

1

� j;n
wT
j;nr

jl
n�2; n � 2:

An investigation into the reason behind the success of these approaches in �nite preci-
sion arithmetic will be the subject of future work. We note that a similar phenomenon
was observed in [15] with respect to practical implementation of GMRES variants and
an explanation for such behavior in �nite precision arithmetic was given.

6. Numerical Results. In this section we given numerical results which indi-
cate the potential e�ectiveness of our approach on electromagnetic scattering prob-
lems. All experiments were conducted in Matlab using IEEE double 
oating point
arithmetic. We compare our results with results from applying the Matlab implemen-
tation of block QMR with de
ation, algorithm BL-QMR in [7].

Mathematically, we would like to solve a two-dimensional Helmholtz-type equa-
tion for the scattered electric �eld E(x; y):

(� + k2(x; y))E(x; y) = �m(x; y)E0(x; y) in 
(39)
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with perfectly matched layer (PML) boundary conditions [2, 13]: the speci�c math-
ematical formulation we use is described in [11]. Here k2(x; y) = !2�0�(x; y) is the
square of the wave number, with ! representing angular frequency and �0 a con-
stant denoting the magnetic permeability. The function �(x; y), called the electrical
permittivity, is de�ned as the complex-valued quantity

� = �0�rel + i
�

!
;

for some real � � 0; �rel � 1 with i =
p�1 and �0 a constant (the permittivity of free-

space). The value � is the conductivity of the material. The function �m describes
the properties of the buried object and has support only over the region in which the
object is located. E0(x; y) is the incident electric �eld, which is known.

We discretize the continuous problem in space using �nite di�erences, which leads
to a matrix equation involving the matrix A which is N � N , sparse, complex, and
structured, but neither symmetric nor Hermitian due to the boundary conditions.
Because the matrix is highly inde�nite, we need to use a preconditioner to speed
convergence. In all examples, the preconditioner we use is the one described in [11]
and we perform all preconditioning from the right.

For both our algorithm and the BL-QMR algorithm, we take the initial starting

guesses x
(j)
0 to be zero. We stop running our algorithmwhen the norms of the residuals

of all of the systems, relative to the norms of their respective right hand sides, are
less than tol = 10�7. For the BL-QMR algorithm, we update residuals via (38). For
our block-seed algorithm we use (38) to update residuals of the seed block system

and monitor convergence by taking norms of the columns of R(1)
� . We update the

residuals of the non-seed systems via (37) compute norms of columns only after the
seed systems have converged in order to determine which systems should next serve
as seed. Since the major computational expense per iteration is the matrix-vector
product and application of the preconditioner, as our measure of success we consider
the total number of matrix-vector products required for all the systems to converge.

6.1. Example 1. In this experiment we would like to �nd the scattered electric
�elds caused when plane waves at various angles impinge on a horizontal air-soil
interface and scatter from a 7cm � 6cm object buried 5cm below the surface. Each
angle corresponds to a di�erent E0 in (39), which in turn corresponds to a di�erent
right hand side b(j) in (1). Figure 1 gives a physical illustration of the problem.

In this example, we use a soil type (referred to as \Seabee" in the literature [14])
and conduct experiments at two di�erent frequencies, !=(2�) = 45 MHz and 475
MHz. At 45MHz, Seabee has �rel = 35:65 and � = :13, while at 475MHz �rel = 21:31
and � = :23. We assumed that the buried object has �rel = 2:9 and � = :001 at both
frequencies. For air, �rel = 1, � = 0. In discretizing the problem, we have sampled at
a rate of 50 points per wavelength of soil at 45 MHz and 20 points per wavelength at
475 MHz. In both cases, the total number of unknowns (N ) is 2(27 � 1).

We centered the buried object (refer to Figure 1) and considered the scattered
�eld due to planewaves impinging on the surface at evenly spaced angles from -60
to 60 degrees from the normal. The second column in Tables 1 and 2 gives the
total number of matrix-vector products needed if preconditioned QMR is applied
to each system separately. Note that we de�ne the matrix-vector product count as
the number of multiplies by AM�1 or its transpose where M is the preconditioner.
The third column gives the total number of matrix-vector products needed if our
preconditioned QMR with projection algorithm is used. The forth and �fth columns
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soil

air

angle  θ

scatterer
soil

air

point source at location (x1,y1)

scatterer

Fig. 1. Physical con�gurations for Example 1 (left) and Example 2 (right).

No. Matrix-Vector Products, 45 MHz
No. RHS Seq. Prj. BL-QMR 1E�8 BL-QMR 1E�9 BL-QMR + Prj.

7 816 260 | 194 166
13 1554 288 | 198 166
25 2994 196 | 208 166

Table 1

Example 1, 45MHz: Number of matrix-vector products required for convergence by each of the
methods (each system independently, single-seed QMR-projection, BL-QMR with deftol = 10�8,
BL-QMR with deftol = 10�9, and block-QMR-projection) for experiments involving di�erent num-
bers of right hand sides. Dash indicates no convergence of the method in under 300 iterations.

give the total number of matrix-vector products computed when solving the problem
using BL-QMR with two di�erent de
ation tolerances. The �nal column shows the
total number of matrix-vector products computed when our block-seed approach is
used (deftol = 10�9), where the initial and subsequent seed blocks are chosen using
the heuristic outlined in x5.3. The dashes in the table indicate that the convergence
tolerance was not met within maxit=300 iterations (600 matrix-vector products), as
the result of stagnation in the relative residual.

As Table 1 shows, for the 45MHz case, BL-QMR failed to converge after 300
iterations in all cases when the de
ation tolerance was set to 10�8. On the other
hand, BL-QMR notably outperformed our single seed projection method for the case
of 7 and 13 right hand sides when the de
ation tolerance was 10�9. Our single seed
method only outperformed BL-QMR with a de
ation tolerance of 10�9 when 25 right
hand sides were used, and always substantially outperformed the naive approach of
solving each system separately. The last column of the table shows that our block
seed projection approach performs noticeably better than all the other methods.

At 475MHz, we expected our x(j)'s not to be as close as in the previous case
due to the underlying physics of the problem, and therefore, we did not expect as
much savings with our single seed projection approach. Indeed, Table 2 shows that
although the single seed approach gives signi�cant savings in work over simply solving
each system separately, the di�erence between the second and third columns is not as
dramatic as in Table 1. Table 2 also shows that BL-QMR, with the de
ation tolerance
set at either 10�8 or 10�9, outperforms our single seed projection approach. However,
comparing the last column with the others, we �nd that our block seed projection
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No. Matrix-Vector Products, 475 MHz
No. RHS Seq. Prj. BL-QMR 1E�8 BL-QMR 1E�9 BL-QMR + Prj.

7 556 328 178 178 176
13 1036 322 220 254 196
25 1992 396 264 338 194

Table 2

Example 1, 475MHz: Number of matrix-vector products required for convergence by each of the
methods for experiments involving di�erent numbers of right hand sides.

No. Matrix-Vector Products
No. RHS Seq. Prj. BL-QMR 1E�8 BL-QMR 1E�9 BL-QMR + Prj.

25 1482 588 | 326 236
35 2082 648 | 374 290

Table 3

Example 2: Number of matrix-vector products required for convergence by each of the methods
for experiments involving di�erent numbers of right hand sides. Dash indicates no convergence of
the method in under 300 iterations.

approach can provide substantial savings over the other methods.

6.2. Example 2. For our second example, each of our K systems corresponds to
solving for scattered electric �eld from a buried object when the source of the incident
�eld is a point source, located at position xi; yi above the earth (see Figure 1). We
consider the case when the frequency is 480MHz, and the soil has �rel = 6:5 and
� = :019. As before, the buried object has �rel = 2:9 and � = :001. The buried object
is 8cm by 8cm buried 5cm deep and centered left to right. The width of each cell in
the discrete grid is 2cm, and the total number of unknowns (N ) is 2(26 � 1). Our
point sources are each located 2cm above the earth, and either vary in the horizontal
direction, with 0 being in the middle, from -24cm to 24cm in 2cm increments (resulting
in 25 systems) or -34cm to 34cm in 2cm increments (resulting in 35 systems). The
numbers of matrix-vector products required by each of the di�erent methods to solve
these systems are given in Table 3.

Table 3 indicates that the method consistently requiring the fewest number of
matrix-vector products is our multiple seed projection approach. The single seed
approach requires more work than BL-QMR when the de
ation tolerance was set
to 10�9; however, with the de
ation tolerance at 10�8, BL-QMR will not converge
in under 300 iterations. We note that in similar experiments that we conducted, we
found that the de
ation tolerance sometimes had to be as small as 10�10 for BL-QMR
to converge in under 300 iterations.

7. Conclusions and FutureWork. We have introduced a new single-seed pro-
jection approach, based on QMR, for solving multiple linear systems with the same
coe�cient matrix but di�erent right hand sides. Our approach, compared to solving
each system separately by QMR, can signi�cantly reduce the work (e.g. number of
matrix-vector products) needed to solve all the systems to within a speci�ed toler-
ance provided the right hand sides are close. We provided theory for the single-seed
approach which suggests that under certain conditions, QMR on subsequent seed sys-
tems converges as if the extremal end of the spectrum has been cut o�. We also gave
an upper bound for the rate of convergence of the non-seed systems.

As our numerical results showed, the BL-QMR algorithm [7] could sometimes

19



outperform our single-seed QMR-projection method in terms of matrix-vector prod-
uct savings, particularly when the right hand sides are not as close. Therefore, we
developed a block-seed projection method, based on the BL-QMR algorithm, which
combined the best aspects of both algorithms. Numerical results indicated that sig-
ni�cant savings in work could be achieved using our block-seed projection approach
as long as there was at least some shared information among the right hand sides.
We will address the associated theoretical convergence issues for our block-seed ap-
proach in further work. The performance of our block-seed approach depended on our
choices of successive seed blocks. Determining good seed selection strategies remains
a subject for future research.
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