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Abstract

The main goal of this work is to introduce and develop methods for classification
of objects based on spatially sampled electromagnetic induction data taken in the
time or frequency domain. To deal with nuisance parameters associated with the
position of the object relative to the sensor as well as the orientation of the object, a
computationally tractable physical model explicit in these unknowns is developed.

The physical model presented in this work is parameterized by a collection of
Laplace-plane poles whose values in theory are independent of object position and
orientation and hence can be used as features for classification. The overall algorithm
for our pole-based approach consists of two stages. First we estimate the values of
the unknown parameters and then we perform classification. Classification is done by
comparing either the raw data or some low-dimensional collection of features extracted
from the data to entries in a library. The library is constructed using either simulated
or calibration data. Given the library, the processing scheme consists of two stages.
First, a maximum likelihood method is developed and analyzed for the problem of
joint pole, location, and orientation parameter determination. Second, the extracted
pole values are fed into the classifier. We will validate our methods on both simulated
and field data taken from frequency domain sensors. Preliminary results on synthetic
data indicate the robustness of the pole estimates as features for classification and
point toward the need for further analytical as well as experimental evaluation of the
proposed methods.

The second part of this work is dedicated to the investigation of practical issues
in dealing with our proposed method. The problem of pole switching is one of “the
issues” addressed here. As we will explain in great detail, a matrix used in our physi-
cal model to encode orientations leads to the switching of the order of the pole values
used for classification. We will address the problems associated with this topic and
propose a simple solution. Uncertainty in sensor position is another practical issue
that we face when using real field data. In the parametric model employed in the

first part of this work we assume that the locations of the transmitters and receivers



are known. However, in typical situations these positions are known to within some
bounded precision in the z, y, and z directions. The effects of this additional in-
formation in the parameter extraction procedure are demonstrated through the use
of a min-max optimization procedure. Specifically, we look for the object parame-
ters (poles, location, and rotation angles) that minimize the maximum data residual
where the maximum error is computed over ellipsoids or boxes of possible sensor lo-
cations defined by the bound information. An algorithm for solving this new problem

is presented and validated using simulated data.



Chapter 1

Introduction

1.1 Background

It is well known that time varying fields induce a current flow, known as eddy current,
in electrically conductive and/or magnetically permeable objects placed in their vicin-
ity [9]. We can attempt to detect and classify the aforementioned objects through
the observation of the secondary magnetic field caused by the induced current. This
is the basic foundation of the electromagnetic induction (EMI) method.

EMI method is a prominent technique used widely in detection and discrimina-
tion of conducting and ferrous targets. The subsurface sensing problem is a specific
example, where the EMI method is used to sense buried metal mines and unexploded
ordinance (UXO). A typical assumption (and one that was used in this work) is that
the target resides in free space because the conductivity of such targets is typically
many orders of magnitude larger than the conductivity of soil [7].

EMI systems usually operate at very low frequencies, specifically less than 1M H z.
At these frequencies the displacement current component in the near-field loop-
induced fields can often be ignored. This means that, such systems are in reality
insensitive to dielectric discontinuities and primarily sensing changes in conductivity
and permeability. As expected, EMI systems are of primary use in sensing applica-
tions where the target is substantially metallic [6].

Our main interest in this work is the frequency dependence of the EMI response.
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By using an object’s EMI response in the frequency domain, we try to characterize
the object’s geometry and material composition. The EMI response of a conducting
and ferrous target is determined by EMI resonant frequencies, which exist along the
imaginary axis of the complex-frequency plane [9]. Here we only use the w plane for
complex frequencies. Assuming an exp(jwt) time dependence, a purely imaginary res-
onant frequency corresponds to the exponential decay characteristic of time-domain
EMI interaction with conducting and ferrous targets. As we will explain in Section
2.2, the imaginary resonant frequencies corresponding to magnetic dipoles play an
important role in characterizing the frequency and time domain properties of the
magnetization tensor [5].

Extracting information such as size, shape, orientation, and type of target requires
the development of advanced signal processing methods, which are tied directly to
physical models of the sensor. Here, we consider a number of options for the estima-
tion of these parameters as well as the classification of buried objects given EMI data
obtained at multiple points in space in the vicinity of an already-detected object with
particular attention paid to UXO and demining applications.

Classification is generally performed by comparing the raw data or some low-
dimensional collection of features extracted from the data to entries of a library. The
library is built from signature vectors or feature vectors from all targets of interest
in a given application. The classifier selects the element of the library that gives the
best fit to the data or the features. If a sufficiently good fit cannot be obtained, the
classifier declares that the object under consideration is in fact not in the library.
This last step is very important for the UXO and demining problems where there is a
strong desire to correctly reject the clutter items, as the unnecessary removal of such
items consumes both time and resources.

Most of the recent work in the area of EMI classification has been based on a
simplified physical model for the interaction of the fields with the unknown target.
As we describe in detail in Section 2.2, assuming that the target scatters the incident
energy like a dipole [7], information concerning the class and orientation of the object
in space is encoded in the magnetic polarizability tensor which is independent of the

location of the object relative to the sensors. The location information is contained
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in two 3 x 1 field vectors (see Section 2.2 for more details). Mathematically, the
magnetic polarizability tensor is a 3 x 3 matrix which has a functional dependence
on frequency. In theory, this matrix can be diagonalized by a frequency independent
rotation matrix indicating the orientation of the object in space (Section 2.2.1). Each
element of the resulting 3 x 3 diagonal matrix, which carries all of the frequency
dependence, provides the scattering characteristics of the object along each of its
three principal axes and are used for classification purposes. We refer to these as the
principal axis polarizability functions (PAPFs).

In this work we construct a number of estimation methods based on a physical
model that is the fusion of the dipole scattering model in [7] and a parametric PAPF
mode explained in [14]. This model is analytical in the parameters of the PAPF, the
(x,y, z) location of the object, and the three Euler angles [11] describing the rotation
matrix. The relatively simple closed form nature of the model with respect to these
parameters leads us to classification methods in which the orientation and location of
the object are explicitly estimated along with the parameters needed for classification.
Thus, our approach provides information regarding these geometric characteristics of
the object. Also, the closed form nature of the PAPF model allows our approach to
be applied with equal ease to both time and frequency domain sensor data.

In theory, the PAPF are comprised of an infinite number of single pole transfer
functions in frequency, but in reality, since real objects do not scatter exactly as
dipoles, it makes sense to consider reduced order models for the purposes of process-
ing. Indeed, experimentally it has been shown that one or two poles can typically
be used to match the model to measured data [6, 5, 16]. In this work, we propose a
model in which each PAPF is represented as a one-pole transfer function. Since there
are three principal axes, we estimate three pole constants as part of the classification
routine (one pole per axis). Our method explicitly accounts for modeling error intro-
duced by the fact that we are not using an exact scattering model. More specifically,
because a three-pole model cannot exactly represent the data, the pole values will not
be independent of object position and orientation. Rather for a given type of target,
there will be a spread of pole values as a function of these geometric nuisance pa-

rameters. Thus, we introduce a simple quadratic-form classifier, which compensates
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for this effect of model mismatch. Our classification scheme explicitly contains a null
hypothesis that the object is in fact clutter. Thus, we provide a quantitative means
of rejecting such items in the context of a multi-object classification procedure.

A new solution approach for the subsurface sensing problem given data from a
sensor, which has been scanned over a region of the earth, is also proposed. In most
methods it is common to assume that the positions of the sensor are known precisely
at least relative to some fixed reference point, a condition which is often not met
in practice. For handheld systems especially, the sensor may not be equipped with
GPS in which case some sort of dead reckoning may be employed to get approximate
locations. In the case of vehicular or cart mounted sensors, even with GPS, the effects
of positional uncertainties have not been extensively studied for problems where one
requires high resolution localization of buried objects.

The method we propose is motivated by the observation that real data sets for
which positions of the sensor are recorded are often accompanied by the caveat that
these locations are accurate only to within some tolerances in the x, y, and z co-
ordinates. We approach this problem using the worst-case (or min-max) method.
That is, we look for those parameters of the medium (voxel values, object character-
istics, etc.) which minimize the maximum mis-fit to the data where the maximum
is taken over all possible sensor locations each of which is restricted to lie within
some bounded region of space. The geometric structure of these uncertainty regions
is derived again from the prescribed tolerances. In particular, we consider both box
shaped as well as ellipsoidal regions in this work. Our motivation for this overall
approach is twofold. First, to the best of our knowledge a min-max formulation of
the problem of uncertain sensor locations has not been proposed or examined to date
in the context of subsurface sensing. Thus, our effort provides a new and potentially
useful way of approaching this issue. Second, while min-max problems are generally
quite computationally intensive, under a small perturbation assumption we obtain
two very tractable algorithms (one for boxes and the second for ellipsoids) for solv-
ing the resulting inverse problem. The method exploits some convenient underlying

structure of the problem and is very amenable to a parallel implementation.
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1.2 Literature Survey

The problem of detecting and classifying buried objects using EMI based sensing tech-
nologies has received considerable attention in recent years in a range of application
areas including UXO and landmine remediation. In the last decade or so, consider-
able advances have been made in the area of EMI instrumentation yielding sensors
capable of providing data both in the time and frequency domains which convey far
more information concerning the structure of buried objects than is the case with
older metal detectors.

The problem of subsurface discrimination using EMI sensors is addressed in [2].
The authors of [2] review frequency and time domain systems, and their interrela-
tionship and present the results of comprehensive measurements of the multiaxis EMI
response of a variety of inert ordnance items, fragments and scrap metal pieces recov-
ered from firing ranges. The extent to which the distributions of the eigenvalues of
magnetic polarizability for the different classes of objects do not overlap establishes an
upper bound on discrimination. For various reasons, the eigenvalues cannot always
be accurately determined using data collected above a buried target. This tends
to increase the overlap of the distributions, and hence worsens the discrimination
performance [2].

A Bayesian decision-theoretic approach to the detection of land mines is intro-
duced in [6]. This method incorporates the statistical properties of both the target
and clutter. This method substantially reduces false alarm rates relative to the stan-
dard thresholding techniques commonly used. The development is performed for an
integrated time domain pulse induction sensor, a prototype multi-channel time do-
main pulse induction sensor and a Geophex’s GEM-3 sensor which is a broadband
frequency domain device explained in details in Section 4.

In most cases where sensors are used for UXO detection and discrimination, the
energy in the output of the sensor is calculated and a decision regarding the presence
or absence of a target is made using this statistic. This approach leads to excessively
large false alarm rates. Gao et al. in [8] introduce a decision theoretic approach

for classification of metal targets using wideband EMI data. The algorithm that
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is presented in this work incorporates both a theoretical model of the response of a
wideband, frequency domain sensor and the uncertainties regarding the target/sensor
orientation. The results presented in this work indicate that incorporating the uncer-
tainty associated with the target/sensor relative position into the processor affords a
significant performance gain over a processor that simply uses the predicted response
at the mean expected target position. On the average, this method introduces a 60%
improvement in discrimination performance [8] comparing to the one introduced in
[6].

A portable, wide bandwidth, time-domain electromagnetic sensor system has been
developed and used extensively to measure the eddy current time-decay response of
a wide variety of metal targets. The sensor has demonstrated the ability to measure
metal target decay times approximately 3 to 5 ps after the transmitter current is
turned off and target decay time constants as short as 1.4us. The details for the
development of this sensor is described in [13]. This sensor, called the electromagnetic
target discriminator (ETD), shows potential for discriminating metal land mines from
clutter.

The problem of identifying conducting objects based on their response to low
frequency magnetic fields is discussed in [15]. This area of research is also referred to
as magnetic singularity identification (MSI). The low frequency of the objects under
study was measured for both cardinal and arbitrary orientations of the magnetic field
with respect to the planes of the symmetry of the objects. Distinct negative real axis
poles associated with object form the basis the real time identification given in [15].
As a solution to the M — ary hypothesis testing problem, a generalized likelihood
ratio test (GLRT) is presented. Best performance of the GLRT classification scheme
was obtained with a single pole per object orientation.

The authors of [12] propose three phenomenological models for wideband EMI
response of buried conductors such as UXO and metal parts in landmines. The
models are based on analytic solutions for spheres, cylinders, and wire loops, and
produce physically reasonable predictions for a variety of targets at all frequencies of
interest. All three methods produce excellent fit to the data and run quickly enough

to be used in data inversion methods. These three models consist of the followings
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[12]:

1. A three-parameter model capable of exactly matching permeable spheres and

cylinders.
2. A four-parameter model for adding capability to match signals from wire loops.

3. A five-parameter model which adds capability to match signals due to driving

bands (also called rotating bands.

The authors of this work demonstrate that the five-parameter model is capable of
accurately fitting the loop-like signals of driving bands.

Spatial response characteristics of an electromagnetic induction sensor as it passes
over a metallic object are investigated in [7] using a simple analytical technique. In
this low-frequency method, the metallic object is replaced by its equivalent electric
and magnetic dipoles and then the principles of reciprocity is applied to obtain the
induced EMF in a sensor coil. The analysis given in this work is for a sensor with
rectangular coils. This approach (discussed in more detail in Section 2.2) is found to
be adequate to understand the effects of the response characteristics of parameters
such as object depth, orientation, aspect ratio and material properties [7].

A sensor response model based on empirically determined orthogonal response
coefficients (3 is presented in [1]. This model is used for the analysis of EMI sensor
data and is applied to high-quality survey data from the multi-sensor towed array
detection system program (MTADS). MTADS was developed by the Naval Research
Laboratory to address the problems associated by the traditional methods for buried
UXO detection. The MTADS hardware includes a low magnetic signature vehicle
that is used to tow linear arrays of magnetic and electromagnetic sensors to conduct
surveys of large areas to detect buried UXO. Primary goals of the MTADS program
include the development of a system sensitive enough to detect all buried UXO to its
self-penetration depth and the integration of a precise position location and survey
guidance system based on global positioning (GPS) navigating.

A new method for computing range and orientation invariant spectral signatures

of buried UXO from EMI data is presented in [14]. The normalized eigenvalues of
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the magnetic polarizability tensor that characterizes the target response are used
as the orientation-invariant spectral signatures. The eigenvalues can be normalized
with respect to depth under the assumption that a multiplicative scaling factor can
be applied at all frequencies. These eigenvalues are derived by measuring the ma-
trix elements of the polarizability tensor from above-ground spatial data and then
by diagonalizing this matrix. This method is linear and does not require a nonlin-
ear parameter search. After normalizing for depth, the eigenvalues derived from an
unknown object can be compared with library eigenvalues using the L, norm as a
goodness-of-fit measure.

Given this as background, in this work we construct a method, which is based on a
physical model that is the fusion of the dipole scattering model in [7] and a parametric
PAPF model elucidated in [5]. This model is analytical in the parameters of the
PAPF, the (x,y, z) location of the object, and the three Euler angles(explained later
in detail) [11] describing the rotation matrix. The relatively simple closed form nature
of the model with respect to these parameters leads us to classification methods in
which the orientation and location of the object are explicitly estimated along with
the parameters needed for classification. Thus, our approach provides information
regarding these geometric characteristics of the object. Also, the closed form nature
of the PAPF model allows our approach to be applied with equal ease to both time

and frequency domain sensor data.

1.3 Organization

The remainder of the work is organized as follows: In Chapter 2 the scattering model
and the mathematical structure of the basic problem is formulated. Three very general
solution methods, applicable to a wide range of sensors, are detailed in this section.
Chapter 3 describes the processing method. Chapter 3.3 describes the classification
method applied. Chapter 4 is devoted to a detailed examination of all proposed
algorithms. Experiments using both simulated and real frequency domain sensor
field data is also presented in this section. Finally conclusions and future work are

provided in Chapter 5.



Chapter 2

Problem formulation and Physical
Model

Spatial response characteristics of an electromagnetic sensor as it passes over a metal-
lic object are investigated using an analytical technique. Analysis is carried out for
sensors with rectangular coils. This method, which is presented with both numerical
and experimental data in Section 4, is shown to be suitable to understand the effect
on the response characteristics of parameters such as the spatial position, orientation,

and material properties of the object.

2.1 Electromagnetic Induction Sensors

2.1.1 Bistatic Sensors

The transmitter and the receiver of a bistatic sensor are not co-located. The separa-
tion between the source and receiver is used as the major operating variable in order
to interpret the data. A bistatic sensor tends to stretch or distort the signature of
an isolated anomaly along the line connecting the source and receiver. For instance,
a spherical object may distort into an oval shape, stretched along the source-receiver
line on a contour map. Depending on the sensor orientation, the same object may

look different on a contour map. This can be a problematic feature for interpreting
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the data. This stretching typically becomes worse as the source-receiver separation

increases [17].

2.1.2 DMonostatic Sensors

Monostatic sensors are sensors with zero source-receiver separation, which eliminate
stretching and provide the highest possible resolution. Hence, a monostatic sensor is
the most desirable sensor for achieving high spatial resolution. There are many practi-
cal design difficulties associated with producing these sensors, and without mentioning
those difficulties, we note that the GEM-3 sensor is one of the few monostatic sensors

to have overcome these difficulties (for more details refer to [17]).

2.1.3 GEM-3 Sensor

The field data used in this work was obtained using the GEM-3 electromagnetic
sensor. This is a fairly new sensor developed by Geophex Inc. This sensor has been
used in many platforms for detecting and characterizing buried conducting targets.
An especially attractive feature of this sensor is its multi-frequency capability and
spatial footprint. Moreover, this sensor uses a unique transmit-bucking scheme to
null the primary field at the location of the primary coil.

In a frequency-domain platform, the GEM-3 obtains a set of desired transmitter
frequencies in the form of a digital bit-stream. The desired transmitter waveform for
a particular survey can be obtained from this bit-stream. This sensor weighs about 5
kg and can measure up to 12 data points per second at multiple frequencies between
90 Hz to about 24 kHz [19].

GEM-3 contains a pair of concentric transmitter coils and a small receiver coil at
the center. This configuration is monostatic because the coils are co-located. The
design principle of the GEM-3 sensor involves two concentric transmitter coils. The

details for this sensor design have been discussed by Won et al. in [17] and [18].
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2.2 Physical Model

The analysis used in this work assumes that the object and the sensor are located
in free space. We choose to ignore the very small effect of a finitely conductive host

medium such as soil because of the following reasons [7]:

e In our application the effect of soil is small in comparison to the target response.
This is because the conductivity contrast involved is very high (soil conductivity
is typically less than 1 S/m, while target conductivity is of the order of 107 S/m),
target depth and coil dimensions are small (less than 2 m), and frequencies used

are low (typically less than 20 kHz).

e The added complexity would not change the main focus of our analysis, which
is to understand the relationship of the spatial response characteristics of an

object with its depth, orientation, material, shape, etc.

It is very difficult to predict the exact response profile of an electromagnetic sensor
as it passes over an arbitrary metallic object. This problem becomes even more
difficult when the target becomes closer to the sensor coils and when noncircular coils
of finite size are used. The analytical approach to this problem is based on the work
of Burrows [7], [9]. The method discussed in [9] replaces the scatterer with equivalent
electric dipoles and then applies the principle of reciprocity to obtain the induced
EMF in the sensor coil. Since the magnitude of the electric field is very small, one
needs to assume that the object of interest scatters the incident EMI field as a dipole.
Inaccuracies will occur because of the fact that the magnetic field over a typical
object, in the vicinity of a coil, is non-uniform. This will violate the assumption of
perfect dipoles.

The EMF, E, induced in a single-turn receive coil by a magnetic dipole M can be

shown as the following scalar product:

E= j—“’j’”‘“lfR M (2.1)
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/ receive coil

-{__..,,// 2A >* " transmit coil
< 2C >

A

Figure 2.1: Geometry of sensor coils and target object for one sensor

where HE is the magnetic field intensity which would be produced at the position
of the dipole by a current I flowing in the receive coil, j = /—1, w is the radial
operation frequency and g is the permeability of the free space.

Figure 2.1 depicts the coil and target geometry of a sensor. The center of the coils
is located at the origin of the (,y, z) coordinate system. The coordinates (z',v, 2'),
with the object center at its origin, is a translated version of (x,y,z) and is only
displayed for clarity of illustration. Assuming that the target is located at (zo, yo, 20)
the distance d = |zp| is referred to as object depth, or simply, depth. Here, the
components of the magnetic field intensity at (zo,yo, 20) due to a rectangular coil

with sides 24 and 2B and carrying a current I can be written as follows [7]:

I
HE = E(ng + H,y) (2.2)
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I
HJY = - (Hp + Hy) 23)
R I
Hz = E(Hzl +H22+Hz3+Hz4) (24)
where,
Hoy = — 2o [ (yo — B) _ (yo + B) }
! (20 + AP + 22 L(xo+ AP + (yo — B> + 22 (w0 + A + (yo + B)® + 22
I 2o (yo + B) (yo — B)
x4 — — 2 5 2 2 5 2 2 2
(o — A)" 4+ 202 L(wo — A)” + (o + B)” + 20 (o — A)" + (yo — B)" + 20
H.. — 20 |: (.CC() + A) (.CL‘O + A) :|
i =+ 2 5 2 2 5 2 2 9
(Yo — B)” + 2% L(wo — A)" + (yo — B)” + 20 (o +A)"+ (yo — B)” + 20
H.. — 20 (.CC() + A) (.CC() — A)
y3 — +( 2 5 2 2 5 A2 2 9
Yo+ B)" + 2? L(wo+A) 4+ (yo + B)" + 2 (o — A)" + (yo + B)" + 2
Ho=— (yo — B) [ (2o — A) _ (2o + A) ]
(vo— B)® + 202 L(mo — A)* + (yo — B)* + 202 (w0 + A + (yo — B)* + 22
o CtA [ _(0oD) . WD) ]
: (2o + A + 22 [(zo + A+ (yo — B)® + 202 (x0+ A)® + (yo + B)* + 22



CHAPTER 2. PROBLEM FORMULATION AND PHYSICAL MODEL 14

Hon— — (yo + B) [ (zo +A) _ (zo — A) ]
B o+ B+ 2 Lme+ A+ (o + B+ 22 (10— A+ (yo + B)? + 2?
Hoy =+ (zo —2A) [ 2(yo + B) . _ 2(y0 - B) . ]

(mo — A)” + 20 L(mo — A)" + (yo + B)" + 20°  (z0 — A)" + (yo — B)” + 20°

The magnetic moment, M depends on the electromagnetic and geometrical char-
acteristics of the object of interest, which in turn depends on the relative orientation
of the transmit coil and target [7].

The same approach can be used when dealing with sensors whose locations is only
known relative to some reference point. To better understand this problem, let us
assume that the positional uncertainty for our sensor is (d,,d,,d,). In that case, the
center of the coils will shift from the origin to (d,,d,,0,). In order to take advantage

of the physical model given above, we can simply consider the following mapping:

Ty — & — 0y (2.5)
Yo — Y — 0y (2.6)
20— 2 — 0, (2.7)

which could also be considered as a shift of the coordinate axis.

The natural response of conducting and permeable targets is determined by a
sum of nearly purely damped exponentials, with the damping constants strongly
dependent on target’s shape, conductivity, and permeability, thereby representing a
potential tool for EMI discrimination of conducting and permeable targets [9].

We now consider a combination of the previously introduced physical EMI model
with the model given in [9] which rigorously justifies the use of decaying exponentials
in time or one-pole models in frequency for problems of this type . As seen in Fig-

ure 2.1 the transmitters and receivers are taken to be coils (not necessarily co-located)
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with sides of length 2A.

The target center is located at ry = (xo,¥o,20) in the (z,y,z) coordinate sys-
tem. We are concerned with processing methods based on time or frequency domain
sampled data obtained from multiple transmitter/receiver locations. Assuming, we
collect M frequency samples at N combinations of transmitter/receiver locations,

then under the model the jth sample at the kth location is:

Yik = go RTARfi + omjp (2.8)

where, g7 is a 3 x 1 vector holding the (x,y,z) components of the magnetic field
produced at 7y by a current I flowing through the receiver coil and f represents
the excitation fields vector evaluated at the dipole position. Functional forms of
g and f are given in Equations (2.2),(2.3) and (2.4). The variable n;; is a zero
mean, unit variance random variable and ¢ is the standard deviation of the assumed
additive white Gaussian measurement noise. This formula was developed under the
assumption that the positions of the sensor are known precisely relative to some fixed
reference point. This condition in reality is not often met.

A; is the complex-valued polarizability tensor for the kth frequency and has the

following form:

where A1, Ao, A3 are associated with one of each principle axes of the object and w
is the operating frequency. Replacing w by ¢ will give the time domain version of
this equation. The three A’s each are associated with one of the principal axes of the
object. Here we consider a form of that model provided by [6, 5, 16]

agjw

A = — 1=1,2,3 2.10
@) =7 Piq T Iw ' ( )
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where p;; is the Ith pole for the ith axis, and a;; is the expansion coefficient. An

inverse Fourier transform yields the time-domain version of A:
Ai(t) = — Z aipige Pittu(t) (2.11)
1=1

with u(t) the unit step function. For cylinders and disks, Carin et al recently provided
a fast numerical method for computing the p;;. The model in (2.10) and (2.11) strictly
holds for non-ferrous objects. In the case of ferrous objects, a DC offset in frequency
or a Dirac delta function in time domain must be added to the above equations. For
notational ease, in the remaining part of this chapter we will only concentrate on the
non-ferrous case with the understanding that some small changes need to be made
for ferrous objects.

In (2.8) R is a rotation matrix which orients the object in the space and is used to
transform field quantities between a global frame of reference and the local frame of
the object. The structure of R and details of Euler angles and the problems associated
with them are explained in great detail in Section 2.2.1.

As explained earlier in Section 1 the magnetic polarizability tensor A can be diago-
nalized by R. Each element of the resulting matrix holds the scattering characteristics
of the object along each of the three-principle axis and is referred to as PAPF.

Equation 2.8 can be re-written as:

Yjk = Snk T O0Wjk (2.12)

Gathering the data from all sensors together, the overall model can be written as:

y(p,a,0) = s(p,a,0)+ow (2.13)

where y holds the data from all sensor locations and frequency samples, s is the signal

vector, n is the noise vector, p is the vector of all poles, a is the vector of all expansion
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coefficients and # holds the coordinates and Euler angles of the object.

This model assumes that the object behaves electromagnetically like a dipole. The
three \;’s then fully summarize the scattering behavior of the object and only depend
on the size, shape, and material of the object and not on the orientation and position
of the object relative to the sensor. Thus, the pole and expansion coefficients make
good candidates for use in a classification routine. The orientation information is
explicitly contained in the matrix R while the field vectors f and ¢ convey position
information. Due to the simple, analytical nature of this model, it is quite well suited
for use in a signal processing routine where operations like pole fitting and parameter
estimation are accomplished using optimization routines. The complexity of these
routines is substantially reduced due to our ability to use the model to compute closed
form sensitivity information; essentially the derivative of the data with respect to any
of the unknowns: poles, expansion coefficients, Euler angles or location coordinates.
Such calculations are at the heart of any parameter-fitting scheme employing e.g. a
gradient decent, conjugate gradient, or Newton type of optimization scheme.

While the utility of the model described here has been validated using real sensor
data [7], generally objects do not behave exactly as dipoles. Moreover, one cannot
practically use an infinite number of poles for each A;. Rather, a single pole per axis
is the most that is typically supported by the data. In such a case, the effective pole
for each axis will be dependent on the object position and orientation. The end result
is that for all practical purposes model mismatch or required model reduction will
force us to consider pole-based classifiers, which explicitly account for variations in
the feature values. If such variations are small, then one expects success in using

poles (effective poles) for classification.

2.2.1 Euler Angles

Every Euclidean change of axis can be written as the composition of three rotations
(Figure 2.2). From the physical point of view this means that three parameters are
required to specify a rigid rotation of axes. One of the most efficient and convenient

ways of specifying these parameters is by using Euler Angles.
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<

Figure 2.2: Euler Angles

Intervals of Definition for Eulerian Angles

In order to gain a better understanding of how Euler angles can be used to specify a

rigid rotation of axes, let us consider the following rotations [11]:

1. Rotation of the coordinate system about the Z axis through an angle ¢. This
corresponds to a rotation in the X —Y plane of angle ¢, leaving the Z unchanged

(Figure 2.3). The matrix corresponding to such a rotation is:

cos¢p —sing 0
Ry = | sing cos¢p O (2.14)
0 0 1

2. Rotation of the coordinate system about the X axis through an angle . This
corresponds to a rotation in the Y' Z plane of angle 6, leaving the X unchanged

(Figure 2.4). The matrix corresponding to such a rotation is:
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#x0

7

Figure 2.4: Rotation of the coordinate system about the X axis through an angle 6.

1 0 0
Ry=|0 cosf) —sinf (2.15)

0 sinf cosf

3. Rotation of the coordinate system about the Z" axis through an angle 1. This
corresponds to a rotation in the X"Y" plane of angle 1, leaving the Z' un-

changed (Figure 2.5). The matrix corresponding to such a rotation is:

costy —siny 0
Rs = | siny cosy O (2.16)
0 0 1

From this we can conclude that the system x5, -, 25 is obtained from g, 19, 2o by

the following operation:
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Figure 2.5: Rotation of the coordinate system about the Z, axis through an angle 1)

R - R3R2R1 -
cos ¢ cost —singcosfsiny —cos@siny —sinpcosfcosy  sin @sinf
sin ¢ cos 1) + cos pcosf costp  —sin dsintp + cos pcosfcosyy —cosgsind [2.17)

sin @ sin 1) sin # cos ¢ cos

where matrix R is same the rotation matrix employed in Equation 2.8.
We, now, try to derive an upper and lower bounds for the Euler angles given in

2.17. Let us consider the following mapping:

0 — 27 —0
¢ — ¢+m mod (27) (2.18)
Y — Y +7m mod (2)

and since the above mapping gives the same rotation matrix as the one shown in
Figure (2.5), we can conclude that, any rotation angle #; satisfying 7 < 6; < 2w
can be realized with 6, = 27 — 01, where 6y < 7, 0 < ¢+ 7 mod (27) < 27 and
0 <t¢Y+7 mod (2r) < 27. From this we can conclude that §; > 7 will give the same
transformation as f; < w. Thus the intervals of definition for the Eulerian Angles

are:
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0< ¢ <2 (2.19)
0<h<m (2.20)
0<% <27

Rotational Ambiguities

One possible difficulty associated with our proposed model (2.8) is the problem of
Pole Switching. When performing the matrix multiplication RTAR, for certain Euler
angles, the order of the A’s given in (2.9) may change. As a result of the change, two
completely different set of Euler Angles may give the same result once the operation
RTAR is performed on them. This will clearly cause an ambiguity in the decom-
position of magnetic polarization tensor. In fact, there exists five matrices O; such
that OTAO is still diagonal but with \; permuted. The followings demonstrates these

cases:

e Case I: ¢ =10,0 =3, =0

1 0 0f|A 0 0 10 0 AL 0
0 1 0 A O 00 —-1|=]0 A 0 (2.21)
0 -1 0 0 0 A |01 0 0 0 X

0 -1 0 A 000 0 -1 0 A2 0 0
0 0 0 X O 1 0 0f=1]0 A O (2.22)
0 0 1 0 0 As 0 0 1 0 0 As
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e Case III: qﬁ:g,ﬁzg,zp:g

0 0 1 A1 00 0 O A3 00
0 —1 0 0 X O 0 =1 0]=]10 X 0 (2.23)
1 0 0 0 0 s 1 0 0 0 0 X\
o Case IV: ¢ = 0,0 = 5,9 =7
-1 0 A 00 0 1 A3 00
0 0 1 0 X 0 -1 0 0f[=1]0 A O (2.24)
1 0 0 0 0 s 0 10 0 0 X
e Case V: 9o =3,0=7,¢4=0
0 01 A1 00 010 Ao 0 0
100 0 X O 00 1|[=]0 A O (2.25)
010 0 0 s 100 0 0 X\

Here, R; = O;R; is still a valid rotation matrix. This means that extra care must
be taken if we want to associate A\; with the x-axis, Ay with the y-axis and A3 with

the z-axis of the object to avoid “swapping* of the poles.

In order to find with a solution to this problem we considered the following options:

e Sorting the A, Ay and Az of (2.9) in an increasing order every time we perform

the RT AR multiplications.

e Developing an orthogonal operator O such that RFAR = RTOAOTR. For

instance to fix the switching problem in Case I, we can set

= o O
S = O
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then,
1 0 0 1 00 A 0 0 1 00 10 0
0 0 01 0 X O 0 01 0 0 -1
-1 0 010 0 0 X 010 01 0
A 000
:0)\20
0 0 A3

As we have shown above, the order of the A’s is back to its correct form. In this
work, we decided to approach this issue through the use of a sorting routine. This
routine re-arranges the poles in an increasing order and hence avoids any further
complications that might be caused by their switching. Simplicity was the main
factor for making this decision. We expect to arrive at similar results from the usage
of the other method. In Section 4, we will demonstrate and compare our results in

the presence and absence of this rotational ambiguity.



Chapter 3
Processing Method

Our approach to classification starts with the construction of a target signature li-
brary, which will be used in the actual processing. For each target of interest, this
library will be comprised of the three effective pole and expansion coefficients, which
define the PAPFs. Given that library, classification is a two-step process. First, for
each target in the library, the data are used to estimate the unknown parameters
associated with that model: poles, expansion coefficients, object location and object
orientation. Here, we examine three estimation schemes. The first estimation scheme
is used for systems in which the location of the sensor with respect to the target is
known (discussed in more detail in Section 3.2.1). Our other two estimation methods
are used when the position of the sensor is not exactly known to us (see Section 3.2.2
for more details). Second, using these estimates, we examine a pole-based classifica-
tion scheme. Our classifier is based on using the pole estimates alone and is expected
to work well in high signal to noise cases, when we can get accurate estimates of these

quantities. We begin by discussing the construction of this library.

3.1 Library Construction

As discussed in Section 2.2, the pole estimates which we use for classification will
have some orientation and position dependence which should be accounted for in

the construction of the library and in the processing. Let us suppose that we have

24
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data from a known target in a known position and orientation, which either has been
computed using an exact computational model, or measured using an actual sensor.
For the kth target in the library, we are going to use one effective pole per A; defined

in a best fit manner as the solution to the following optimization problem

™ (60), @(60), 6(60) = axg miny,q 6l|yx(8o) — s(p. a, 0)]13 (3.1)

where 6y holds the true position and orientation information, y; is the true data
vector, and p and p®/f are vectors of three pole parameters, one per );. The symbol
“*7 above quantities indicate that these are fitted to data. We note that to be
consistent with the estimation scheme developed in Section 3.2, here we do fit a and
0; however we care only about the effective pole values in constructing the library.
Additionally, the effective pole parameters are implicitly dependent on the specifics
of the sensing system we use, including frequencies of operation and spatial sampling
strategy. Hence in theory each sensing configuration will require a separate library.
While we could construct a library holding peff(ﬁ) for a dense sampling of points in
f-space, here we choose a simpler approach. Specifically, for the classifier considered
in Section 3.3, we look only at the first two moments of the effective pole vector

averaged over f. Mathematically, we define the mean pole vector and the associated

covariance matrix respectively via

p = szeff 32
R = Qz A10) — ) (i (00) — o) (33)

where the index ¢ ranges over a grid of points in 6 space. Thus, to summarize, the
feature library we employ for classification based on pole estimates is comprised of
one three-dimensional vector and one 3 x 3 matrix for each target of interest and each

sensing system under investigation.
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3.2 Parameter Estimation

3.2.1 Estimation When Sensor Locations are Known

The first stage of processing is to estimate the parameters of our model for each target
in the library. We will obtain these parameter estimates for a pole-based classifier.
The details of this method is further explained in Section 3.3.

We start our approach to classification by solving a problem similar to that of
Equation (3.1). We could then make use of the fact that if the data did in fact come
from the kth object (which is what we will ultimately be testing), then the poles
should be on average pr. Thus under this scheme, we would not need to estimate
the poles (and the expansion coefficients if we were to keep track of these as well)
and we would only need to determine the elements of . While such an approach
is feasible, it ignores the fact that we have information concerning the behavior of
the pole estimates in the form of a mean vector and a covariance matrix. Hence,
rather than fixing the poles in the estimation scheme we let them float but impose
some bounds on their values in recognition of the fact that since we are going to be
testing the fitness of the data to the kth model the poles should be constrained to be
close to the average pole value for this model. Specifically we solve the constrained

optimization problem:

]51,19,&1,14,@1,14 = arg minpva,9||y — s(p, a, 9)”3

subject to [pk]z S Hﬁk]z -2 [Uk]i ) [pk]z +2 [Uk]i] (3.4)

with [py]; the ith element of the vector pj, and [o]; the square root of the 4y, element
along the diagonal of R;. Hence [o}]; is the estimated standard deviation of [py];.
The above optimization problem essentially restricts the estimates of the poles to
stay within plus or minus two standard deviations of their expected value. Again,
the philosophy underlying this choice is that since we will be using these estimates
to test the goodness of fit of the data vector to the £th model we should encourage
the parameter estimates to stay close to the model.

To solve the problem in Equation (3.4), we use the nonlinear least squares solver
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available in the Optimization Toolbox of Matlab. This code makes use of a constrained
Gauss-Newton algorithm for finding a local minimizer of the objective function in the
neighborhood of an initial guess. We initialize the algorithm as follows: For the poles
we use pr and we initially take the expansion coefficients to be equal to 1.0. The
initial (z,y) location of the object is taken to be that point in space with the largest
magnitude response in the data, while the initial depth is 1.0m from the sensor. The
Euler angles are initialized all to 0.0.

The classifier used in this work (discussed in Section 3.3), is based on estimates of
the poles. To allow the maximum flexibility in determining these quantities, we use

the following, second estimation scheme in which the bound constraints are lifted:

ﬁ2,k7 &2,/67 é27k = arg minpvaﬂ“y - 8(]97 a, 9)“% (35)

Again, a nonlinear least squares solver is used. This time, the algorithm is ini-
tialized with p; j, a1 1, and élyk. We have found that by constraining the poles in the
first estimation stage, we obtain high quality estimates of the position and orienta-
tion parameters. These estimates are then used to obtain strong overall estimates of
all relevant parameters in the second estimation step. Thus, this appears to provide
an effective means to avoid the local minimum problem associated with non-linear
parameter estimation problems.

Finally, we also employ bound constraints in (3.4) for the estimates of the elements
of 6. The precise values of these constraints are problem dependent and described in
Chapter 4.

3.2.2 Estimation When Sensor Locations are Unknown

The goal of this section is to develop a general purpose approach to the inverse
problems which explicitly accounts for the sensor location uncertainties explained in

Section 1.
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General Problem Formulation

For simplicity of exposition, we restrict attention to the processing of real valued
data from a single, monostatic sensor. The generalizations to multiple sets of perhaps
complex data from multi-static sensing systems are conceptually straightforward, but
notationally burdensome. Let us then assume that the sensor stops at N nominal
locations in space indexed by 1,..., N. At each location, r; = [z; y; zi]T, a length M
vector of data (e.g. samples in a time trace), d; is acquired. The sensing problem is
to extract from the d; the values of a collection of parameters such as voxel values or
geometric descriptors of the buried objects needed for characterization and classifica-
tion. These parameters are assembled into a column vector @ and are mathematically
related to the data via a sensor model, s(8;r;) = s;(0), which as indicated is also
dependent on r; for « = 1,2,..., N. For what follows, we assume here that s is in
fact differentiable with respect to the elements of 8 and r;.

As indicated in Section 1, it is often the case that the locations of the sensor are not
known precisely. To model this situation, r is taken to be the sum of two components:
ro,;, the nominal or expected position of the sensor, and dr;, the perturbation to r .
The perturbation is such that r; = ry; + or; € S; where S; is a region of space
whose size is dictated by the predefined tolerances provided with the data. For
simplicity, here we assume that these tolerances are the same for all positions. In this
work, we consider algorithms based on two choices for the &;: boxes and ellipsoids.
Mathematically, a box of size X in the = direction, Y in y, and Z in z centered at a
]T

point ry = [y Yo 2o] is defined as

X Y A
|x—:c0|<5,|y—y0|<§,|z—z0|<§ : (3.6)

B(ro) = {r =[ry2]"

Similarly, an ellipsoid centered at ry with axes of length X, Y and 7 is:

&(ro) = {r =[ry2]"

(O e
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Given these definitions, the problem we face is to determine the “optimal” choice
of 8 given the data, d;, and knowledge of X, Y, and Z.

A Min-Max Solution Approach

A mathematical formulation of this problem requires first a definition of optimality.
As is typical for problems such as these, here we take optimality to be defined in the
sense of the minimum (over all @) norm of the square error difference between the
data observed and the prediction of the data provided by the model s. That is an

iterative algorithm is constructed which adjusts € to find a (local) minimum of

J(0,1;) = Z 1d; — s(6, 1) (3.8)

where, for a vector x, ||x||3 = xx. The problem now is how to specify the r; in the s
in (3.8). In most all cases, the r; are set equal to their nominal values, ro; and a least
squares estimate of @ is found. Here though we seek to augment the minimum error
notion of optimality in a manner which easily incorporates the additional knowledge
we have concerning the geometry of the §;. Essentially, the problem we have here
is to determine a set of primary parameters, @, in the presence of a collection of
“nuisance” parameters, the r;, which are restricted to exist in known regions of space.
One common method for solving such problems is via a “min-max” formulation. This
amounts to selecting that @ which minimizes the worst error, as measured by J(8, r;),

as r; ranges over S;. Formally, 9, our estimate of 6, is defined as

A

0 =argmin _ max __ Y [|d; —s(6,1;)|3 (3.9)

60 rieSi,....rNESN

To obtain a tractable solution to the problem, we now make the assumption that

the dr; are sufficiently small so that we can write

(S.Ti
s(0,r;) =s(0,r,0) + Ai(0) | dy;
5Zi

1
X

= s(@, I‘i70) + Al(0)(5rl (310)

~l=

N[=
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where A; is the matrix whose (j, k) element is the partial derivative of the jth com-
ponent of the vector s; with respect to the kth element of or;. Essentially, (3.10)
is a Taylor series expansion of the model about the nominal location of the sensor.
Substitution of (3.10) into (3.9) yields:

6 = arg moin J1(0) (3.11)
J(O) = max > |yi(6) — Ay(6)drill3 (3.12)

r1€Si,...,rNESN “—
13

with y;(0) = d; — s(0,r;9). Were it not for the inner maximization, the typical
approach to determine 0 requires the use of an iterative optimization routine such as
steepest decent, non-linear conjugate gradient, or a Gauss-Newton type method which
exploits the underlying least squares structure of the problem. These techniques all
require that the cost function, J;(0) is differentiable at least once in the elements of
0. For our problem, since J1(8) itself is the solution to an optimization problem we
cannot guarantee its smoothness. Even if we could, computing gradients, Hessians and
such is not particularly feasible. Thus we adopt a two level approach to determining
6. First, a general purpose non-smooth optimization scheme (Matlab’s Nelder-Mead
method in fact) is used to solve the “outer” minimization problem. This leaves
us with having to solve the “inner” maximization problem at each iteration of the
Nelder-Mead method.

In general, (3.12) represents a numerically intensive optimization problem. Here
however, there is significant structure, which greatly simplifies the situation. It is
the recognition and exploitation of this structure along with the performance of the
algorithm itself that we feel are the primary contributions of the work in this thesis.

Two observations serve to ease the burden of the inner maximization:

1. First, because the perturbations at one sensor location are independent of those

at any other location, the inner maximization in (3.11) separates and we obtain
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e o, S i0) = AOIIE = 3 e i(0) —~ AO)STIE (313
Hence rather than having to solve one large maximization problem involving 3N

variables, we can, in parallel, solve N small problems each with only 3 variables.

2. Second, both classes of S; (boxes and ellipsoids) are convex shapes. Because
||-||3 is a convex function of its argument we are guaranteed that the maxima for
each of our NV problems is achieved on the boundary of §;. The implication of
this fact for the box and ellipsoidal regions lead then to the two basic algorithms

developed in this paper.

3.2.3 Boxes

When the regions S; are boxes, the existence of the solution to the basic maximization
problem on the boundary of the box can in fact be strengthened. Specifically, it is
well known that the solution must exist on one of the corners of the box. Thus, each
of the maximization problems in (3.13) can be solved simply by evaluating the cost

at each of the eight corners of the associated box and finding the maximum value.

3.2.4 Ellipsoids

The case of ellipsoids is a bit more involved and a bit more interesting. Since each
of the maximization problems in (3.13) is structurally identical, we drop the explicit

dependence on @ from A and consider the basic problem

- 2
max ||y — Adr(|; (3.14)

First, we observe from (3.7) that the boundary of set S can be written as:

S = {or|or’or <1} (3.15)
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Now, since S is compact (closed and bounded), if we choose any dr; € S and
dry € S, then for any a € [0, 1], we can say that adr + (1 — a)dr € S. This implies
that S is convex. We can then take advantage of these facts and conclude that Adr is
also compact and convex. From this, we can conclude that § is a closed and bounded
convex set.

Theorem: For a closed and bounded convex set, the maximum distance of a
point to the set is achieved by a point in the boundary [3].

Using the above theorem and the fact that § for any optimum solution is a closed

and bounded convex set, we will arrive at the following requirement:

orfor =1 (3.16)

Using Equation 3.16, we can now re-write (3.14) as:

max gy 1y — Adr] 2. (3.17)

Now, let us factor A using the singular value decomposition as UXV?T and re-write
(3.17) as:

max;,rs._ ||y — USVor|[3. (3.18)

In our case A is an M x 3 matrix so that U is an M x M orthonormal matrix, V is
a 3 x 3 orthonormal matrix and X is an M x 3 matrix of all zeros except the first three
elements on the main diagonal which are the non-zero singular values, o; © = 1,2, 3,
of A.

Now, let us introduce z = V%ér and note that VIV = [, V = VT hence
VVT =1. We can re-write Equation 3.18 as:
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max 7y ||y — UEZH% = maszz:1||UTy - 2z||§ (3.19)

Let W = U”y, then

maszz:1||UTy - 2z||§ = maxyry_,||W — 2z||§ (3.20)

which can be re-written as:

0 02 0 Zl
max ||W — Xz|3 = max =10 0 o3 . (3.21)
zTz;=1 zTz=1
0 0 Z3
| WN L 0 0 0 ] )

where 1 =1,--- , N.
We can now, make use of the structure of ¥ and the fact that an orthonormal
change of variables leaves the Iy norm of the resulting vector invariant and write (3.21)

as

max {Z (w; — 0323)° + Z (wi)* + A (23 + 23 + 22— 1) } (3.22)

‘ i=1 i=4
where we have introduced A\ as the Lagrange multiplier. In order to maximize the
above equation, we can simply set its derivative with respect to z; equal to zero. We

will have:
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20wy + 207z, = 2z (3.23)
—20'271)2 + 20’%22 == 2)\22
—20'3’(1)3 + 20’523 = 2)\2«'3

and since z7 + 23 + 23 = 1, we can solve the above equation for z; as follows:

20'1
1 = U%_)\wl (324)

20'2
Z9 = Wa
o3 — A

20'3
Z3 = —H5——-Ws3
o2 — A

Now that we have found a solution for z;, we can solve dr; = V. Z; and find or;
which is our maximization vector. Using this, we can easily find the value of the cost

function given in (3.17).

3.3 Classification

In order to generate a classifier based on the estimates of the poles we use
e = (Pr — D) By (B — Dr)- (3.25)

This Mahalanobis-type distance metric is expected to be close to zero when £ is true
and larger than zero when the true object is not the kth. Using € the classification
rule is defined as follows: Choose the k* object in the library if the magnitude of ¢«
is less than a threshold 7 else say that the object under investigation is clutter. For

a classifier based on the pole estimates, £* is that index minimizing ¢; over all k. In
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the following chapter, we examine the performance of the pole-based classification

scheme.



Chapter 4
Numerical Examples

To demonstrate the theory explained in the previous chapters, we numerically test
the estimation and classification methods presented using three different libraries of
targets. The GEM-3 sensor was used for all of the frequency-domain experiments

presented in this chapter.

4.1 Processing When Sensor Locations Are Known

4.1.1 Simulated Data

The first object library used in this work was constructed based on simulated data.
The sensing system we simulated was comprised of co-located, square transmit and
receive coils. These coils sampled a one half meter square area on an equally spaced
5 x 5 grid of measurement points. Frequency domain versions of the sensor collected
complex valued data (in-phase and quadrature) at 30 logarithmically spaced frequen-
cies between 10Hz and 30 kHz. In this part, we assume three different libraries of

targets:

1. Amorphous Targets: The corresponding pole values of these targets is shown
in Table A.1. Since no specific shape was assumed for these targets. These

targets are assumed to have three unique \;’s.

36
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‘ Angle ‘ Values Used ‘
| ¢ \[ogg3”7r5”3”7”27r\
[ 0 [[0.5.535.5.5535.7¢.7 |
| ¢ [[0,%,2,3% 7, 5% 32,72 27] |

Table 4.1: Orientations Used to Construct the Simulated Data

2. Pipe Like Targets: The corresponding pole values of these targets is shown
in Table A.2. These targets are assumed to be cylinders hence symmetric about

their primary axis. They have only two unique A;’s.

3. Sphere Like Targets: The corresponding pole values of these targets is shown
in Table A.3. Sphere-like targets are symmetric about their axes, thus it is safe

to assume that there is only one single unique \; associated with these targets.

In this chapter, we will apply the model proposed in the previous sections to each
of the above libraries and will compare the results obtained in the presence of the
sorting routine that deals with the rotational ambiguity issues (Section 2.2.1) with
the results obtained in its absence. As expected, the discrimination rate improves in

a considerable fashion once the rotational ambiguity issues are out of the picture.

Library Construction

In order to construct the target library of these objects, we applied the target poles
shown in Tables A.1, A.2 and A.3 to the model given in (2.10). We then set all of
our expansion coefficients to be equal to one and used the model given in Equation
(2.8) to obtain the scattering characteristics of each object for 729 unique orientations
(given in Table 4.1).

The non-linear least squares optimization problem of (3.1) was then applied to
the scattering characteristics obtained above. This time, since we were trying to
construct a three-pole model (one pole per axis), we had to set ¢ in (2.10) to be equal
to three. In order to construct the feature library, our extracted effective poles were
applied to (3.2-3.3). The library results for the amorphous, sphere-like and pipe-like
Targets are shown in Tables 4.2, 4.3, 4.4 respectively.
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Target ID | Py with Pole Switching | P without Pole Switching
Al [153.96, 474.32, 349.29] [153.96, 474.32, 349.29]
[142.20, 457.22, 239.25] 142.20, 457.21, 239.25

| | |
| | |
[ A2 | [ ]
| Sl | [3527.40, 4546.90, 4898.60] | [4126.8, 5139.8, 6225.2]
| | [4326.80, 5139.80, 6225.20] | [3527.4, 4546.9, 4898.6]

52

Table 4.2: Simulated Data Pole Library for Amorphous Targets. All poles are in
units of Hz

Target ID ‘ P, with Pole Switching ‘ Py, without Pole Switching ‘

|

| Al [[210.67, 244.02, 448.03] | [209.05, 242.22, 443.1308] |
| A2 [[211.16, 247.31,377.80] | [211.16, 247.31, 377.79] |
| St | [5907.0,5885.0, 3908.0] | [5851.0, 5863.2, 3842.4] |
| S2 | [4008.6,3981.6, 2981.4] | [3983.3, 3992.8, 2958.9] |

Table 4.3: Simulated Data Pole Library for Pipe-Like Targets. All poles are in units
of Hz

Target ID | P, with Pole Switching without Pole Switching

| | B |
| A1l []264.90, 309.33, 358.81] | [297.53, 295.53, 302.58] |
| A2 [[228.77,280.03, 322.23] | [294.53, 296.47, 293.74] |
| S1 [ [3912.5,3914.4, 4007.3] | [4116.0, 4077.9, 4113.6] |
| S2 [ [3380.7, 3409.2, 3481.9] | [3505.1, 3492.2, 3.4807] |

Table 4.4: Simulated Data Pole Library for Sphere-Like Targets. All poles are in
units of Hz
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Effective Pole Distribution Plot for 3—inch Steel Targets  Effective Pole Distribution Plot for 6-inch Steel Targets
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Figure 4.1: Effective Pole Distribution for Amorphous Targets With Pole Switching.

The corresponding values of p; for each target are shown in the above tables.
The distribution of the effective poles for Aluminum and Steel amorphous, pipe-like
and sphere targets in the absence and presence of pole switching is shown in Figures
4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 respectively. Each point on the plot corresponds to
the (p7, pif7, p&!7) value computed from (3.1) for the iy term in the summation of
(2.10). As is evident, from the above tables as well as Figures, the pole characteristics
of the steel objects are quite distinct from those of the aluminum; however there is
very slight difference between the six and three inch versions of the same material.
Hence it is anticipated that we will be able to distinguish different types of targets
better than precise object. As is clear from the above tables and pictures, by using
the sorting routine we arrive at pole values that are closer to ideal (two almost equal

poles for pipe-like targets and three almost alike poles for sphere like targets) and

pole distributions that are more clustered (tighter distributions).

Classification

The classification results of the pipe-like example are summarized into the confusion

matrices of Tables 4.5 and 4.6. The element a;; of this matrix demonstrates the
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Figure 4.2: Effective Pole Distribution for Amorphous Targets Without Pole Switch-
ing.
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Figure 4.3: Effective Pole Distribution for Pipe-like Targets With Pole Switching.
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Figure 4.4: Effective Pole Distribution for Pipe-like Targets Without Pole Switching.
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Figure 4.5: Effective Pole Distribution for Sphere-like Targets With Pole Switching.
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Effective Pole Distribution Plot for 6-inch Steel Spheres  Effective Pole Distribution Plot for 3—inch Steel Spheres
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Figure 4.6: Effective Pole Distribution for Sphere-like Targets Without Pole Switch-
ing.

| A1 [A2 [s1
|A1]190]10 [0

[ S2
E
|A2]7 [193]0 O
K
E

st |0 |0 [123
|s2]0 |0 |73

7
27

Table 4.5: Classification Results for Monte Carlo Analysis without Pole Switching

number of times that object ¢ was the true target and object ;7 was detected. Direct
comparison of these martices verifies our claim that dealing with orientation ambiguity
will improve the discrimination rate.

The quantities given in this table were estimated via Monte Carlo analysis. Specif-
ically 200 separate runs were generated where we randomized over object type (four
classes per library), object location, orientation and noise. The bounds on the various
quantities are provided in Table 4.7. For each Monte Carlo run, the value of the asso-
ciated parameter was selected at random with the upper and lower limits respectively
set to the minimum and maximum bounds for that quantity.

In order to give the reader a sense of how the simulation results for each one of
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| A1 [A2 [S1 |[S2 |
|A1]184]16 [0 [0 |
[A2]9 [191]0 [0 |
|
|

ISt |0 o [79 [121
1S2]0 |0 [136]64

Table 4.6: Classification Results for Monte Carlo Analysis with Pole Switching

‘ Min z coordinate ‘ 0.25 m

‘ Max z coordinate ‘ 0.75 m

‘ Min y coordinate ‘ 0.25 m

|
|
|
‘ Max y coordinate ‘ 0.75 m ‘
‘ Min Depth ‘ —0.25 m ‘
‘ Max Depth ‘ —0.75 m ‘
‘ Min Euler Angle ‘ 0 rad ‘
‘ Max Euler Angle ‘ 2m rad ‘

Table 4.7: Bounds for Monte Carlo Analysis

43
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the above targets look like, here (Table 4.8) we present some of the results from the
Monte Carlo simulations. The quantities shown under “Highest Score” demonstrate
the corresponding ¢, (previously introduced in Section 3.3). “Next Highest” represent

the next highest score.

4.1.2 The Geophex Pipe Data

The data for our second sensing system comes from the GEM-3 data. The GEM-
3 sensor by Geophex has been used successfully in many environmental sites and
can detect small targets, such as UXO and landmines, providing the highest spatial
resolution of any extant technology. The current GEM-3 operates in a bandwidth
from 30 HZ to 24 KHz. The Geophex test site in Rayleigh, NC, specially designed
by Geophex Inc., is a 10 x 10 test site. This test site, shown in Figure 4.8, contains a
total of 21 metal pipes of various lengths and diameters. The descriptions and details
of these targets are shown in Table 4.9.

The ground truth data for this target library was obtained by the authors of [10] in
known positions and orientations using an actual GEM-3 sensor. In order to construct
the library, we used the aforementioned data to extract one pole per axis defined in
a best fit manner as the solution to the optimization problem of (3.1). We then
constructed our library of targets based on the first two moments of the extracted
effective pole vectors averaged over 6 (3.2-eq21). The mean pole parameters of these
objects are plotted in pole-space in Figure 4.7 and shown in Table 4.9. Each point
on the plot reflects the (p1, p2, p3) value computed from the corresponding target in
the library. The target library for these targets is shown in Table 4.1.2.

The scattering characteristics of the targets shown in Figure 4.8 was also acquired
by the authors of [10] at a line spacing of 25 c¢cm using the dead reckoning method.
The operator handheld the GEM-3 and walked steady toward an end of the line
marker while maintaining the sensor height at about 20 cm above the ground. The
GEM-3 collects about 8-10 data points per second, which results in a data interval
of about 15 c¢cm for a typical walk speed. The data obtained over each line is then

equally distributed along the line; assuming that the line was straight and the walking
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‘ True Target

‘ Estimated Target ‘ Pole Switching ‘ Smallest Distance ‘ Next ‘ Correct

| Al pipe-like | Al pipe-like | No | 2.1684 | 641.63 | Yes
| Al pipe-like | Al pipe-like | No | 13.520 | 716.98 | Yes
| A2 pipe-like | A2 pipe-like | No | 2.6561 | 974.80 | Yes
| A2 pipe-like | A2 pipe-like | No | 12.639 | 1224.1 | Yes
| Al pipe-like | Al pipe-like | Yes | 3.4853 | 5667.7 | Yes
| Al pipe-like | Al pipe-like | Yes | 44.266 | 4169.1 | Yes
| A2 pipe-like | A2 pipe-like | Yes | 6.7232 | 820.27 | Yes
| A2 pipe-like | A2 pipe-like | Yes | 30.658 | 877.48 | Yes
| S1 pipe-like | S1 pipe-like | No | 1.0000 | 370.00 | Yes
| S1 pipe-like | S2 pipe-like | No | 660.00 | 37434 | No
| S2 pipe-like | S1 pipe-like | No | 150.00 | 438.00 | No
| S2 pipe-like | S2 pipe-like | No | 1.0000 | 30.000 | Yes
| S1 pipe-like | S1 pipe-like | Yes | 1.0000 | 7267.0 | Yes
| S1 pipe-like | S2 pipe-like | Yes | 937.00 | 19307 [ No
| S2 pipe-like | S1 pipe-like | Yes | 113.00 | 4798.0 | No
| S2 pipe-like | S1 pipe-like | Yes | 122.00 [ 3214.0 | No
| Al sphere-like | Al sphere-like | No | 0.6887 | 553.93 | Yes
| Al sphere-like | Al sphere-like | No | 1.3566 | 504.53 | Yes
‘ A2 sphere-like ‘ A2 sphere-like ‘ No ‘ 1.1108 ‘ 4340.3 ‘ Yes
‘ A2 sphere-like ‘ A2 sphere-like ‘ No ‘ 1.7312 ‘ 1211.3 ‘ Yes
‘ A1 sphere-like ‘ A1 sphere-like ‘ Yes ‘ 6.4014 ‘ 800.94 ‘ Yes
‘ A1 sphere-like ‘ A1 sphere-like ‘ Yes ‘ 37.431 ‘ 577.50 ‘ Yes
| A2 sphere-like | A2 sphere-like [ Yes | 1.6481 | 523.08 | Yes
| A2 sphere-like | A2 sphere-like [ Yes | 31.142 | 598.78 | Yes
| S1 sphere-like | S1 sphere-like | No | 1.6000 | 7061.0 | Yes
‘ S1 sphere-like ‘ S2 sphere-like ‘ No ‘ 107.00 ‘ 808.00 ‘ No
‘ S2 sphere-like ‘ S1 sphere-like ‘ No ‘ 1.0000 ‘ 238.00 ‘ No
| S2 sphere-like | S2 sphere-like | No | 32.500 | 2113.0 | Yes
‘ S1 sphere-like ‘ S2 sphere-like ‘ Yes ‘ 430.00 ‘ 2020.0 ‘ No
| S1 sphere-like | S2 sphere-like [ Yes | 10.000 | 59540 | No
| S2 sphere-like | S2 sphere-like [ Yes | 47.000 | 158.00 | Yes
| S2 sphere-like | S2 sphere-like [ Yes | 43.000 | 2020.0 | Yes

Table 4.8: Classification Results for Monte Carlo Analysis
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Average Pole Values for Geophex Pipe Targets
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