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Abstract

We present an efficient, stable, recursive T-matrix algorithm to calculate the scattered field
from a heterogeneous collection of spatially separated objects. The algorithm is based on the
use of higher order multipole expansions that are typically employed in recursive T-matrix tech-
niques. The use of these expansions introduces instability in the recursions developed in [1, 3]
specifically in the case of near field computations. By modifying the original recursive algorithm
to avoid these instabilities we arrive at a flexible and efficient forward solver appropriate for a
variety of scattering calculations. The algorithm can be applied when the objects are dielec-
tric, metallic, or a mixture of both. We verify this method for cases where the scatterers are
electrically small (fraction of A) or relatively large (1-2 ). While developed for near field cal-
culation, this approach is applicable for far field problems as well. Finally, we demonstrate that
the computational complexity of this approach compares favorably with comparable recursive
algorithms.
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1 Introduction

Calculation of scattered electromagnetic fields is of interest in many different science areas. For
example, an important component of many ground penetrating radar (GPR) problems is the effi-
cient computation of the scattered fields produced by a collection of buried objects when illuminated
by a radar source. The choice of technique for computing these fields is often driven by a variety
of factors including computational complexity and the flexibility to handle easily a wide range of
configurations of scatterers. In applications such as mine detection and hazardous waste removal
objects can be either dielectric, metallic or mixtures. Their sizes can range from sub-wavelength
to a few multiples of a wavelength. Therefore, one desires an efficient, flexible forward solver that
is useful both for analysis and that can be incorporated into signal processing algorithms.

The most popular forward solver for these and related complex scattering problems, the Method
of Moments (MoM) [6], is based on a fine discretization of the region of interest and requires the
inversion of a large dense matrix to calculate the scattered field. As this task requires O(N?)
calculations where N is the number of grid points, MoM is known to be quite computationally
intensive. While fast multipole techniques [9] are useful for reducing the complexity of MoM-
type linear systems, these algorithms are typically used for metallic objects and have theoretical
difficulties with the spurious modes that can be circumvented only by “complexification” [12].
Finite difference techniques are also frequently used as forward solvers and like MoM rely on a full
space discretization. Although the resulting matrices are sparse, one still faces the delicate task of
specifying an absorbing boundary condition to terminate the computational grid.

Here we consider the use of transition matrix (T-matrix) methods [14,15] for solving the scat-
tering problems of interest. Unlike MoM and finite differences, the T-matrix approach does not

require an absorbing boundary condition and substitutes the discretization of space with harmonic



expansions of the fields thereby reducing the number of unknowns for a wide range of problems.
For scattering problems involving single objects, this technique is applicable for metallic and di-
electric scatterers. For problems involving multiple objects, Chew and co-workers have pioneered
the development of a number of fast, recursive T-matrix algorithms for determining the scattered
fields in a variety of scenarios [1-4,8,13]. For example, in [3], problems involving electrically large
dielectric objects are considered. By tesselating the objects into many small sub-scatterers and
using low order multipole expansions of the fields for each sub-scatterer the authors arrive at a
highly efficient, T-matrix based algorithm for computing the scattered fields. In [4], Chew et.al.
consider a scattering problem involving a group of metallic strips. Here the method of moments
is used to compute the T-matrices for each, individual strip and the same recursion as in [13] is
employed to solve the overall, multi-object scattering problem.

The motivation for the algorithm developed in this paper is the need to solve scattering problems
for the GPR-type geometry shown in Fig. 1. Specifically, we are interested in the development and
verification of a recursive algorithm capable of computing scattered fields from multiple dielectric
and/or metallic objects in the near field. For simplicity, we considered an F, polarized planewave
incident on a two dimensional problem geometry in which multiple scatterers each possessing a
circular cross-section (i.e. infinite circular cylinders) are located in an infinite medium of constant,
complex permittivity. Because the use of a tesselated scheme is inappropriate for metallic objects,
to handle this mixed-object problem we formulate a recursive algorithm based on high order har-
monic expansions for the full scatterers. We demonstrate that this approach causes instabilities
in the original recursive algorithm when near field computations are required. By modifying these
recursions we obtain a stable algorithm which avoids these instabilities and which is capable of

accurate near and far field calculations for the mixed scatterer problem of interest. Finally, we



demonstrate that this approach retains the low computational complexity of the method in [3].
The remainder of this paper is organized as follows. In Section 2 we review the T-matrix theory
for single scatterers and the recursive T-matrix algorithm for multiple scatterers. In Section 3, we
discuss how T-matrix techniques can be applied to GPR geometries, and we will present two alter-
native approaches to calculate the scattered field and the modification in the recursive algorithm.
In Section 4, we will discuss the results and show examples and finally in Section 5 we will draw

conclusions and suggest future work.

2 T-Matrix Background

2.1 Single Scatterer T-matrix
The total scalar electromagnetic (or acoustic) wave in a homogeneous background with a ho-

mogeneous scatterer is given by!:

¥(r) = $7(r) + 97 (z) (1)
where ¥¢(r) is the wavefield incident on the scatterer and 1°°*(r) is the field scattered from the
object.

Applying the Poincaré-Huygens principle and the Gauss theorem we can write the total field
outside the scatterer as [11]:

0(r) = 07 (0) + [ dS sV g(klz - ) = (V4o lg (K~ ) (2)

where S is a piecewise smooth surface enclosing the scatterer, ¥, and V{1 are the total field ¥(r)

and its gradient on the outer surface of the scatterer, and g(k|r — 1’|) is the free space Green’s

function. The vectors r and 7’ are from the scattering origin to observation points and to source

points on the scatterers, respectively. The Green’s function can be expanded in terms of cylindrical

!Time factor of e’“? is suppressed



basis functions (in 2-D) as follows [11]:
g(klr 1)) = =5 32 ¥nlhrs ) Rgvn(hre) (3)
where 1, (kr) = H(f)(kr)e_j”(b are the basis func‘gons representing traveling waves and Ry, (kr) =
Jn(kr)e™7"? are the basis functions representing the standing waves. Here, Rg stands for “regular
part of”, H(n?)(z) is the nth order Hankel function of second kind, J,(z) is the nth order Bessel
function, and ry, (r.) means the larger (smaller) of r and r’.
Based on the same decomposition, the scattered and incident fields can be expanded as [11]:
) =D fatba(r) = T f i (2] > |7 (4)
and
(1) =Y anRgn(r) = Ry’ a (5)
where 1) and Rg® are column vectors ﬁllednwith ¥n(r) and Rgi,(r), respectively and T stands for
transposition.
The T-matrix now is defined as [11,14]:
f=Ta. (6)
The elements of T can be found by using (2), (3) and the boundary conditions. For a detailed
analysis of the single object T-matrix method, the reader is referred to [14,15,11].
2.2 Recursive T-matrix Algorithm
The recursive T-matrix algorithm uses the basic principle of single scatterer T-matrix formulas
in that for each object, the scattered fields from others are assumed a part of total incident field.
This way for every scatterer a T-matrix can be assigned. The recursion starts with the T-matrices
of individual scatterers, then one by one scatterers are incorporated into the equation and the T-
matrices are updated until, for every scatterer, the final form of the T-matrix, including all multiple

scattering effects, is obtained.



Formally, for I scatterers, the harmonic expansion of scattered field, similar to (4), can be
written as [3]:
L
¢ T

W) = D8 (1) Ty Bioa (7)

i=1
where Ty is the T-matrix for ith object in the presence of L scatterers and 3, ; is the translation
matrix used to translate same type basis functions between scattering coordinate center (zs,ys)
and ith object’s local coordinate center (z;,¥;), i.e. standing waves in ith local coordinate system
to standing waves in 0th (scattering) coordinate system; or traveling waves in ith local coordinate

system to traveling waves in Oth (scattering) coordinate system.?

Fig. 1 pictorially shows the
coordinate systems and how the translation matrices work. Expansion of the scattered field in (7)

is valid if all observation points are outside the circle enclosing all scatterers. Following Chew’s

derivation, the recursive construction of T;z) can be written as [3, eq.10-11] :

n

—1
Trt1(n41)Bnt10 = |T— Togr1) 2 an+17iTi(n)ﬂi,0a07n+1] Tot101) lﬁn+1,0 + Zn:an+1,iTi(n)ﬁi,0
=1 i=1
(8)
and

Tint1)Bio = Tin)Bio + Tin)Bi020,n+1 Trg1(n41)Bryi 0 (9)
where n =1,2,...,L,7=1,2,...,n and a,; is the translation matrix used to change different basis
functions between reference coordinate systems (Fig. 1), i.e. standing waves in nth local coordinate
system to traveling waves in ith local coordinate system. The recursion starts with the individual
T-matrices, T;(1), of the scatterers, i.e. the T-matrix of the ith scatterer when there are no other

scatterers in the medium.
Theoretically the matrices a, 3, T are of infinite dimension. T-matrix algorithms truncate these

matrices with finite values V and M such that the residual error is below the machine precision

2The translation matrices B; o contain Bessel functions and complex exponentials. For details about these matrices
see [1, 11].



or acceptable levels. Here N represents the number of harmonics used to expand the fields at
the scattering origin and M represents the number of harmonics used to expand the fields in the
objects’ local coordinate systems. Thus, the T-matrix is of size M x M, B3, is of size M x N
and a; 41 is of size M x M. The parameters N and M are related to the distance of scatterers
from the scattering origin and the radii of the scatterers, respectively. As the distances between
scatterers and the scattering origin increase, N needs to be increased, and as the radii of scatterers

increase, M needs to be increased [3].

3 A Modified Recursive T-Matrix Method

The work in this paper was motivated by the desire to obtain a fast, accurate forward modeling
code for ground penetrating radar type geometries illustrated in Fig. 2. As discussed in Section 1
this application requires the computation of near field values of scattered field arising from mixtures
of dielectric and metallic objects. To effectively handle these requirements, we propose a formulation
of the recursive T-matrix algorithm based on the representation of the scattered field from each
full object using high order expansions (i.e. large M) in the recursions in (8) and (9).

In principle, this approach supports the computation of scattered fields from arbitrary collec-
tions of dielectric and metallic objects. In fact, we demonstrate that this is true specifically for
far-field calculations. Unfortunately, the use of higher order expansions results in an instability
in a particular harmonic expansion formula upon which the original recursive T-matrix algorithm
is based when near field computations are required. In the remainder of this section, we describe
explicitly this difficulty and propose a modified recursion which by-passes this addition formula

and results in a stable method for solving the problem of interest.



3.1 Determination of Scattering Origin

Unlike most radar applications, in a GPR measurement geometry the scattered field is generally
observed in the near or intermediate field. Since the harmonic expansions upon which the recursive
T-matrix algorithm is based have validity regions (see eqn.(4)), there are certain limitations as
to where the scattering origin can be placed relative to the receiver array. In this section, we will
briefly discuss how the scattering origin is determined, when the object locations and radii are given
for the GPR-type configuration in Fig. 2. The triplet (z;, y;; a;) represents z and y coordinates and
radius of the ¢th object relative to the global origin O, and L is the number of objects buried under
the receiver array.

Because of the requirements on the loci of observation points imposed by (4) for single objects
and (7) for multiple objects, the scattering origin (z,, ys) relative to O, must be selected such that
there must be at least one circle, centered at (z5,ys), encircling all objects with no receivers inside
it. The dashed circle in Fig. 2 depicts such a circle. Assuming a linear receiver array, the condition

to choose the scattering coordinate system is:
Re <y (10)

where

we= _max e — et (gt e (11)

1e{1,2,...,L}
This condition must be met by individual objects as well as by all objects collectively. Therefore,
we can rewrite the condition in (10) and (11) as the intersection of regions as follows:
L
(20:9) € {(-:c,yn N @ =202+ (y— 9o < Iyl - } . (12)
=1

In fact, each term under the intersection sign in (12) defines the region under an upside-down

parabola. Fig. 3 depicts the parabolic regions for three objects. Placement of objects in this

figure is very typical of a mine detection problem. In this geometry, any point inside the shaded



area, representing the intersection of all three parabolic regions, can be selected as the scattering
origin. Ideally, we can place the scattering origin at ys; & —oo. This choice of (zs,ys) will always
satisfy the condition in (10). However, the order of harmonics used in the T-matrix algorithm is
proportional to the distance between scattering origin and object centers [3], i.e. N o kr; where
N is the harmonic used for translations to and from the scattering origin, k£ is the wave number
and ¢ = 1,2, ..., L. Therefore, the optimum scattering origin should be within this shaded area and
as close as possible to the objects in order to minimize the harmonics used for translations. As
we show in Section 3.2, with this choice of (z5,ys), the distances between object centers and the
scattering origin can be very close, which causes convergence problems in the addition formulas of
T-matrix algorithm. In Section 3.3, we describe a modification in the recursive T-matrix algorithm
that lets us use the algorithm with optimum choice of scattering origin.
3.2 Problems With Higher Order Harmonic Expansions

The convergence problems alluded to earlier can be traced to the fact that equation (8) uses
the identity

Qpq = ﬂp,anvq if |fq| > |fp| (13)
which in turn requires the ordering of the objects such that |r;| < |ry] < ... < |rz|. By using

definitions of e, 4, B, 9 and g, [1,11], we can write the (m,m/)th entry, [, ] as:

m,m'”?

N
H) (b, )e™ =00 = Jim 37 (K|, e @t B (keI )
o0 L=
(14)
where r,, = |r,,|e7%77 = v, — 1 and r; = |r;le/%, i = p,q. This truncated sum does not converge

if r, = r, + & where [§] is small as compared to |r,| and |r,|, and if m — m' is a large number

al>

(=M <m < M and —M < m’ < M.) Fig. 4 shows the convergence of the series in (14) for the

corner entries of (13) for M = 5, i.e. max{m — m’ = 10}. Here we have three curves, showing the



convergence for § = 0.1z, 6= 0.257, and § = 0.5r,, M > 5 and § < 0.1z, are typical parameter
choices for the problems of interest in this paper. It is clear from this figure that as the magnitudes
of two vectors get closer, the convergence rate slows. Chew et.al. [4] suggested a windowed addition
theorem (which is originally developed for H, polarized scattering) to overcome this problem, but
the implementation of this method introduces two new variables to choose in order to set the width
and shape of the window. In addition, the implementation of windowed summation introduces
errors in the sum for vectors for which the convergence is not a problem.

It should be noted that not all valid scattering origins for a given problem give rise to this
convergence problem. Indeed, trial an error will quickly demonstrate that, for a given collection
of scatterers, there exist scattering origins where the original T-matrix recursions work just fine.
These points are typically far from the scatterers thereby requiring large N in the recursions and
moreover there does not appear to be an easy means of a priori determining whether a chosen origin
will or will not give rise to a covergence difficulty. Thus, in the following sections, we introduce
a modified recursion which bypasses the convergence issue for all valid scattering origins thereby
allowing us to use the closest valid origin (i.e. smallest N') to solve the problem.

3.3 Modified Recursive T-Matrix Algorithm

The recursion in (8) and (9) takes place over the quantities T;(,,)3; o, and we have determined
that the convergence problem stems from (13). Therefore, to eliminate the need to use this identity,

we go one step back in the derivation of recursion formulas, and write (8) as [3, eq.7-8]:
n -1 n
Tn+1(n+1)ﬁn+1,o =|I- Tn+1(1) 2; an+1,iTi(n)ai,n+1] Tn+1(1) [ﬁnﬂ,o + Z;an—i—l,iTi(n)ﬁi,O
- - (15)
and (9) as:

Ti(n—{—l)ﬁi,o = Ti(n) ﬁi,O + ai,n+1Tn+1(n+1)ﬁn+1,0 (16)

10



without using (13). Since (13) is not used in (15) and (16) we can base a new recursion on these

two equations and the identity:

Bi,OﬁO,i =1 (17)

where 3, 5is M X N, By ;is N x M, and (17) holds as long as N > M which is always true as long
as objects are not overlapping. By using (15), (16) and (17) the modified recursion equations can
be written as:

n —1 .
Tot1(nt1)Bryi0 = [T = Tty Z_; an+1,iTi(n)ﬁi,OBO,iai,n-}-l] Tyt1(1) lﬁn-}-l,O + ; i1, Tin)Bip

_ oy
and

Ti(n-}—l)ﬁi,O = Ti(n)ﬁi,O + Tz'(n)ﬂi,oﬂo,z’ai,nﬂTn+1(n+1)ﬂn+1,0- (19)

Note that the recursion is still over the same block, T;(,)3; 0, but since (13) is eliminated these
new recursion equations do not suffer from convergence problems.

As reported in [3] the original recursive T-matrix algorithm has a complexity of O(MZ2N) per
recursion. It is easily shown that the modified algorithm also has a complexity of O(M?N) per
recursion with a slightly larger constant in front of M2?N resulting from extra multiplications to
obtain T;(,) from T;(,,)B; o. To calculate the scattered field from L objects, L(L—1)/2recursions are
required. Therefore, the overall complexity of both the recursive and modified recursive algorithm

is O(LXM2N).

4 Discussion And Examples

In this section, we first verify our new scattering algorithm against published results and then
provide a collection of examples that are particularly relevant for near field, GPR-type applications.
As most previously published results for mixed scatterer problems involve far field computations,

in verifying our approach we also demonstrate its ability to handle far zone calculations. Where
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appropriate, we compare the computational complexity of our higher order, modified recursive
algorithm (HO-MRA) against two alternate T-matrix approaches. First, we implement the lower
order, original recursive algorithm (LO-ORA) of [3] for near and far field, dielectric-only problems.
For far zone problems with mixtures of dielectric and metallic scatterers, we consider high order
(i.e. large M) forms of the original recursions (labeled HO-ORA here) (8) and (9), where, because
of the far field assumption, the instability problem is not an issue.

Before we proceed, we define the terms used in this section. The echo width, i.e. scattering

cross-section per unit length, and normalized echo width are defined as [10]:

= lim 2nr v (r) ’
o(¢) =l 2mr| )| (20)
and
_ |o(o)
o) = 2 (21)

where A is the wavelength in the medium of propagation. The normalized scattering field pattern

is defined as:

F(¢) = 101og10{ im 2pr 1L - } (22)
T max{[yrer ()]}

In order to ensure that the modified algorithm can indeed find the true scattered fields, we
verified our calculations against published scattered field patterns. We first calculated the scattered
field due to two dielectric cylinders placed in free space, each with relative dielectric constant of
2.6, and radius of 0.5A. The distance between the cylinders is 3A (Fig. 5(a).) An £, polarized
planewave is incident from 0°. Fig. 5(b) shows the echo width calculated using the HO-MRA of
this paper (solid line), the LO-ORA of [3] (dashed line) and results in [10] (circles). Fig. 6(b) shows
a similar comparison for a mixed object case depicted in Fig. 6(a), i.e. one cylinder is metallic

and the other is lossy dielectric with ¢, = 4 — j5. For this case, we did not include the echo width

calculated using the original recursive algorithm, since the method in [3] is limited to dielectric
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objects. As in previous examples, the echo width obtained using the modified algorithm and that
reported in [10] are very close.

Next, we compared the scattering patterns for two metallic cylinders. In this case both cylinders
have a radius of 1.1\ (ka = 7) and separated by a distance of 2.6\ (kd = 16.) Fig. 7(a) shows the
scattering geometry for this example and (b) shows the scattered field patterns of both our solution
(solid line) and the one given in [5] (circles.) As seen from these figures, the scattering pattern
obtained using the modified algorithm and that given in [5] are very close.

Now, we present scattering examples that are especially useful in GPR applications. All objects
are assumed to be buried in a homogeneous, lossy background (e, = 6¢g, o5 = 5 x 10725/m; typical
properties of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam [7]); the
operating frequency is 1GH z and a planewave is incident from 90°, see Fig. 8(a). We first find the
scattered field from 3 dielectric mine-like objects with diameters 7.5¢m as shown in Fig. 8(a). All
objects have a relative permittivity of 2.5. The scattering origin has to be placed far away from
the receiver array (zs = 0.5m, y; = —1.25m), because the objects are close to the receivers, which
in turn requires a large value, 120, for N. For this case, we calculated the scattered field using
both the LO-ORA and HO-MRA defined in Section 2.2 and Section 3.3, respectively. Fig. 8(b)
shows the scattered fields observed along the receiver array using the HO-MRA (solid line) and
the LO-ORA (circles). It is clear from this figure that both approaches yield very similar fields
but the computational complexity (flop count) of our method is 18.94 x 10° flops while that of the
tesselated scheme is 1671 x 106 flops.

The second GPR example depicts a mixed mine-like object case since the objects at the sides are
metallic and the object at the center is dielectric with a relative dielectric constant of 2.5, Fig. 9(a).

The mine-like geometry is unchanged and the scattering origin is still at (z; = 0.5m, y, = —1.25m).

13



As a result N = 120, and since the object radii are relatively small M = 12. The scattered field
observed along the receiver array for mixed mine-like object case is shown in Fig.9(b). The last
example demonstrates the calculation of scattered field from buried waste drums. For this case
we have 2 metallic drums of radius 0.3m buried in the same lossy background before, as shown in
Fig. 10(a). The scattering origin is placed at (z; = 1m, y; = —1.37m) to minimize the harmonics
used in the expansions (M = 25, N = 110). For drum case M is quite large since the radii of
the objects are considerably large. Fig. 10(b) shows the scattered field observed along the receiver
array placed directly above the cylinders.

Having verified the scattering field patterns of new recursion with the ones in the literature
and presented the GPR examples, we compared the complexities of the HO-MRA, LO-ORA, and
HO-ORA. To ensure a fair comparison, whenever a tessellation is required, we set the density of
sub-scatterers to be close to that used in [3]. Performance of the each approach is measured by the
floating point operations (flops) required to calculate the scattered field. Table 1 shows the flop
count of all three recursive T-matrix algorithms that can be used to find the scattered fields from
multiple, spatially separated cylinders. Table 2 shows the number of scatterers L, harmonics M,
N and the location of the scattering origin (zs,ys) used in these examples.

The first three rows of Tables 1 and 2 correspond to examplesfrom the two dimensional scattering
literature. For these cases, all observation points are in the far field so that the convergence problem
alluded to earlier is not an issue. As a result, with dielectric objects HO-MRA, LO-ORA and HO-
ORA can be used to calculate the scattered field. LO-ORA is used only with dielectric objects [3]
and as seen from Table 1 its computational complexity is quite large as compared to HO-MRA and
HO-ORA. The reason behind this large complexity is that numerous sub-scatterers are required

for each cylinder. The computational complexity of HO-ORA is at most 15% less than that of

14



HO-MRA since the latter needs extra multiplications to obtain T,y from T;,)/3; o

The last three rows of Table 1 show the flops needed to find the scattered field for GPR-specific
examples and Table 2 shows the number of scatterers, harmonics and the locus of the scattering
origin used in these examples. The geometries of GPR cases of interest are depicted in Figures 8(a),
9(a) and 10(a). Unlike previous examples, GPR problems require measuring the scattered field in
the near field, which restricts the regions where the scattering origin can be placed. As we have
shown in Section 3, the choice of optimum scattering origin results in convergence problems in HO-
ORA, making it inaccessible for GPR geometries. In addition LO-ORA is not used with metallic
objects leaving only HO-MRA for all GPR geometries and all material types. Even when LO-ORA
is used for dielectric-only objects, one has to spend approx. 88 times more flops than it is needed

for HO-MRA (Table 1).

5 Conclusions

In this paper, we present a new recursive T-matrix algorithm specifically designed for the
efficient solution of near field scattering problems involving heterogeneous collections of metallic
and dielectric objects. We have verified this algorithm against previously published results thereby
demonstrating its utility for far field computations and indicated its use for GPR-type scattering
problems. For near and far-field dielectric scattering problems, this algorithm is significantly more
efficient than the sub-scatterer method in [3]. For far-field computations, the technique in this paper
is slightly more costly than the use of higher order expansions in the original recursive formulae.

The work in this paper suggests a variety of additional research directions. First, we are quite
interested in extending the modified recursive algorithm into three dimensions while simultaneously

considering scattering problems involving irregularly shaped objects where the T-matrices would be
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computed using the method of moments as in [4]. Such work would allow for the easy examination
as to how object shape and orientation impacts the scattered fields and ultimately, the ability to
detect and localize objects. In terms of the GPR application which originally motivated this effort,
we are looking to T-matrix type methods which might allow for some level of modeling the air-
earth interface relevant in these scenarios without destroying the computational efficiency of the
scattering model. Finally, applying the near field computational abilities of this approach to other

application areas would be quite interesting.
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HO-MRA | LO-ORA | HO-ORA
Fig. 5 0.6 1150 0.55
Fig. 6 1.9 /a 1.76
Fig. 7 8.84 n/a 7.73
Fig. 8 18.94 1671 c/p
Fig. 9 18.95 n/a c/p
Fig. 10 29.5 n/a c/p

Table 1: Complexity Comparison for Recursive Algorithms. All numbers in FLOPS/108, n/a means
not applicable and c/p means convergence problems

HO-MRA LO-ORA HO-ORA
Fig. 5 | 1=2,M=7,N=23 | L=398,M=1,N=23 | 1=2,M=7,N=23
(zs,95)=(0,0) (zs,95)=(0,0) (zs5,9s)=(0.5X ,0.5\ )
Fig. 6 | 1=2,M=10,N=40 n/a L=2,M=10,N=40
(z5,95)=(0,0) (z5,95)=(0.5X ,0.5))
Fig. 7 | 1=2,M=20,N=40 n/a L.=2,M=20,N=40
($s7ys):(070) (‘rmys):(/\ 7’\)
Fig. 8 | 1=3,M=12,N=120 | L.=93,M=3,N=120 /p
(zs,95)=(0.5,-1.25) | (z,ys)=(0.5,-1.25)
Fig.9 | L=3,M=12,N=120 n/a c/p
(zs,9s5)=(0.5,-1.25)
Fig. 10 | L=2,M=25N=110 n/a c/p
(zs,ys)=(1,-1.37)
Table 2: Parameter list for Table 1
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Figure 1: GPR geometry and translation matrices
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Figure 2: Scattering origin relative to the scatterers, the global origin O, and the receivers
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Figure 3: Scattering Origin Regions
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Figure 4: Convergence pattern of the truncated sum in (14) for M=5. Curves show the convergence
for 6 = 0.1r,,, 6 = 0.257,, and & = 0.5r,,.
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Figure 5: Comparison of echo width with [10] for two equal dielectric cylinders
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Figure 6: Comparison of echo width with [10] for two cylinders, one lossy dielectric and one metallic
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Figure 7: Comparison of scattered field pattern with [5] for two metallic cylinders
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(a) GPR-type mine detection geometry

Figure 8: Implementation of T-matrix method to calculate
mine-like objects
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(a) GPR-type mine detection geometry

(b) Scattered field observed along

the receivers for geometry of (a)

the scattered field from 3 dielectric
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(b) Scattered field observed along
the receivers for geometry of (a)

Figure 9: Implementation of T-matrix method to calculate the scattered field from 2 metallic and

a dielectric mine-like objects
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(b) Scattered field observed along
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Figure 10: Implementation of T-matrix method to calculate the scattered field from drum-like

objects
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