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Abstract

In this paper we overview current efforts in the development of inverse methods which directly
extract target-relevant features from a limited data set. Such tomographic imaging problems
arise in a wide range of fields making use of a number of different sensing modalities. Drawing
these problem areas together is the similarity in the underlying physics governing the relationship
between that which is sought and the data collected by the sensors. After presenting this
physical model, we explore its use in two classes of feature-based inverse methods. Microlocal
techniques are shown to provide a natural mathematical framework for processing synthetic
aperture radar data in a manner that recovers the edges in the resulting image. For problems
of diffusive imaging, we describe our recent efforts in parametric, shape-based techniques for
directly estimating the geometric structure of an anomalous region located against a perhaps
partially-known background.
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1 Introduction

According to its Greek entomology, the word tomography refers to the synthesis of an image covering

a single slice (tomos) of a medium [55]. Over the past few decades however this term has come to

encompass a much broader range of information-extraction procedures operating at the single-slice

as well as volumetric level. In this paper we consider tomography to encompass any processing

method in which one seeks to obtain information concerning the spatial variations of the physical

parameters of a medium from observations of scattered energy or radiation collected at or near

the boundary. In particular, we concentrate on limited view tomographic problems in which the

information content of data is in some way restricted, thereby complicating the problem of robustly

constructing an image. In many cases, the limitations are spatial in that the transmitting and

receiving sensors are restricted from fully encircling region of interest. In other cases, the limitations

are induced by the physics of the problem which filter the information in the data pertaining to the

distribution of the underlying parameters. Many applications suffer from both of these difficulties.

In this paper we provide an overview of recent work in our group on a number of “feature-based”

inversion approaches which can be widely employed across a range of limited view problems.

As background, in Table 1 we indicate a few of the many problem areas, processing objectives,

and representative sensing modalities characteristic of this class of imaging problems. While the

specifics of the problems are quite variable, there are a number of common underlying themes which

imply that models and algorithms developed in one domain may be applicable in other areas as

well. One readily apparent level of commonality is provided in terms of the sensing modalities. Low

frequency electromagnetic sensors are used in a variety of geophysical as well as military applications

[25, 54, 62, 63]. Similarly, acoustic and radar sensing play a key role in many non-destructive

evaluation (NDE), military, and biomedical imaging problem areas [1,12,14,15,21,48]. At a slightly

more abstract level, even when the sensors differ, the underlying physics can be remarkably similar.

As an example, photothermal methods for NDE, diffuse-optical techniques for medical imaging,

and (in a limiting sense) electrical-resistance/impedance sensing in geophysics and medicine all can

be described within the context of a scalar Helmholtz equation or its limiting case of Poisson’s

equation [16,41,43,44,47,65]. Thus, tools developed in one regime should in principle be portable
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to others. Finally, even when the sensors and physics differ, the underlying processing objective can

be quite similar. For many problems, the goal is not so much a detailed image of the full medium,

but rather, the detection and characterization of anomalous regions (e.g. tumors, material flaws,

buried landmines, or pollution plumes) in a perhaps unknown or partially-known background. For

cases such as these, one would expect that general-purpose techniques for parameterizing these

anomalies and background along with the algorithms for estimating these parameters from data

should again be able to function across a wide range of application areas and sensing modalities.

The common structure in these limited view problems has led to a relatively well defined set of

processing schemes having wide applicability. One the one hand, there has been significant devel-

opment in pixel-based reconstruction strategies. Indeed, for problems employing X-ray radiation

or where the object represents a small perturbation about the background, well known, analytical

methods such as filtered backprojection [33] or diffraction tomography [26,28] have proven remark-

ably successful in producing high-quality images. Even when the assumptions underlying these

methods are violated, variants of these schemes still are employed with success.

In contrast to these analytical methods, a fundamentally different approach taken for the limited

view imaging problem is based on the use of variational principles in which the estimate of the

pixels in the image (or voxels in the volume) are defined as the solution to an optimization problem

[3,9, 27,40,47,61, 64]. The optimizing functional is comprised of one term which requires that the

recovered image, when passed through a computational model of the sensor physics, yields a “good”

fit to the data. Other terms are also appended in order to encourage the reconstructed image to have

certain a priori specified characteristics. These regularizers mathematically stabilize the results of

the optimization procedure and are required to overcome the inherent lack of information in the

data caused by the limited view nature of the problem. Most often these characteristics are related

to some measure of the smoothness of recovered image [4, 60].

While this image-based approach to limited view tomography is quite flexible and has proven to

be quite effective, here we consider approaches to this class of problems which are less tuned toward

pixel recovery and more aimed at extracting directly from the data information regarding “features”

of the unknown scene directly linked to the underlying processing objective (characterization of
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buried objects, tumor localization, etc.). Thus, we are particularly concerned with those limited

view problems that are of the anomaly detection and characterization variety.

In this field alone there has been significant work in a number of communities over the past

ten to twenty years. In the applied mathematics and mathematical physics communities, inverse

obstacle problems have been widely studied by a number of groups. As in the imaging case,

more analytically-oriented schemes known as dual-space [23], level-set [29,42], and linear sampling

techniques [13, 22, 24, 32, 58] have long and very interesting histories. Variational approaches to

shape reconstruction have also been a source of much work [19, 20, 35, 39, 46]. In the signal and

image processing communities, statistical techniques for estimating the structure of ellipses and

understanding bounds on performance under assumed models for data noise given X-ray type data

have been considered in [57]. Extension of these methods to ellipsoids was the subject of work

in [34]. As a final example, the ability to determine the structure of binary polygonal objects was

considered in [45].

The goal of this paper is to describe some recent work being pursued in our group in this area

of geometric feature-based inversion for limited view tomography problems. Specifically we concen-

trate on two very different methods. On the analytical side, microlocal techniques are considered

for problems in airborne synthetic aperture radar (SAR) imaging. With roots in the mathemat-

ical geophysics community [5], these methods exploit some very deep structure of the underlying

physics to stably producing imagery in which edge-like features are highlighted. In the SAR con-

text, these edges represent features characteristic of objects on the ground which may be of military

significance such as tanks, trucks, or artillery.

In terms of variational techniques, an overview of our efforts in the application of parametric

shape based schemes is provided. Following the work in [35, 46], this approach reduces inversion

to a parameter estimation problem where the quantities to be determined describe the geometric

structure of the anomaly. Unlike this previous work, we apply our methods to a highly non-linear

tomographic imaging problem arising in diffuse optical tomography (DOT) [2,7, 52,53]. Here, the

move away from X-ray type of problems has lead to the synthesis of new methods for solving the

resulting optimization problem.
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While the exposition in this paper is limited to the use of SAR for illustrating the microlocal

work and DOT for the shape-based schemes, we emphasize that our feature-based approaches have

much wider applicability than these two areas. In addition to its utility in geophysical applications,

the microlocal tomography holds promise for use in any area where sharp edges separate the object

of interest from the nominal background e.g. NDE, landmine detection, or buried facility imaging.

Similarly, the fact that our shape-based methods describe a way of parameterizing the unknown,

imply applicability in a range of areas again like landmines, but also geophysical exploration and

the like.

The remainder of this paper is organized as follows. In § 2 a common physical model sufficiently

rich to encompass both the SAR application as well as DOT is presented. Using this model, the

microlocal techniques are described in § 3 while the geometric methods are the subject of § 4.

Finally § 5 is devoted to conclusions and an indication as to directions for future work.

2 Physical Model

The physical model underlying all of the applications of interest in this paper as well as a number

of others considered by our group and others takes the form of a scalar, frequency domain type

of Helmholtz equation or its time domain, wave-equation counterpart. We begin in the frequency

domain with

∇ · σ(r)∇φ(r) + k2(r, ω)φ(r) = s(r) (1)

plus boundary conditions with s(r) the source and ω the modulation frequency. In (1), φ repre-

sents the electromagnetic, acoustic, or diffusive field. Measurements of this field then provide the

data for estimating the physical parameters of the medium which are related to the mathematical

coefficients, σ and k2. For DOT, in terms of the desired optical absorption and scattering param-

eters, µa(r) and µs′(r) respectively, we have σ = 1/3µ′
s and k2 =

√−1ω − cµa with c the speed

of light in the medium [2]. For electrical resistance or electrical impedance tomography [16, 65]

(another related class of frequency domain inverse problems), k2 = 0, since we are probing at DC

and σ, the electrical conductivity for resistance tomography or complex electrical permittivity for
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impedance imaging, is the desired quantity. In the case of higher frequency electromagnetic inverse

problems such as SAR, the physical quantities of interest are the electromagnetic permittivity, ε,

and conductivity, σ [8]. For this class of problems, the quantity σ in (1) is generally absorbed into

k2 which is a function of the physical parameters via:

k2 = ω2µ0

(
ε −√−1

σ

ω

)

A number of popular inversion methods are also based on domain integral equation formulations

of (1) [17,18,37]. These models assume that the image of interest represents a perturbation about a

presumably known background. While such methods can be derived for reconstructing both σ and

k2, for simplicity, here we consider only the later and moreover assume that σ(r) = σ0, a constant.

To derive these integral equations, we start by writing k2 as

k2(r) = k2
b (r) + k2

p(r) (2)

with k2
b the known (possibly space varying) background and k2

p the unknown perturbation. Sub-

stitution of (2) into (1) and rearranging yields

∇ · σ0∇φ(r) + k2
b (r)φ(r) = s(r) − k2

p(r)φ(r). (3)

The key point here is that, if k2
b is suitably chosen, one can easily, and typically analytically, solve

for the background “impulse response” of the medium. This quantity, also known as the Green’s

function and denoted G(r, r′), is the field generated at a point r due to an impulsive source at

location r′ [18, 38]. Formally, we have

∇ · σ0∇G(r, r′) + k2
b (r)G(r, r′) = δ(r − r′). (4)

Given knowledge of G, by superposition, the field due to a spatially distributed source, say s̃(r), is

φ(r) =
∫

R3

G(r, r′)s̃(r′)dr′. (5)
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In the case where k2
b is constant, G(r, r′) = G(r − r′) and (5) represents a multidimensional con-

volution. For more complex backgrounds such as layered media , the Green’s function is not a

spatially stationary and the convolutional nature of the integral is lost [18, Chapter 7].

To arrive at the final integral equation used for inverse problems, we let s̃ = s(r) − k2
p(r)φ(r)

to obtain the second-kind integral equation for φ(r)

φ(r) =
∫

R3

G(r, r′)s(r′)dr′ +
∫

R3

G(r, r′)φ(r′)k2
p(r

′)dr′. (6)

The first term on the right hand side of (6), denoted as φb(r), is typically called the background

field as it is the field which exists in the medium when k2
p = 0. In turn, the second term represents

the scattered field in recognition of the fact that it is the contribution to φ due to interaction with

(i.e. scattering from) the perturbation.

One of the key difficulties of inverse scattering problems in general as well as the limited view

problems of interest here is the non-linearity in the relationship of the data to the material proper-

ties. Assuming that the data we measure are either the fields sampled at the surface of the medium

or linear functionals of those field (e.g. the convolution of the fields with a sensor impulse response),

the nonlinearity can be seen in two ways based on the developments in this section. Abstractly, we

write (1), as L(σ, k2)φ = s with L representing the partial differential operator ∇ · σ∇+ k2
b (r) plus

boundary conditions. Then we have φ = L−1(σ, k2)s emphasizing that even though σ and k2 enter

the PDE linearly, their relationship to the fields via the inverse of L is highly nonlinear. Alter-

natively, defining the integral operator G(k2) via [G(k2)]φ =
∫

G(r, r′)φ(r′)k2
p(r

′)dr′, (6) indicates

that φ = (I −G(k2))−1φb. Hence again on the assumption that our data are linearly related to the

field we have

φ(r) = φb(r) +
∫

R3

G(r, r′)
[
(I − G(k2

p))−1φb

]
(r′)k2

p(r
′)dr′. (7)

The presence of the k2
p in the brackets again represents the underlying non-linearity of the inverse

problem.

In cases where the perturbation is “small” in size and amplitude, the determination of k2
p from

the data is generally made easier by linearizing the physics about the background. Such a procedure
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is known as the first Born approximation [18,33] and is most easily explained in terms of the integral

equation form of the physics. For k2
p small [18], the field in the scatterer, that is φ(r′) in the second

term on the right hand side of (6), can be approximated as the field in the absence of the scatterer,

i.e. φb(r′). Making this substitution results in

φ(r) = φb(r) +
∫

R3

G(r, r′)φb(r′)k2(r′)dr′ (8)

which represents a simple linear relationship 1 between the unknown k2 and the data φ(r). We

note here that even when the assumptions required for validity of the Born approximation are not

fulfilled, the related Rytov approximation can often be employed with some success. As explained

more fully in [33], the Rytov method also results in a linear mapping between data and unknown;

although the “data” in this case are related to the complex logarithm of the ratio of φ to φb.

We conclude this section by presenting a model for Synthetic Aperture Radar (SAR). It is in the

context of SAR that we will discuss the microlocal analysis methods. Unlike the frequency-domain

model we have been considering to this point, SAR is inherently a time-domain system. Thus, we

are interested in a temporal form of the integral in (8). Obtaining such an expression is only a

matter of an inverse Fourier transform. We denote by ϕ the Fourier transform of φ and by g the

Fourier transform of G. More specifically, the time domain Green’s function g (defined to be the

value of the field at time t and location r due to a source radiating at time t′ and position r′) is [10]

g(t, t′, r, r′) =
δ(t − t′ − |r − r′|/c)

4π|r − r′| . (9)

For SAR the quantity to be imaged, k2
p, takes the form k2

p = ω2V (r) with V an effective

“reflectivity function”. Substituting these relations into the integral on the right hand side of the

(8) and recognizing that frequency-domain multiplication by ω2 is double differentiation in the time

domain yields

d(r, t) ≡ ϕ(r) − ϕb(r) =
∫

R3

V (r′)
4π|r − r′|

d2

dt2
ϕb(t − |r − r′|/c)dr′. (10)

1Technically: affine relationship due to the φb term
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We note that since (8) was obtained using the Born approximation, (10) also depends on the Born

approximation.

SAR sensors generally operate in free space environments. Consequently the background field

due to a transmitter at location r0 takes the form

ϕb(r′, t) =
∫

R

eiω(t−|r′−r0|/c)

4π|r′ − r0| A1(ω, r′, r0)dω (11)

where A1 is a function of the frequency content of the pulse and the radiating characteristics of the

antenna. Upon substituting (11) into (10) and assuming that the receiver is co-located with the

transmitter, we obtain the final model

D(r, t) =
∫

R×R3

eiω(t−2|r−r′|/c)

(4π)2|r − r′|2 A(ω, r, r′)V (r′)dωdr′ (12)

with A = −ω2A1.

To summarize: In this section we have presented a number of scattering-type models which

are employed by our group to explore the use of feature-based inversion schemes across a range of

applications. For problems in diffuse optical imaging, we draw most heavily on non-linear PDE

and integral equation models summarized by equations (1) and (6). The goal of the DOT inverse

problem is to use measured values of field φ to extract information concerning the optical properties

as specified in σ and k2. In the case of synthetic aperture radar, our approach is specified within

the context of the first Born approximation in equation (12). Here we use the scattered field data,

D, to estimate the reflectivity function, V .

3 Microlocal Techniques

Microlocal analysis is a mathematical theory for analyzing singularities. This is of interest for

feature extraction because the features of interest, such as boundaries between different materials

and edges in images, can generally be described as singularities in the appropriate function. The

term “microlocal” refers to the fact that singularities have both a location and a direction.
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3.1 Wavefront sets

We characterize target features by means of V ’s singular structure, which we describe in terms of

its wavefront set.

Mathematically the singular structure of a function can be characterized by its wavefront set,

which involves both the location r and corresponding directions ξ of singularities [30,31,59].

Definition. The point (r0, ξ0) is not in the wavefront set WF (f) of the function f if there is a

smooth cutoff function ψ with ψ(r0) �= 0, for which the Fourier transform F(fψ)(λξ) decays rapidly

(i.e., faster than any polynomial in 1/λ) as λ → ∞, uniformly for ξ in a neighborhood of ξ0.

This definition says that to determine whether (r0, ξ0) is in the wavefront set of f , one should

1) localize around r0 by multiplying by a smooth function ψ supported in the neighborhood of r0,

2) Fourier transform fψ, and 3) examine the decay of the Fourier transform in the direction ξ0.

Rapid decay of the Fourier transform in direction ξ0 corresponds to smoothness of the function f

in the direction ξ0 [59].

Example: a point scatterer If f(r) = δ(r), then

WF (f) = {(0, ξ) : ξ �= 0}. (13)

Example: a line Suppose f(r) = δ(r · ν). Then WF (f) = {(r, αν) : r · ν = 0, α �= 0}.

Microlocal analysis can be used in two main ways for feature identification:

1. One can use microlocal analysis to determine how features of the scene correspond to singu-

larities in the data space. Features in the scene can often then be identified directly from the

data. [11,56]

2. One can form an image and use microlocal analysis to determine how singularities in the

scene correspond to singularities in the image. Features of the scene can then be identified

from features in the image. [6, 49,50]
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3.2 Features in the data

To illustrate the first approach, we note that in the infinite-bandwidth case, (12) is of the form of

a Fourier Integral Operator (FIO) [30] applied to Q. The phase of an FIO determines how it maps

wavefront sets. In particular, the mapping between wavefront sets is determined by a set in phase

space called the canonical relation. This set is determined by the phase of the FIO, which in the

case of point scatterers is the phase of (12):

φ(ω, t, r, r′) = −ω(t − 2|r − r′|/c). (14)

In this case, the canonical relation is

Λ = {((t, r; τ, σ), (r′, ξ)
)

: dφ/dω = 0, σ = dφ/dr, τ = dφ/dt, ξ = −∇r′φ}
=

{ (
(t, r; τ, σ), (r′, ξ)

)
: t = 2|r − r′|/c, (σ, τ) = ω

(
2ω ̂(r − r′)/c, 1

)
,

ζ = 2ω ̂(r − r′)/c
}

. (15)

The wavefront set of the radar measurements d is obtained as the set of points (t, r; τ, σ) for

which there is a corresponding (r′, ξ) in the wavefront set of V .

Identification of the wavefront set of the data can, in many cases, be used to identify the

wavefront set of the reflectivity function V and thus to identify features in the scene.

Practical numerical methods for computing the wavefront set of data, however, are in their

infancy. The problem is closely related to the problem of detecting edges in images.

3.3 Features in the image

In the second approach, we first form an image from the data using a backprojection or matched

filtering algorithm:

I(r) =
∫

R3×R

eiω(t−2|r−r′′|/cQ(t, r′′, ω)dωD(r′′, t)dr′′dt (16)

where Q is to be determined below.
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We plug in expression (12) for the data and do the t integration:

I(r) ∼
∫

R×R3×R3

ei2ω(|r−r′′|−|r′′−r′|)/cQA(t, r′′, ω)V (r′′) dωdr′′dr.′ (17)

This is of the form I(r) =
∫

R3 K(r, r′)V (r′)dr′ where

K(r, r′) =
∫

R×R3

ei2ω(|r−r′′|−|r′−r′′|)/cQA(2|r − r′′|/c, r′′, ω)dωdr′′ (18)

is the point spread function. We want K to look like a delta function

δ(r − r′) =
∫

R3

ei(r−r′)·ξdξ. (19)

The main contribution to (18) comes from the critical points

|r − r′′| = |r′ − r′′|
∇r′′ |r − r′′| = ∇r′′ |r′ − r′′| (20)

If K is to look like the delta function (19), then we want critical points only when r = r′. Extraneous

critical points can cause artifacts in the image. Whether such extraneous critical points are present

or not depends on the measurement geometry and on the antenna beam pattern A.

In the neighborhood of critical points r = r′, the following approach was suggested by G.

Beylkin [6] . Since we want the exponent of (18) to look like (r − r′) · ξ, we should do a Taylor

expansion of exponent around the point r = r′. This results in

2ω(|r − r′′| − |r′ − r′′)|)/c = (r − r′) · Ξ(r, r′, r′′, ω) (21)

where near r = r′, Ξ(r, r′, r′′, ω) ≈ (2ω/c)r̂ − r′. We then make the change of variables

(r′, ω) → ξ = Ξ(r, r′, r′′, ω) (22)
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in (18), which results in

K(r, r′) =
∫

R3

ei(r−r′)·ξQA(r, r′, ω)
∣∣∣∣∂(r′, ω)

∂ξ

∣∣∣∣ dξ (23)

The Jacobian determinant
∣∣∣∂(r′,ω)

∂ξ

∣∣∣ is called the Beylkin determinant.

¿From comparing (23) with (19), we see that we should take Q = 1/(A |∂(r′, ω)/∂ξ|). With

this choice, the point spread function is

K(r − r′) =
∫

R3

ei(r−r′)·ξχ(r′, ξ)
∣∣∣∣∂(x, ω)

∂ξ

∣∣∣∣ dξ (24)

where χ is a characteristic function that is one over regions corresponding to the measurement

aperture and zero for regions in which there is no data. A smooth taper should be included in χ

to avoid artifacts due to edges of the data collection region.

The formula (24) exhibits K as the kernel of a pseudodifferential operator, i.e., an FIO

with the same phase as the delta function (19). Pseudodifferential operators have the desirable

pseudolocal property [59], which is that they cannot increase the wavefront set. In this context,

since I = KV , this means that the wavefront set of the image is equal to, or is a subset of, the

wavefront set of the reflectivity function V . In other words, the image contains no singularities

that are due to artifacts.

If the viewing aperture is limited, it is possible that edges that are present in V might not

appear in the image I. However, we are guaranteed that all edges in the image I do correspond to

singular features of V . Thus we can expect to identify features of V from the image I.

4 Parametric Shape-Based Methods

In addition to the analytically-oriented approach to feature-enhanced inversion discussed in the

previous section, we are actively pursuing research on alternate, more parametric approaches to

these problems. In a variety of applications as opposed to the highly structured man-made targets

of interest in the case of SAR imaging, one is directly concerned with characterizing well-localized,
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amorphously shaped anomalies present in a perhaps unknown or partially known background.

Moreover, the simplifying assumptions concerning the sensing scenario which allowed for the de-

tailed analysis of § 3 may be absent. For example

1. A linearized physical model may not be sufficiently accurate for inversion so that a fully

non-linear inverse problem must be solved

2. The map from medium to data may be smoothing to such an extent that singularities in the

medium are not (stably) recoverable.

3. Should the anomaly-free background not be free space, but rather a lossy and inhomogeneous

medium, the simple Green’s function which was at the heart of the microlocal methods is

replaced by a far less tractable function making analysis all the more difficult.

While these complicating factors do not preclude the development of elegant and useful microlocal

or other analytical approaches (see [11] for some recent work in these areas), they certainly do make

such work far more difficult and less easy to apply for processing data from real sensing systems.

Motivated in part by these issues, our group has considered a more direct approach to localizing

blob-like anomalies in sensing problems for which the physics offer little simplification.

The approach we have taken is to consider models for the anomaly and perhaps the background

that are explicitly parameterized by the quantities of interest: size, shape, location, and contrasts.

Given data from a sensing system, an optimization problem is solved to determine that set of

parameters which produces a shape which best fits the data. Here in fact, we consider a simple

square error criterion of the form:

E(θ) =
1
2

M∑
i=1

N∑
j=1

∣∣wij(φi(rj; θ) − φi
obs(rj))

∣∣2 . (25)

where φi(rj ; θ) is the hypothesized response due to source i at detector j, and is a function of a

vector of parameters, θ describing the shape and contrast of the anomaly. In (25) φi
obs(rj) is the

observed response and wij represents a weighting function.
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We have found that the use of these very low order models (i.e. the vector θ contains few

parameters) leads to inversion schemes which are more efficient and robust than typical pixel-

based methods. Essentially, these models have the effect of regularizing the inversion problem. The

simplicity of this class of methods does come at a (small) price. First, for the approaches we discuss

in this paper, it is necessary to know the number of objects in the medium under investigation.

For many problems one may safely assume this number to be one. When this is not the case,

this order determination problem remains an open one for us; although one for which well known

techniques may be applied. A second issue is the richness of the solution offered. By using only

simple parametric shapes such as spheres and ellipsoids, it is clear we can hope only to roughly

characterize the detailed shape of the anomalies. In low-resolution applications such as DOT and

ERT, this may well be the finest level of detail supported by the data. Alternatively, one could

consider our approach as providing a very good initial guess for other, more intensive inversion

schemes such as level set methods [29,42].

In the remainder of this section, we discuss two different methods for solving the parametric

shape optimization problem both in the context of diffuse optical tomography (DOT). In § 4.1,

a Gauss-Newton type of optimization approach based on the integral equation formulation of the

physics is employed to estimate the parameters of an ellipsoid-shaped inclusion in the tissue optical

properties. Alternatively, a PDE formulation is used as the basis for an adjoint-field approach

to fitting a spherical shape again to an absorption anomaly in § 4.2. The results presented are

meant to provide a preliminary demonstration as to the potential utility of this class of methods

for problems such as DOT. They are not meant to be the final word on the issue. Indeed, a major

focus of our work in the coming years is the evaluation of the “lessons learned” from pursuing these

varying algorithmic strategies and shape models to arrive at a more coherent means of determining

the correct model/algorithm pair for a given application.
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4.1 A Gauss-Newton Approach to Ellipsoid Optimization

The goal of this work has been the development of methods for characterizing anomalies in the

space-varying optical absorption coefficient, µa(r)2, when the background may not be completely

known. To begin, we assume for a moment that the boundary of the anomaly is known. Then we

can define S(r) as the characteristic function

S(r) =




1 r ∈ anomaly

0 otherwise

Next, we assume that the value of the perturbation at a point in the background tissue can be

expressed in as the linear combination of a small number, say Nb, of known basis functions. We

assume the same about the value inside the anomaly, although the number, Na of basis functions

and the type may be different [35]. We now define the value of the perturbation function at the

point r according to

µa(r) = S(r)B1(r)︸ ︷︷ ︸
1×Na

Na×1︷︸︸︷
α +[1 − S(r)]B2(r)︸ ︷︷ ︸

1×Nb

Nb×1︷︸︸︷
β .

Notice that B1(r) (likewise B2(r)) is a row vector whose columns are the values of the anomaly

(background) basis functions at r, and the components in α (β) are the expansion coefficients.

Upon discretization, the equation becomes

µa = SB1α + (I − S)B2β (26)

where S now represents a diagonal n × n matrix with 1’s and 0’s on the diagonal, I denotes the

identity matrix of the same size and

B1 ∈ Rn×Na, B2 ∈ Rn×Nb

α ∈ RNa , β ∈ RNb .

2Recall from§ 2 that µa enters problem via the squared wavenumber, k2.
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Thus, if S is known, there are a total of Na+Nb unknowns that we need in order to define g. The

idea is then to implicitly define S in terms of a small number of unknowns. For two dimensional

problems, describing the boundary in terms of a b-spline basis proved useful [35, 46]. For three

dimensional problems of current interest to us, shapes such as spheres or ellipsoids are sufficient,

and these ideas are presented below.

We begin by characterizing an ellipsoid as in [36], and consider the sphere as a special case.

To completely characterize an ellipsoid, we need only the lengths of the semi-axes contained in a

3-length vector v, a centroid location contained in a 3-length vector c, and a set of orthogonal basis

vectors describing the orientation of the axes which can be implicitly defined in terms of a 3-length

vector of Euler angles, say θ. This leads to a total of 9 unknowns that must be determined to find

an ellipsoid. If the object is assumed to be a sphere, v becomes a scalar and the θ vector is not

needed, leaving a total of 4 unknowns that must be determined.

Given the preceding discussion and our model, the 3D “inverse” problem, in the case of ellipsoids,

becomes

min
α,β,c,v,θ

‖W (d − h(α, β, c, v, θ))‖2
2 , (27)

where d represents the measured data vector stacked over all sources, h represents the nonlinear

forward operator, and W is a diagonal weighting matrix used to whiten the data. In the special

case of spheres, the optimization problem further simplifies to

min
α,β,c,v

‖W (d − h(α, β, c, v))‖, (28)

where v is scalar.

Notice that we have reduced the search space considerably: instead of optimizing over Rn, we

are optimizing over the Na+Nb entries in α and β and the 9 entries in the vectors c, v, θ (or 4 entries

in the spherical case). In [36], an integral equation formulation is used for the forward problem and

the inverse problem is solved via a modified Gauss-Newton approach. In that work, the authors

illustrated through experiments that this method can provide useful results for very limited data.
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4.1.1 Example 1: Sphere

The true values, initial guesses, and final estimates of all relevant parameters for the problem are

shown in Table 2. Here, we have taken Nb = 3. The columns of B2 are generated as

B2 = [sin(3x) + 1, cos(8y). ∗ sin(2y) + 1, sin(5z) + 1].

We note that the background perturbation was found to have a maximum of 9.97e-3, a minimum

of 1.74e-5, and an average value of 4.96e-3. The initial sphere was the largest such structure, with

centroid at the center of the region of interest (ROI), that would fit inside the ROI, namely, a sphere

of radius 2 cm, centered at x = 0, y = 0, z = 3. Initial guesses for α and β were based on a separate

Gauss-Newton solve holding the sphere/ellipsoidal parameters fixed. For more information on how

we obtained starting guesses for α and β, see [36].

To illustrate the promise of our inversion approach, the B2 used in the reconstruction was the

same as that for the true image; however in [36] it is shown that it is possible to reconstruct using

a mismatched model with varying degrees of success. The starting guess at the sphere was the

largest sphere, with centroid at the center of the region of interest, that would fit inside the region

of interest, namely, a sphere of radius 2 cm, centered at x = 0, y = 0, z = 3.

These recovered parameter values in Table 2 lead to a final estimate of S having only a 12 voxel

mismatch. Thus, by correctly modeling the background perturbations, we can obtain a significant

improvement in localization and in the estimated value of α. Figure 2 shows slices in height z of

the reconstruction. The colormap used in Figure 2 is the same as the colormap used in Figure 5.

4.1.2 Example 2

Now we specify a “lumpy” background for the true image using Nb = 3 and B2 = [sin(ωx) +

1, sin(ζy) + 1, sin(κz) + 1]T , with ω = 7; ζ = 3;κ = 4. This gives a max background perturbation

value of 1.20e − 2, a minimum perturbation value of 3.07e − 5 and an average of 5.98e − 3.

Table 3 provides the true values and estimations results for the object and background in this

experiment. Slices of the true background perturbation at various depths are given in Figure 3.
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Note that different angles can affect essentially the same rotation (i.e. the θi are not unique), so we

report them only for completeness (the Figure illustrates our algorithm did very well determining

the correct rotation). There was only a 21 voxel mismatch. The value inside the anomaly is slightly

too small and is due to the fact that the reconstructed anomaly is slightly too big (overestimating

the size and underestimating the value inside the anomaly go hand in hand). Cross-sections in

height z are illustrated in Figure 4.

4.2 Adjoint Field Methods for Determining Best-Fit Spheres

As an alternate to the work in [36, 46] in which a Gauss-Newton optimization approach based

on an integral equation form of the diffusion model was used to determine the structure of an

ellipsoidal shape as well as the “texture” coefficients, we have also recently been exploring the use of

gradient-type of adjoint-field methods based on the underlying PDE for solving shape-based inverse

problems. The Gauss-Newton method converges at a faster rate than a steepest descent of non-

linear conjugate gradient approach. However, computation with the integral equation nominally

requires the storage and manipulation of large dense matrices for solving the forward problem.

The PDE-based method requires only sparse-matrix storage and manipulation. One area of future

work in our group is to examine in more detail the tradeoffs inherent in these choices and perhaps

devising new methods which combine the best of each approach.

To begin our overview of the adjoint field method, we note that a key element of any gradient-

based algorithm (e.g. steepest descent or non-linear conjugate gradient) for minimizing E in (25)

is the efficient computation of the functional gradient, or Fréchet derivative, of E with respect to a

change in µa(r). As shown in [51] this can be accomplished as ∇µa(r)E(r) =
∑M

i=1 Re
[
φ̃i(r)φi(r)

]
where φ̃i(r), the adjoint field due to source i, satisfies the adjoint PDE:

−∇ · ∇σ(r)φ̃i(r) + (µa(r) +
jω

c
)φ̃i(r) = s̃(r) (29)
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where the adjoint source is defined by

s̃(r) =
N∑

j=1

[
wij(φi(rj) − φi

obs(rj))
]∗

δ(r − rj) (30)

with v the speed of light in the medium. In a sense, (29) indicates that, for each source, we compute

φ̃i(r), by propagating the complex conjugate of the weighted error at the receivers into the medium.

Using the functional derivative, we can iteratively minimize our error measure, (25), by means of

standard optimization methods, such as the nonlinear conjugate gradient algorithm. The primary

advantage of the adjoint field method is that we can compute the Fréchet derivative by computing

a single forward solve for each source; this is a large saving compared to the use of finite differences

to approximate the gradient for each degree of freedom in the reconstruction.

Our primary interest in the adjoint field approach has been in the context of parametric, shape-

based inversion schemes. We have concentrated on the problem of determining the size and location

of an absorption anomaly which is assumed to take the form of a sphere with center (xo, yo, zo),

radius r and µo
a in a known background µb

a:

µa(r) = µb
a(r) + (µo

a(r) − µb
a(r))H(O(r)) (31)

O(r) = r2 − (x − xo)2 − (y − yo)2 − (z − zo)2

In the above, H(r) is the Heaviside step function, and O(r) is the object shape function.

The gradient of the error with respect to a parameter p of O(r) is:

∂E
∂p

=
∫

R3

Re(
M∑
i=1

φ̃i(r)φi(r))δ(O(r))
∂O(r)

∂p
d3r (32)

For example, for the spherical object function, the gradient of the error with respect to xo is:

∂E
∂xo

=
∫

R3

2(x − xo)δ(O(r))∇µa(r)Ed3r (33)
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4.2.1 Examples

As an example, we consider the case of determining the location, radius, and contrast of a spherical

absorbing inhomogeneity within a cube with dimensions 6×6×6cm. A reflection geometry is used,

with sources and detectors interlaced on the z = 0 plane. The background absorption is 0.05cm−1,

while that of the absorbing sphere is 0.3cm−1, and a value of 15cm−1 for µs was used.

We see in Fig. 5 and 6 that the absorber is characterized and located with fairly high accuracy.

In Fig. 5 we show the progression of the estimates for the object center as function of algorithm

iteration. We start from an initial point in the parameter space and, at each iteration, conduct a

line search in the direction of the gradient to minimize the error function. In contrast, Fig. 7 shows

a full nonlinear reconstruction of the absorption within the cube with regularization parameter 0.1.

Here µa is estimated independently at 27000 voxel positions. In the absence of prior information

about the form of the solution, the inversion poorly estimates the volume and the absorption of

the inhomogeneity.

As a second example, we examine the utility of the approach for the processing of real data.

The data were produced by an experimental apparatus at Massachusetts General Hospital (MGH).

As illustrated in Figure 8(a), a transmission geometry is considered with 30 sources located at the

z = 0 plane and a collection of nine receivers at the plane z = 4.5cm. Ground truth consisted

of an absorbing sphere of radius 1 cm positioned in the center of a homogeneous background.

The optical properties of the sphere are not known. Those of the background are µa = 0.023/cm

and µs′ = 10/cm. The final result of the algorithm are shown in Figure 8(a) and in the the

remaining subfigures we plot the error in the location, size, and contrast of the sphere. Clearly,

these preliminary results indicate the potential utility of the method for real applications.

5 Conclusions and Future Work

In this paper, we have provided an overview of a number of feature-enhanced methods of use in

limited-view, tomographic types of imaging problems. The underlying physics for all of our methods

was captured in the frequency domain using a scalar Helmholtz equation or in the time domain, via
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its wave equation counterpart. Two general classes of methods were considered. Microlocal analysis

provided a powerful approach for using the limited data to obtain images in which objects’ edges (or

other discontinuities) are naturally enhanced. Preliminary results indicate that this method holds

some promise for synthetic aperture radar imaging. For problems such as diffuse optical tomography

or electrical resistance/impedance tomography, where the modeling assumptions underlying the

microlocal work do not hold, we have discussed parametric, shape-oriented methods for estimating

the structure of discrete anomalies located in a perhaps unknown background. These methods all

revolved around the use of optimization procedures for determining the parameters governing the

location, shape, orientation, and contrast of the unknown anomaly as well as the background.

Given the results and methods discussed here, a number of issues are immediately apparent

for future work. First and foremost is the validation of these methods using real sensor data. In

the medical imaging community for example, inverse problems associated with CAT, MRI, and to

a lesser extent, ultrasound, are solved on a daily basis by practitioners all over the world. Such

is not the case for the applications and the algorithms considered in this work. Obtaining high-

quality, well-calibrated data (such as those used in § 4.2.1) which can be used to rigorously test

the utility of these methods “in the field” requires as much if not more effort than the initial

algorithm development itself. Thus, a key focus of our effort in the near future is to collaborate

with practitioners across a number of fields to develop new methods for streamlining the process

of algorithm validation and then to actually examine whether, in practice, these methods will be

useful.

Additionally, we are actively pursuing the extension and merging of the methods contained in

this paper as well as other under investigation. Using the microlocal techniques in conjunction

with low-order-modeling methods such as those in § 4.1 to allow for edge-enhanced imaging in

the presence of inhomogeneous background is another possibility. Finally, we are actively pursu-

ing work in adjoint field methods for problems in which multiple ellipsoids might be required to

adequately localize anomalies. Combining these techniques with other, non-parametric geometric

inverse schemes such as level set methods may prove useful. Finally, dealing with problems in

which localized anomalous behavior may be present in more than one physical parameter (e.g. op-
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tical absorption and scattering in DOT) provides us with some interesting challenges in the area

of feature-based inverse methods.
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Table Captions

1. Problem and Sensor Characteristics

2. Estimation results for Sphere Recovery Example

3. Estimation results for Ellipsoid Recovery Example

Figure Captions

1. True image for example 1, slices in depth from left to right and top to bottom. Colormap is

truncated to show the background variation (units are in 1/cm) so the anomaly with a value

of .15 1/cm appears in bright white.

2. Reconstructed image for example 1. The colormap used is the same as for the true image.

The reconstructed anomaly has a value of .168 1/cm.

3. True image for example 2, slices in depth from left to right and top to bottom. Colormap is

truncated to show the background variation (units are in 1/cm) so the anomaly with a value

of .15 1/cm appears in bright white.

4. Reconstructed image for example 2. The colormap used is the same as for the true image.

The reconstruced anomaly has a value of .13 1/cm.

5. Center of hypothesized absorber at each iteration

6. Hypothesized r and µa at each iteration

7. Regularized nonlinear inversion and true solution

8. Results of processing with real data
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Application
Domain

Problem Areas Modalities

Medical Imaging

Nondestructive
evaluation

Military

Geophysics

- Tumor localization
  and characterization
- Functional imaging
- Drug Development

- Crack and flaw
  detection
- Semiconductor or 
  steel depth profiling

- Landmine detection
- Buried facility 
  characteriization
- Airborne and satellite  
  surveillance of foliage 
  obscured objects

- Diffuse optical
- Acoustic
- Electrical Impedance

- Ultrasonic
- Electromagnetic induction
- Photo-thermal
- Photo-acoustic

- Environmental monitoring
- Environmental remediation
- Oil and mineral exploration

- Airborne SAR
- Ground penetrating radar
- Acoustic
- Electromagnetic induction

- Seismic
- Electromagnetic induction
- Electrical impedance
- Electrical resistance
- Borehole radar

Table 1:
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Parameter Initial guess Final estimate True Value
α .007 0.168 N/A
β (.002,.0007,.003) (0.002, 0.002, 0.001) (.002, .002, .001)

Center (cm) (0,0,3) (-0.600, 0.999, 3.390) (-0.6,1.0,3.4)
Radius (cm) 2 0.755 0.800

Table 2:
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Parameter Initial guess Final estimate True Value
α 0.007 0.130 N/A
β (0.003,0.002,-4.41e-6) (0.002, 0.001, 0.003) N/A

Center (cm) (0,0,3) (0.69, -0.91, 2.41) (0.7, -0.9, 2.4)
Semi-axes (cm) (3, 2.9, 2) (0.824, 1.1, 0.531) (1.1, 0.5, 0.8)

Rotation angles (rad) 2 (0.531, -1.49, 0.78) (π/4, π/4, 0)

Table 3:
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(a) Localization results for real data example (b) Error in position as a function of iteration

(c) Error in estimated radius as a function of itera-
tion

(d) Value of cost function as a function of iteration

Figure 8:
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