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A Sliding Window RLS-like Adaptive Algorithm for
Filtering alpha-stable Noise

Murat Belge and Eric L. Miller

Abstract|We introduce a sliding window adaptive RLS-

like algorithm for �ltering alpha-stable noise. Unlike pre-

viously introduced stochastic gradient type algorithms, the

new adaptation algorithm minimizes the Lp norm of the er-

ror exactly in a sliding window of �xed size. Therefore,

it behaves much like the RLS algorithm in terms of con-

vergence speed and computational complexity compared to

previously introduced stochastic gradient based algorithms

which behave like the LMS algorithm. It is shown that the

new algorithm achieves superior convergence rate at the ex-

pense of increased computational complexity.

I. Introduction

In the vast majority of signal processing applications it

has been assumed that the signal or noise under investiga-

tion can be modeled by a Gaussian distribution law. This

assumption has been justi�ed by the central limit theo-

rem and strong analytical properties of Gaussian pdf which

leads to linear algorithms. However, in many real-world

problems the noise encountered is more impulsive in nature

than that predicted by a Gaussian distribution. Examples

are underwater acoustic noise, low frequency atmospheric

noise and many types of man-made noise [1]. Systems op-

timized under the Gaussian assumption often yield unac-

ceptable performance when subjected to impulsive, non-

Gaussian noise [12]. There exists a class of distributions,

called alpha-stable distributions, than can be used to model

these types of noise [1].

With the introduction of alpha-stable distributions to

the signal processing community, a number of di�erent

adaptive �ltering approaches have been proposed for �l-

tering these processes [3], [5], [4], [7]. All of the algorithms

that have been introduced so far can be classi�ed as an

LMS variant [8] which basically updates the �lter coe�-

cients by using an instantaneous approximation to the gra-

dient of the cost function. The only di�erence of these

algorithms from the conventional LMS algorithm is the

minimization of the Lp norm of the error at the output

of the adaptive �lter instead of the usual Euclidean norm.

The Least Mean p-Norm (LMP) algorithm [6] was derived

exactly as described above. Later, motivated by the nor-

malized versions of the LMS algorithm, Arikan et. al. de-

veloped the Normalized LMP (NLMP) algorithm [3]. Both

LMP and NLMP su�er from the same problem that has

plagued the LMS algorithm. Namely, when the input to the

adaptive �lter is highly correlated the convergence is very
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slow. The RLO algorithm [7] is an alternative to LMP and

NLMP, however its implementation requires some a-priori

information on the error statistics and the �lter inputs [7].

In this work, we develop a sliding window adaptation

algorithm which is similar to the RLS algorithm [2] both

in terms of derivation and convergence characteristics. The

new algorithm provides much increased convergence rate

at the expense of increased computational complexity. A

block implementation of the new algorithm decreases the

computational cost substantially.

II. Sliding Window Least Mean p-norm

Adaptation Algorithm

The objective of an adaptation algorithm is to minimize

the averaged error at the output of the �lter by adjust-

ing the coe�cients of the �lter. Adaptive estimation of a

time-varying �nite impulse response system is usually ob-

tained by limiting the �ltering memory. Here, we adopt a

true �nite memory or a sliding window approach for the

adaptation of �lter coe�cients. That is we minimize the

averaged Lp norm of the error in a window of size L:

Jw(n) =

nX
k=n�L+1

jd(k) � wt(n)x(k)jp =

nX
k=n�L+1

je(k)jp

(1)

where d(k) is the desired signal at time k, w(n) is the vector

of optimal �lter coe�cients at time n, x(k) = [x(k) x(k �
1) : : : x(k � N + 1)]t contains the N most recent samples

of the input signal and 1 � p < 2. Taking the gradient of

Jw(n) with respect to w(n) and equating the result to zero

we obtain:

nX
k=n�L+1

je(k)jp�1sign[e(k)]x(k) = 0 (2)

which can be written as

nX
k=n�L+1

u(k)x(k)xt(k)w(n) =

nX
k=n�L+1

u(k)d(k)x(k) (3)

where u(k) = je(k)jp�2, and (3) is obtained by sub-

stituting
e(k)

je(k)j
for sign[e(k)] in (2) and rearranging.

De�ning r(n) =
P

n

k=n�L+1 u(k)d(k)x(k) and R(n) =P
n

k=n�L+1 u(k)x(k)x
t(k) we obtain the following expres-

sion for w�(n) which minimizes the p-norm of the error in

a window of size L:

w�(n) = R�1(n)r(n) (4)

Note, however, that w�(n) cannot be readily obtained from

(4) since R(n) and r(n) are functions of w�(n). However,
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we can devise an iterative scheme to solve for w�(n) at

each point in time. Such an approach leads to the following

algorithm:

Algorithm 1.

1. w0(n) = w�(n� 1)

2. Compute uj(k) = jd(k) � xt(k)wj(n)jp�2; k = n� L+

1; ::; n

3. Compute Rj(n) =
P

n

k=n�L+1 u
j(k)x(k)xt(k) and

rj(n) =
P

n

k=n�L+1 u
j(k)d(k)x(k)

4. wj+1(n) =
�
Rj(n)

�
�1

rj(n)

5. If
kw

j+1(n)�wj(n)k

kwj(n)k
< � then, w�(n) = wj+1(n), stop; else

j = j + 1, goto step 2
For each new input sample, we apply algorithm 1 to obtain

the optimal �lter coe�cients, w�(n), for the current time.

Steps 2-5 of Algorithm 1 constitute the so-called iterative

re-weighted least squares (IRLS) method which has been

suggested and applied in several contexts [11], [9], [10]. The

convergence of the IRLS algorithm can be guaranteed by

making the following modi�cation [9]:

uj(k) =

�
uj(k) if uj(k) � 1

�

1
�

if uj(k) > 1
�

(5)

where � is a small positive constant.

Note that, in step 4 of Algorithm 1, we need the inverse

of Rj(n). Rather than �rst computing Rj(n) and then

inverting this matrix to obtain wj+1(n) we may consider

computing
�
Rj(n)

�
�1

directly in step 3 of Algorithm 1. To

this end, consider the following expression for i = L; ::; 1:

Rj(n�i+1) = Rj(n�i)+uj(n�i+1)x(n�i+1)xt(n�i+1)

(6)

De�ning, P j(n) =
�
Rj(n)

�
�1
, and applying the matrix in-

version lemma [2] to (6) we obtain:

P j(n� i+1) = P j(n� i)�
1

�(n� i)
g(n� i)gt(n� i) (7)

where g(n � i) = P j(n � i)x(n � i + 1) and �(n � i) =

1=uj(n� i+1)+xt(n� i+1)g(n� i). Equation (7) implies

that the matrix P j(n) can be obtained by a series of re-

cursive updates starting from the matrix P j(n�L) at the

beginning of the window. We assume that P j(n�L) = 1
�
I ,

which corresponds to a soft initialization [2]. Then, in

step 4 of Algorithm 1, we compute P j(n) by using (7)

instead of Rj(n) and then obtain wj+1(n) in step 5 by

wj+1(n) = P j(n)r(n).

The complexity of the algorithm given above is

O(MLN2) where M is the number of IRLS iterations

(steps 2-5 of Algorithm 1) needed. Because of the similarity

of the algorithm to RLS, we call the new approach the re-

cursive least mean p-norm algorithm (RLMP). The direct

implementation of the RLMP algorithm is infeasible for

most applications because of its high computational com-

plexity which is dominated by construction of P j(n). How-

ever, a subsampled version of the RLMP algorithm where

the �lter coe�cients are updated once at every k iterations,

k > 1 being the subsampling rate, can be considered. In
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Fig. 1. Transient behavior of tap weight adaptations for RLMP with
L = 50, k = 10 (solid line), RLMP with L = 100, k = 50 (circles),
NLMP (dashed line) and LMP (dash-dotted line) algorithms.

particular, if k = L, the complexity of the RLMP algorithm

is O(MN2) per iteration. In this case, the �lter coe�cients

are updated once for every data block of length L. As we

will see in Section 3, the average number of IRLS itera-

tions can be quite low making the subsampled version of

the RLMP algorithm a viable alternative to its stochastic

gradient type counterparts.

III. Simulation Study

In this section, we compare the performance of the

RLMP algorithm to that of NLMP and LMP algorithms.

In the NLMP and LMP algorithms, the coe�cients of the

adaptive �lter is updated as follows [3]:

w(n+ 1) = w(n) + �
je(n)jp�1sign[e(n)]

h(n)
x(n) (8)

where h(n) = 1 for LMP and h(n) = kx(n)kp
p
+ 
, with


 > 0 being a small constant, for the NLMP algorithm.

Following [3], we consider the following AR process:

x(n) = 0:99x(n� 1)� 0:1x(n� 2) + u(n) (9)

where u(n) is an alpha-stable sequence of i.i.d. random

variables with � = 1:2, � = 0 and 
 = 1. A simulation

is performed to identify the coe�cients of the AR process

with the p = 1:1 norm. Figure 1 shows the transient behav-

ior of the tap weights of the adaptive �lter and Fig. 2 shows

the norm of the error between the true and the estimated

parameters, de�ned as E(n) = 20 log10 kwtrue
� w(n)k2.

Both �gures were obtained by averaging the results of 100

independent trials. The parameters of the RLMP algo-

rithm are: � = 10�6, � = 10�4, � = 10�2. The RLMP

algorithm was implemented for two di�erent window sizes

corresponding to L = 50 and L = 100 samples. For L = 50,

the �lter coe�cients were updated once for every 10 it-

erations and for L = 100, the �lter coe�cients were up-

dated once per 50 data samples. For a window of L = 50

samples, the RLMP algorithm produces a steady-state tap
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Fig. 2. Transient behavior of tap weight error powers for RLMP with
L = 50, k = 10 (solid line), RLMP with L = 100, k = 50(circles),
NLMP (dashed line) and LMP (dash-dotted line) algorithms.

weight error of approximately -20dB. This �gure can be

made smaller/larger by adjusting the window length. The

step sizes of the NLMP and the LMP algorithms were set to

produce the same steady state tap weight error as RLMP.

The step size for NLMP was found to be 3:8 � 10�2 and

5�10�5 for LMP. Figure 1 and 2 show that RLMP provides

a large improvement in convergence rate over the NLMP

and LMP. To give an idea about the number of iterations

needed for the outer IRLS iterations to converge, we com-

puted the number of IRLS iterations at each discrete time,

n, by averaging 100 trials. The results are displayed in

Fig. 3. It is seen that at most 3 iterations are su�cient to

obtain a relative error
kw

j+1(n)�wj(n)k

kwj(n)k
of about 10�2.

Examining Algorithm 1 in detail, we see that the most

e�cient implementation of the RLMP algorithm requires

ML(2N2+3N+2) multiplications, 2ML divisions andML

nonlinear operations per update of the �lter coe�cients. In

general, for k = L (i.e. �lter coe�cients are updated once

for each data block of L samples), the computational e�ort

required by the RLMP algorithm is approximatelyM times

that of a single RLS update plus M nonlinear operations.

From Fig. 3, we see that, for this example, the ensemble

average of M is actually quite low and approximately 2:5

at the steady state.

IV. Conclusion

In this letter, we described a novel adaptation algorithm

for �ltering alpha-stable noise. The new algorithm is de-

rived by minimizing the averaged Lp error at the output

of the �lter in a window of �xed size. Simulations show

that the new algorithm provides much improved conver-

gence rate compared to other stochastic gradient based

adaptation algorithms for alpha-stable noise environments.

The major disadvantage of the algorithm is its computa-

tional complexity. We proposed a subsampled implemen-

tation of the RLMP algorithm which reduces the compu-

tational complexity to O(MN2) per data sample. Current
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Fig. 3. Fig. 3 Ensemble average of the number of IRLS iterations
needed at each time instant for RLMP with L = 50, k = 10 (solid
line) and RLMP with L = 100, k = 50(circles).

research is focused on frequency domain implementations

of the RLMP algorithm which will further reduce the com-

putational complexity.
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