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Abstract

In this paper we examine the problem of estimating a stochastic signal from noise corrupted
linearly distorted samples of the original. Due to the ill-posedness caused by the blurring func-
tion, we are motivated to examine an inversion method in which the statistics of the underlying
process are modeled as a 1/f type fractal process. In particular, we explore two issues with the
use of such a model: the effects of model mismatch and parameter estimation. Our analysis
demonstrates that the mean square error performance of the estimator is quite insensitive to
the choice of prior model parameters used in the recovery of the signal. Such robustness is
shown to hold even when the underlying process is not of the 1/f variety. We then introduce
an Expectation-Maximization technique for jointly extracting the best parameters for use in
an inversion along with the reconstructed signal. Here, Monte-Carlo and Cramer-Rao bound
results demonstrate that we are able to determine accurate model parameters exactly in those
situations where the the model mismatch analysis shows that such fidelity is required to ensure
low mean square error in the recovery of the underlying signal.
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1 Introduction

The recovery of a signal from a noise corrupted, linearly distorted version of the original is
a problem arising in application areas ranging from radar signal processing and communications
to medical imaging and geophysical prospecting [4,8,9,14]. Most all signal restoration problems
are characterized by a distortion operator which, while not necessarily shift invariant, generally
affects some type of smoothing of the desired signal. As a result of the inherent loss of information
associated with this blurring, these problems are typically ill-posed thereby requiring the use of a
regularization method for stabilizing the inversion procedure.

One common framework for performing regularization is statistical linear least squares estima-
tion [12]. Under this approach, the signal is modeled as a random process with known first and
second order moments and the reconstruction is obtained as the solution to a set of normal equa-
tions. The inverse of the signal covariance matrix for this prior statistical model then appears as a
term in the normal equations and provides the required stabilization to the solution procedure [1].

In this paper, we consider issues of robustness and joint model estimation/signal recovery meth-
ods arising from the use of the so-called 1/ f class of wavelet domain prior models in LLSE schemes.
Our analysis shows that under a wide range of experimental conditions the mean square error (MSE)
estimation performance is rather insensitive to the parameters governing these models and more-
over these models are quite useful even when the underlying signal is not 1/f. For those situations
in which the robustness analysis indicates that strong performance in terms of signal reconstruction
requires a well matched model, we demonstrate both via Monte-Carlo simulation and Cramer-Rao
bound analysis that a Maximum Likelihood-type approach in fact yields accurate estimates of the
required model parameters.

The class of statistical prior models of interest here is defined most naturally in the wavelet

transform domain. Originally developed by Wornell [15], these non-stationary, Gaussian processes



possess a generalized, 1/ f-type power spectrum [15] and are endowed with certain self-similarity
properties making them well suited for describing many naturally occurring phenomena [15]. Ad-
ditionally, they posses uncorrelated wavelet coefficients; that is, the wavelet transform essentially
acts as a whitening transform for such processes. Under a zero mean assumption, the transform
domain model is specified by only two parameters governing the variance structure of the wavelet
coefficients [15].

In [9-11], we have made use of these 1/f processes as prior models in LLSE problems. The
diagonal transform domain covariance matrix coupled with the formulation of the signal recovery
problem directly in scale space lead to a number of useful results. In [9,10] we developed a quantity
termed the relative error-covariance matrix (RECM) which allowed for definition of the optimal,
space varying scale to which we could obtain an accurate reconstruction. The RECM also lead to
an easy means of quantitatively describing the process of sensor fusion. Finally, in [11] we extended
this work to non-linear signal restoration problems where the relative Cramer-Rao bound matrix
served as a useful tool for lowering the complexity of an iterative, Newton-type inversion algorithm.

In this paper, we consider issues of robustness arising in the use of 1/f prior models in LLSE
and the development of efficient methods for joint model/signal estimation. The motivation for our
robustness analysis is provided by work in [4] where the authors show that these 1/f processes can
approximate quite accurately a variety of other stochastic processes including first order Gauss-
Markov (FOGM) processes, Brownian motions, and fractional Brownian motions. For the case
where there is noise but no blurring Chou et. al demonstrate that the use of a 1/f type model in
place of the exact statistics of the true process in an LLSE scheme resulted in small loss in mean
square error performance specifically when the underlying signal was FOGM [2].

Here we extend this line of inquiry to the case of an arbitrary, linear blurring function. We

develop an explicit expression for performance loss as a function of the noise statistics, the blur,



the assumed prior model, and the true signal model. It is shown in Section 3 that such loss is
typically quite limited when a 1/f process is used in the estimator when the true process either
obeys a different 1/f law or can be described using a First Order Gauss Markov model. These
results hold over a wide range of blurring severity, noise level, and amount of mismatch between
the true process and the one used in the estimator.

In the remainder of this paper, we consider a version of the Expectation-Maximization (EM)
algorithm for jointly estimating the prior covariance model parameters along with the underlying
signal. The algorithm, derived in Section 3 is shown to possess a similar structure to that obtained
by Wornell in [16] for the problem of 1/f model parameter estimation when there was no blurring.
We also derive and analyze the Cramer-Rao bounds for unbiased estimates of the model parameters.
Our examination of the model mismatch performance and the variances of the parameter estimation
demonstrate the desirable property that the parameter estimation performs well precisely in those
situations where considerable performance gain can be achieved by a matched model. Conversely,
in those blurring and SNR cases where the parameter estimation performance is weaker, the model
mismatch analysis shows a wide range of models will provide essentially the same performance.

In Section 2, we formulate the signal restoration problem in both the space and wavelet trans-
form domains and present the necessary background concerning linear least squares estimation.
Section 3 is devoted to the issue of model robustness while model estimation and performance

analysis are provided in Section 4. Finally conclusions and future work are presented in Section 5.

2 Background
In this paper, it is assumed that the data upon which signal restoration is to be based is related

to the underlying unknown via a matrix-vector model of the form

y=Tg+n (1)



where y is the data vector, g is a discrete representation of the unknown signal, n is additive
noise, and T is a matrix representing the blurring operation. In practice, (1) is obtained via a
suitable discretization of a first kind Fredholm integral equation. Typically, y represents noise
corrupted samples of the output of such a system, g is a vector of coefficients obtained via some
series expansion of the continuous, unknown signal and the elements of T are obtained through a
quadrature formula related to the expansion functions [1].

We are interested in formulating the linear least squares estimation problem in the wavelet
transform domain. That is, rather than estimating g from y we seek to explore issues associated
with the determination of the wavelet transform of g from the transform of the data. Toward
this end, we define two orthonormal wavelet transform matrices, W, and W, [13], which take the
physical space vectors, g and y into their wavelet space counterparts, v = W,g and n = W,y
respectively. The vector =, for example, contains a collection of scaling coefficients at some coarse
scale, L, along with collections of wavelet coefficients at scales L through some finest scale, F'— 1,
with L < F' (i.e. smaller scale numbers imply coarser information) [3]. We denote by gr,; the ith
scaling coefficient at scale L and 7; ; the ith coefficient at scale j where ¢ = 0,1, .. 27— 1.

Using W, and W, to rotate coordinates, we arrive at the scale-space counterpart to (1) as

W,y = (W,TW}) (W,g)+ W,n & n=0v+v (2)
where AT is the transpose of the matrix A, ® = Wyng is the wavelet transform domain
representation of the blurring matrix T, and we have taken advantage of the fact that WgWg =1
from the orthonormality of the wavelet transform.

The use of an LLSE framework requires the specification of first and second order moments of
statistical models for both the noise vector v and the signal, «v [12]. We assume that v zero mean
and white with variance r? and write v ~ (0,R) with R = r2I the covariance matrix. By the

orthonormality of W, this model also implies the space domain noise vector, n, is (0, R).



For the statistical model of v, we chose a 1/ f-type process [15]. Here, « is taken to be a zero
mean, Gaussian random vector with a diagonal covariance matrix Pg. The elements along the
diagonal are the variances of the individual wavelet/scaling coefficients in v and are given by

var (7;.;) = K27H var (gr,;) = k274, (3)
The parameter x controls the overall power in the signal and the fractal parameter, u, determines
the smoothness of the process. For p = 0, «v is white noise. As p increases, the process displays
smoother structure and longer range correlations. The coarsest scale coefficients gy, ; are defined in
the same fashion.

Using these models for v and v, ¥, the linear least squares estimate of v given the data, is
defined as the solution to the following set of normal equations:

(@'R'®@ + P;') 4 = @RIy, (4)

The value of the expected mean square estimation error is
El5-1"G-] =tr[(@R@+P;) ] (5)
where tr(A) is the trace of A and the matrix in the parenthesis of the right-hand side of (5) is

termed the error covariance matrix.

3 Robustness

For purposes of signal restoration, it is often the case that the covariance model used in the
estimation scheme will in fact not be equal to the true covariance function of the underlying
process. For example, it may be that the true covariance is unknown thereby requiring an estimate
of that quantity be used to recover the signal. Alternatively, one may know the covariance matrix,
but choose to employ an approximation which possesses certain desirable qualities, eg. diagonal
structure, easy parameterization etc. In either case, since the model used will not exactly match the
true covariance, it is important to understand the performance degradation due to this mismatched

model. Here, we concentrate on this issue with respect the use of 1/f type models in an LLSE



recovery scheme and examine this degradation across a variety of circumstances to determine those
instances where the models do or do not perform well. For this purpose introduce the model based
estimator M as
M= (@"R'®+P ' )'@'R . (6)
This is the same estimator as in (4) except instead of using the true object covariance Py, we have
replaced this with a model P.,.
To measure the performance with respect to model mismatch we will use the mean square error
of the solution as a function of the true but unknown covariance Py and the model P,
MSE(P4; Po) = E{(¥ = 1) (§ =)} = tr {E{(} = )3 - )"} } . (7)
The optimal estimator, in the mean squared error sense, is arrived at when P, = Py. We will use
M, to signify this estimator, which will have a mean square error of MSE, ;. We can expand (7)

by applying the following relations (a more in depth derivation is in the appendix):

E{mT} =0P,@T + R=P, E{vy7} =Py

E{v4T} = E{37TYT = MOPy; E{¥3%"} = MOP,®"M” + MRM.
The expanded MSE formula then becomes,

MSE = tr{(®@TR7'® + P;!)™'} + tr{(M — M,,1)P,(M — M,,¢)"} (8)

MSE,,: + MSEaras. (9)
We see that the total MSE is composed of a minimum error achieved when the model is matched
to the true statistics and a model mismatch error, MSEasas.

In this section, we will evaluate the model performance by examining degradation with respect

to the optimal performance. Thus we will define the normalized MSE to be
MSE MSEnas
MSE,, = =14 —. 10
MSEopt —I_ MSEopt ( )

Equation (10) shows that the normalized MSE is 1 for a matched model and increases for mis-

matched models.

In the following examples, we will examine the performance degradation of the estimator in



the mean square error with respect to model mismatch under different situations. We will show
that the performance is relatively insensitive to mismatch in the model under a wide range of
blurring operator specifications and noise conditions. For the first experiments, we will be using
a covariance matrix for the object which is 1/f. For these, the optimal performance is achieved
when the parameters of the model equal the parameters of the covariance matrix of the object. For
the remainder of the examples, we will be estimating a first order Gauss Markov (FOGM) process,
for which any 1/f model could only be an approximation, and therefore optimal performance will
not be achievable, but we will show that even in this severe case of model mismatch, the models
still perform well in their estimates. In all cases SNR is measured as the ratio of clean data power
||®~|| to noise power ||v||.

For the examples, the matrix ® is constructed as the wavelet transform of a discrete convolution
of a Gaussian kernel as shown in Figure 1. To simplify the boundary effects of the wavelet transform,
T is a circulant matrix; that is we assume periodicity. The vector sizes are 128 elements. We will
vary the kernel width o, this will have the effect of varying a filter from all-pass for a narrow kernel
to low-pass as the kernel becomes wider.

In analyzing the effects of model mismatch, there are two parameters governing the 1/f type
models: x and p. The role of k is basically that of the traditional regularization parameter in
a linear inverse problem [5]. It is generally the case that estimation performance is relatively
insensitive to the exact value of this parameter with close to optimal performance achievable for
values of k within an order or magnitude of the best [5]. This lack of sensitivity allows us to focus
on the effects of the fractal parameter p on the performance of the estimator. The approach we

take here is to assume that the overall signal energy, e, = F ['yT'y], is known a priori so that x
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may be written as a function of p via

0= er(ery "

where the matrix F(y) = k7' Pg. The dependence of F on p will often be assumed but not written.
3.1 Mismatch of 1/f Processes

The surface shown in Figure 2 demonstrates the degradation in performance as the blurring
function changes. This surface shows the normalized MSE versus the blurring parameter ¢ and the
model parameter u. The true statistics of the unknown process have a p of 1.5 and the SNR is 20
dB. As the blurring width increases, the sensitivity is largest around ¢ = 1 and then decreases. At
low amounts of blurring, any model which retains a significant amount of information will perform
well. Thus, we see significant degradation for high values of p, but very little for low values. At high
amounts of blurring very little information remains and most any model will act close to optimal.
In the sensitive area, i.e. ¢ = 1, adequate information remains, but a well matched model is needed
to produce an accurate reconstruction. We will show in section 4.2 that in this area we can in fact
estimate the model accurately leading to performances which are close to optimal. Figure 3 shows
the worst case performance across all blurring widths for a mismatched model. It can be seen that
the models perform quite well for a wide range of  values since a NMSE within 10% of the optimal
can be achieved with u between 1.1 and 1.8.

In Figure 4 we examine the degradation with respect to the signal to noise ratio. The fractal
parameter p of the true process is again 1.5 and the blurring function has a value of & = 1.0.
This blurring function was chosen to be in the sensitive region of the previous example. As can be
seen in the plot, the sensitivity of the estimator is highest as the SNR increases. This is a similar
phenomenon to that shown in the previous example. For high SNR, there is much information
which a properly tuned estimator can exploit. As SNR decreases, there is little information and

most any estimator can perform similarly. Figure 5, shows 4 slices of this surface at SNR or 10,
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20, 30, and 40 dB. As the SNR increases, the curvature around the optimal p increases, indicating
a higher sensitivity to model mismatch. Yet, even at a SNR of 40 dB, the mismatch of 30% in the

model parameter is within 10% of the optimal MSE.
3.2 Mismatch of FOGM processes

We will now examine the estimation of first order Gauss Markov (FOGM) processes using 1/ f
models. In this case, the models will not match the true covariance at any parameter values. The
sample path of a FOGM process is described by a covariance matrix with the following element
values

[Polij =l (12)
where p is the correlation value, and may vary from 0 to 1. At low values the samples are relatively
uncorrelated and the process becomes white. At values near 1, the samples are highly correlated
and the process becomes increasingly low pass. Viewed in this way, it can be seen that low values of
i should correspond to low values of p and vice versa. This will be seen in Figure 6 where the p of
best performance, defined by lowest NMSE, will increase with the value of p. A collection of cutsets
for this surface can be seen in Figure 7. Here we see that model performance degrades as p increases.
This occurs because in using the 1/f covariance matrix, we are basically approximating the wavelet
transform of the inverse of the FOGM matrix by the diagonal 1/f matrix. When p is small, the
transform of the inverse FOGM covariance matrix is basically diagonal and well approximated by
the 1/f process. As p increases, larger off diagonal elements appear in the transform of the inverse
FOGM covariance matrix in the typical “finger structure” shown in Figure 8. Approximation of
this matrix by the diagonal 1/f matrix here is not as accurate thereby leading to the degradation
in performance.

The example in Figure 9 shows the NMSE performance for a range of g and o. Here it can

be seen that at low values of ¢ when little blurring occurs, the best performance possible with the
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models does not meet the optimal. At best it is 20% above optimal. The models however still
perform better than the commonly used identity regularizers (x = 0). A similar structure to that
found in the estimation of the 1/ f processes also occurs in this plot. At values of o in the range of
.4 to 1.0, the MSE is more sensitive to g than at other ranges.

Lastly, in Figure 10 and Figure 11 we examine the performance for two different correlation
values, .25 and .75, versus SNR. We see that as in the 1/f case, the highest region of sensitivity
occurs at high values of SNR. As the SNR decreases, the degradation due to model mismatch is
much less, essentially all estimates degrade at the low SNR values. A contrast between the two
plots shows that the less correlated process, p = .25, is very resilient to model mismatch, but as

was seen in the 1/ f plots, when the model parameter p is large, performance does degrade quickly.

4 Model Estimation

In section 3 we examined the sensitivity of the model to model mismatch and we identified
those regions where sensitivity is of concern. In this section, we will demonstrate a method for
estimating the model parameters from the data. We will also examine the variances upon the
parameter estimates to show that the estimator performs well precisely in those regions where
model mismatch is an issue. Conversely, in situations where there is not enough information in the
data for an accurate estimate, the results of section 3 indicate that a wide range of models give
basically the same performance.

4.1 EM Algorithm

The likelihood function for p and &, derived from the multivariate Gaussian, is
1 _ 1
Wp,w3m) = =o' (hOF ()@ + R) ™'y — S log|(kOF (1)@ + R)|. (13)
This function is difficult to maximize since there is no closed form expression for the parameters

which produce this maximum. Therefore, the parameter estimation will be performed using the
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Expectation Maximization (EM) algorithm. The EM algorithm is a two step iterative algorithm
which solves the maximum of (13) by successively calculating an estimate of the object and an
estimate of the parameters from the likelihood function conditioned upon the available data and a
current estimate of the model parameters [7]. We will represent the model parameters as ¢7 = [u £].

The Expectation step of the EM algorithm for the Gaussian case consists of constructing the
estimate of the error covariance matrix for the current parameter set ¢, and computing the MAP

estimate of 4 as

(e™r '@+ P;l(gz)(p)))_l (14)

Q
A
S
=

[l

40 = ceTR . (15)

The maximization step consists of maximizing the following function arrived at in the appendix
Q¢,¢") = —log|Py(e)| — log|R| — tr (P} (¢)C")

—tr (1 - (@P,(¢)@T + R)7'R) - 4)TP 1 (¢")5%) — n"Rn.  (16)

Eliminating those terms in (16) which do not vary with ¢ and writing the expression explicitly

in terms of the parameters p and &, yields

(p+1)
: = arg max (—N log k — log |F(p)| — ltr(F_l(u)(’y(p)’y(p)T + c(p>))) . an
K

R(p-}—l) o

Taking the derivative with respect to x and setting it equal to zero we arrive at the update

solutions for k as

1 - o (P)2
R(p+1) — A_r” (F 1(Iu)(,),(p)7(p)T + C(p))) ) (18)
To solve for p we will use the relation that
- OF
F=—=—(log2)SF 19
5 = —(og2) (19)

where S is a diagonal matrix of the scale coefficients. Differentiating (17) and setting the result

equal to 0 gives

0 = —or (P4 LEER (50507 4 c0)) (20)
K
0 = —tog2yer (P (s - TEma507 4 ) (21)

13



Since F, S, and I are diagonal matrices, the equation can be rewritten as
0= 332G - BRGE 4 ) = Pty (22)
where ¥; ; is the ith coefficient ;t t]he 7t scale, and c;; is the diagonal element of the estimated
error covariance matrix corresponding to it. As was shown in [16] with the unblurred case, the right
hand side of (22) is a polynomial in 2#. In the blurred case, we show in the appendix that there
is only one real positive zero, and the solution on the values of interest for p always exists and is
unique. It now becomes possible to reduce the computationally intensive Maximization step from
maximizing across a two parameter function to the much simpler solution of a polynomial root.
The solution of (18) and (22) requires only a vector of the squared elements of the object

estimate, diag[;y(p)ﬁ/(p)T] plus the diagonal elements of the estimated error covariance matrix, C(®).

We will call this statistic vector t. The entire algorithm can then be formulated as:

E-Step:
Cl) = (@TR™'@ + ——F(ulr=D) )~ (23)
[Q(p_l)
40 = c)@T g1y (24)
(r) _ (2(p) (r)
tz’,pj = (72'5' )2 + Cii’ (25)
M-Step:

Py = Y03 2 - B2 (26)

U = arg(P(2%) = 0). (27)
k() — %”F(M(p))—lt(p)nl (28)

4.2 Cramer-Rao Bounds
The variance analysis of this estimator can be examined by the Cramer-Rao bounds given by
the inverse of the Fisher information matrix. The Fisher information matrix J is given as the

negative of the expectations of the second derivatives of the likelihood function given as (13). The

expectations of the derivatives are given in the appendix. These are arranged to give the Fisher
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information matrix as

_p2Zl _p 2l
J= 3'2‘2 8”23“ (29)
_ES?L@lﬁ _E%
Thus we can find the appropriate variances as
J
var (k) > ﬁ (30)
N Joo
var (f) > i (31)
where
1
Jin = Sir((x@FO" + R)T'OFO")’ (32)
k% log? 2 T 1 2
Jop = —5—tr (k®F®" + R)"'OSFO") (33)
2log?2
3 = 2% 2 (4 ((reFeT + R)'OFOT) tr (kOFOT + R)-'@SFEOT)’
4
—tr? (k@FOT + R)'OFOT (rOFOT + R)'O@SFOT)) (34)

4.3 Examples

Using the results of section 4.2, we can examine the mean square error of the estimates of &, u
and ~v. We shall perform this analysis with respect to the blurring parameter ¢ and the SNR, and
include comparison with Monte Carlo simulations. We find that the variance of the estimates is high
when the information content is low and vice versa. In comparison to the results of Section 3, we
see that when information content is high a well match model improves performance significantly,
and when information content is low, model mismatch is not an issue of concern. Thus the EM
estimation of the parameters performs well when it must perform well and alternatively the lower
performance in low information situations is inconsequential.

In Figure 12, we see the standard deviation of the parameter estimates with respect to the
blurring function. Here we are using 20 dB SNR, a true x of 10 and a true a of 1.5. As ¢
approaches zero, i.e. no blurring, the curve levels off at approximately .15 for g and 3.5 for k. As
the blurring increases, the variance also increases. The curve is confirmed using 200 Monte Carlo

simulations of EM estimates. Here the simulations of g fall almost on the curve. This information is
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re-iterated in Table 1, where the mean and standard deviation is shown for the parameter estimates.
There is a small dependence of the bias of the parameter estimates upon the blurring parameter
and the SNR. The last section shows the optimal MSE achievable with a matched model and the
experimental MSE from the Monte Carlo simulations. The last columns shows that the Normalized
MSE is within 1% of the optimal achievable.

In Figure 13 we plot the bounds with respect to SNR. Here we see that the variance decreases
as the SNR increases. At low values of SNR, estimation will be poor. Likewise as seen in Section 3,
at low values of SNR most any model will perform similarly. The estimation performance improves
as SNR increases producing better models where better models will produce a performance gain.
Again, we see the Monte Carlo simulations which confirm the analytical curves. Here we see the
Normalized MSE is again within 1% of the optimal. Last, Figure 14 shows the reconstruction of a
1/ f process after blurring with & = 1.5 and corrupted by noise which has a power 15 dB below the
signal.

We next turn our attention to the estimation of FOGM processes with the 1/f model. Table 2
shows the means and standard deviations of the parameter estimates and the MSE values of the
~ estimates for 200 Monte Carlo simulations where the FOGM process has p = 0.8. Here we see
similar performance in the standard deviations of the parameter estimates. Since in this case, no
1/ f parameters can exactly match the FOGM model, we expect a higher Normalized MSE for the
estimation of 7, and this is confirmed by the Monte Carlo simulations. However, this degradation
in performance is within 6% of the optimal across most experimental parameters. As predicted, in
the high SNR, low blurring case (i.e. 30 dB and o = 0.5) the error was higher. As was shown in
Section 3, this is the situation where a matched model significantly improves performance. The last
figure, Figure 15 show the reconstruction of a FOGM process with a SNR of 15 dB and a blurring

of o = 1.5.
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5 Conclusion

The 1/ f fractal models have been used in [15,16] to reconstruct a noise corrupted signal. We
have extended this work to the case of noise corrupted and linearly distorted signals. To properly
show the efficacy of these models, we performed a robustness analysis with respect to mismatched
models and we extended the parameter estimation work of Wornell [16] to the linearly distorted
data. We examined the degradation using the critireon of normalized MSE. We were able to
show that the performance of the LLSE was relatively insensitive to model mismatch. In addition
we examined the performance while estimating a FOGM process. Again, we saw that though
degradation always existed to some extent, the performance was close to optimal and relatively
insensitive to model mismatch. We also extended the parameter estimation technique of [16] to the
linearly distorted case. Here we showed that the computation of the EM algorithm can be greatly
reduced by calculating an auxiliary statistic vector in the Expectation Step. This statistic vector
is composed of the square of the estimated object elements and the estimated error variances. As
in [16], the Maximization step can then be reduced to finding the root of a polynomial. Using
this estimation technique we examined the variances of these parameter. The situations in which
a closely matched model gives significant performance gains correspond to the low variance in the
estimated produced by the EM algorithm. Thus our parameter estimation translates into higher

fidelity in the reconstruction of the object.

A Model Robustness Derivation

The expansion of (7) is accomplished by expanding of the cross terms as
MSE = tr{Py— MOP, - PO'M! + MOP,®'M” + MRMT}
= 1r{Py - Pe®T(@P,®T + R)"!®P; + M - (@TR'O® + P;')'@TR)

(P07 + R)(M - (0RO + P 1) 1@TR )T}
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The first two terms can be transformed to the error covariance matrix using the matrix inversion
lemma [6]. The outside factors of the last term are a difference between the estimator used and the

oprtimal estimator. The inside term is the data covariance. And thus we arrive at (8).

B Maximization Step Function

In the implementation presented here, the incomplete data z is 7. We will choose as our
complete data set y the unknown object v and the unknown noise v. Qur parameters will be the
model parameters g and x and will be represented by ¢. The incomplete and complete data are
related by the matrix H as

y=[01] K = Hz. (35)

v
Using the above definitions, the EM algorithm for Gaussian pdf’s becomes [7]:

o) = argmaxQ(¢; o)) (36)
Qg:9W) = —log|Az| — tr(A;'AY) ) — uT A W) (37)
P.(¢) O
Az = E(zz7) = +(#) (38)
0 R
Azy = E(zz'|ly)=Ayz - AzH (HAZH") Ay (39)
_ _ T Ty—1
Bzly = E(zly)=AzH (H|AzH" ) y. (40)

Substituting (38), (39) and (40) into (37) arrives at (16).

C Proof of Unique Solution

Let P(z) be a polynomial with
Px)=coterz+ - Fepmz™ —cpa™ - —c 2"
where the coefficients ¢; > 0 for all 2.

Then PU™)(z), the mth derivative of P(z),is

(m+1)! n!
767”7‘ x —_ . s e — 7.2:’
1! i (n —m)!

P (z) < 0 for all z > 0. The function P("=1) is the (m — 1)th derivative of P(z), and has

Ln—m

P(m)(x) = —mle, —
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PU™)(z) as its first derivative.

! 1)! n!
() = (m— 1Yo~ Mo g mADL
P (z)=(m— 1Dl [ Cm? T Cmt1? w1

PU=1(0) > 0, and lim,_, P Y(z) = —co. By the Intermediate Value Theorem, P("=1)(z)
has at least one point where P~V (z) = 0. Also, since PU")(z) < 0 for all values of z > 0,
P(m_l)(m) is monotonically decreasing for z > 0, therefore by the Mean Value Theorem the point
where P("=1)(z) = 0 is unique. Let this point be zo.

Now,

. m! (m+1)! n! I
P! 2)($) =(m—-2)lep—g+(m—Dleyrz — icmﬁ — 3 Crg1Z° — o — m +2

PUm=2)(0) > 0 and is monotonically increasing over the interval 0 < & < zg, therefore there is no
point in this interval where P("=2)(z) = 0. P(™=2)(z¢) > 0, since P~V is negative for z > z
Plm=2) ig decreasing, and lim,_ o, P(m_Q)(x) = —o0, thus by the same reasoning as above, there is
one point = > x¢ for which P(m_z)(:v) = 0. Let this point be z1, and repeat the proceedure until

P(z) is reached at which point there is a unique point # > 0 for which P(z) = 0.

D Variances
In order to compute the elements of the Fisher information matrix, we must find the expectations

of the second derivatives. The first derivatives of the likelihood function of p and s with respect

to i are
% = %tr (rOFOT + R)'OFO7((kOFOT + R)'nn’ - 1))
K
g_l = "l(;g% (kOFOT + R)'@SFO’(I - (kOFOT + R)'nnT))
u
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And the second derivatives

2

% = tr ((/-;@F@T +R)'OFOT(rOFOT + R)‘1®F®T(%I — (rOFOT + R)—lnnT))
K
2 1

% = k?log? 2tr ((/{@F@T +R)"'@SFre’ (keFe’ + R)‘1®SF®T(§I — (rOFOT + R)‘lnnT))
Jv)

klog?2 T AgeraTl T 1, T
5" (kOFO®" + R)"'OS’FO" ((kOFO®" + R)™'nn" — 1))
2 log?2
aaa - —%tr (kOFO” + R)"'@SFO’((:OFO®” + R)'nn” — 1))
UOK

1
—klog 2tr ((K@F@T +R)lere’(reore’ + R)_1®SF®T(§I - (rOFOT + R)—lnnT))

Taking the expectations with respect to n leaves

2 1
% = —5ir (k0FOT + R)'OFOT(kOFO” + R)'OFO7)
K
2 2log* 2
E% - —%tr (kOFOT + R)'O@SFO’ (rOFOT + R)"'@SFOT)
u
2 log 2
p ol kloe2, (k0FOT + R)'OFOT(kOFO’ + R)'OSFOT)
Ouok 2
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E Figure and Table Captions

Figure 1 The Gaussian blurring kernel used in the examples with o = 3.

Figure 2 Normalized MSE for estimating a 1/ f signal versus o. The true p is 1.5 and the SNR is
20dB.

Figure 3 Worst case performance across all blurring widths. A model mismatched by 20% is still
within 10% of the optimal performance.

Figure 4 Normalized MSE for estimating a 1/f signal versus SNR. The true p is 1.5 and the
blurring kernel has o = 1.

Figure 5 Mismatch performance at 4 values of SNR. As SNR increases, the range of u providing
a NMSE of 1.1 decreases.

Figure 6 Normalized MSE for estimating a FOGM process versus p. The SNR is 20dB and
o = 1.0. The optimal u changes with p as these both define a filter width.

Figure 7 The Normalized MSE performance for 4 values of p. The value of i for best performance
can be seen to increase with p. The SNR is 20dB and ¢ = 1.0.

Figure 8 The covariance matrices of two values of p. The off-diagonal elements become more
dominant as p increases.

Figure 9 Normalized MSE for estimating a FOGM process versus o. The SNR is 20dB and
p=.75.

Figure 10 Normalized MSE for estimating a FOGM process versus SNR. Here, ¢ = 1 and p = .25.
Figure 11 Normalized MSE for estimating a FOGM process versus SNR. Here, ¢ = 1 and p = .75.

Figure 12 Standard deviation of g and x with respect to the blurring parameter. The line shows
the analytical results and the circles show Monte Carlo simulations with error bounds to
confirm the analytical functions.

Figure 13 Standard deviation of g and x with respect to the SNR. The line shows the analyti-
cal results and the circles show Monte Carlo simulations with error bounds to confirm the
analytical functions.

Figure 14 A reconstruction of a 1/f process. Here the blurring width is o = 1.5 and the SNR =
15 dB. In the upper plot the solid line represents the original and the dotted represents the
reconstruction.

Figure 15 A reconstruction of a FOGM process. Here the blurring width is ¢ = 1.5 and the
SNR = 15 dB. In the upper plot the solid line represents the original and the dotted represents
the reconstruction.

Table 1 Results of 200 Monte Carlos for estimation of 1/ f processes.

Table 2 Results of 200 Monte Carlos for estimation of FOGM processes.
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Figure 15:
Parameters Estimation of Estimation of & Estimation of ~
SNR | o Mean | Std. Dev. Mean | Std. Dev. MSE ¢ | MSE | NMSE
10.1 0.5 1.5326 0.23588 10.9228 3.9094 0.028594 | 0.028634 1.001
10.1 1.0 1.4248 0.31993 9.7932 4.3455 0.035491 | 0.035676 1.005
10.1 1.5 1.3865 0.42749 9.6084 4.4335 0.039654 | 0.040064 1.010
20.1 0.5 1.4881 0.16767 10.3092 3.7793 0.012164 | 0.012167 1.000
20.1 1.0 1.4951 0.21973 10.4788 3.8524 0.025383 | 0.025357 0.999
20.1 1.5 1.5045 0.28609 10.5522 3.9478 0.031613 | 0.031845 1.007
30.1 0.5 1.4864 0.16338 10.2986 3.7745 0.005054 | 0.004911 0.971
30.1 1.0 1.5136 0.19206 10.6807 3.5972 0.019101 | 0.019124 1.001
30.1 1.5 1.4895 0.23358 10.4197 3.8096 0.026433 | 0.026673 1.009
Table 1:
Parameters Estimation of p Estimation of & Estimation of v
SNR] o Mean [ Std. Dev. Mean [ Std. Dev. MSEop: | MSE | NMSE
10.1 0.5 1.4136 0.22519 8.7953 3.3704 0.026354 | 0.027158 1.031
10.1 1.0 1.2112 0.30275 7.3007 2.9041 0.032300 | 0.033714 1.044
10.1 1.5 1.1149 0.35444 7.2205 3.0038 0.036002 | 0.037669 1.046
20.1 0.5 1.4262 0.16147 8.7504 3.0673 0.011667 | 0.012334 1.057
20.1 1.0 1.3268 0.23013 8.1448 3.0464 0.023107 | 0.024034 1.040
20.1 1.5 1.2194 0.27277 7.5712 2.9381 0.028532 | 0.029999 1.051
30.1 0.5 1.4139 0.17361 8.5682 3.4380 0.005883 | 0.006752 1.148
30.1 1.0 1.3160 0.18583 7.7098 3.0224 0.017245 | 0.018139 1.052
30.1 1.5 1.3152 0.23433 8.1469 3.0800 0.024164 | 0.025580 1.059
Table 2:
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