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Abstract

The application of multiscale and stochastic techniques to the solution of a linearized inverse
scattering problem is presented. This approach allows for the explicit and easy handling of many
difficulties associated with problems of this type. Regularization is accomplished via the use of
a multiscale prior stochastic model which offers considerable flexibility for the incorporation of
prior knowledge and constraints. We use the relative error covariance matrix (RECM), introduced
in [28], as a tool for quantitatively evaluating the manner in which data contribute to the structure
of a reconstruction. Given a set of scattering experiments, the RECM is used for understanding
and analyzing the process of data fusion and allows us to define the space-varying optimal scale
for reconstruction as a function of the nature (resolution, quality, and distribution of observation
points) of the available measurement sets. Examples of our multiscale inversion algorithm are
presented using the Born approximation of an inverse electrical conductivity problem formulated
so as to illustrate many of the features associated with inverse scattering problems arising in fields
such as geophysical prospecting and medical imaging.
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1 Introduction

A common objective of many applied inverse problems is the desire to recover characteristics of a
medium based upon observations arising from the interaction of transmitted energy with the unknown
environment. Indeed, these inverse scattering problems are found in fields such as medical imaging,
nondestructive testing, oceanography, and remote sensing [2]. Here, we present and demonstrate a
methodology for the use of multiresolution and statistical signal processing concepts which provides
explicit and quantitative insight regarding many of the challenges associated with problems of this
type. First, the use of these methods yields a new and interesting means of regularizing the inverse
scattering problem. Additionally, the fact that the wavelet transform provides information regarding
the local behavior of a function over a variety of spatial scales leads to the development of a powerful
collection of tools for the analyses of sensor fusion and the tradeoff between reconstruction accuracy
and resolution. As it is our desire to focus exclusively upon these issues rather than the complexities
associated with the physical modeling of the problem, we limit our attention to problems where the first
Born approximation [5] is a valid model for the relationship between the quantity to be reconstructed
and the associated observations. In particular, we demonstrate our approach using a linearized inverse
electrical conductivity problem arising in geophysical exploration [21,33].

A common difficulty associated with many inverse scattering problems, including those of interest
in this paper, is that of ill-posedness [3,18] caused by the restriction of collected data to the boundaries
of the medium and the physics governing the propagation of radiation through a lossy environment.
Traditionally, this problem is overcome via the use of a regularization procedure which serves to stabi-
lize the original inverse problem so that a unique, physically plausible solution may be computed [18].
Also, a regularizer may be incorporated as a means of constraining the reconstruction to reflect prior
knowledge concerning the behavior of this function [18,26,36]. As discussed in [28], such regularization
techniques have direct interpretations as specifying prior statistical models on the phenomenon to be
imaged. This interpretation provides a basis for the calculations of error statistics which we find useful
in the consideration of questions such as the tradeoff between the resolution of the reconstruction and
the accuracy of the generated image, the value of additional measurement sets, etc. Moreover, the use
of the Born approximation leads to a [inear estimation problem where these statistics are dependent
only upon the model structure and not the actual data values [35]. Thus, all of the analysis tools
developed in this work can be implemented off-line so that we may examine the problem prior to the
collection of data.

In this paper, the benefits associated with a statistical perspective are further enhanced through
the use of a wavelet-based multiresolution framework. Here, we are led to an alternate method for
statistical regularization specified directly in the wavelet transform domain that has a number of at-
tractive properties. First, the class of multiresolution models available to us is extremely rich, allowing
us to capture a wide range of characteristics and constraints in our regularization scheme. In particu-
lar, we consider a highly useful class of multiscale prior models, the so-called fractal priors model. As
shown in [26], this model is related to the traditional smoothness-based regularizers and, with appro-
priately chosen parameters, produces estimates with similar characteristics. Moreover, Wornell [38]
has demonstrated that this model is useful for representing, self-similar stochastic processes possessing
1/ f-type power spectra of the type that is commonly used to describe natural phenomena [14,34] and
will therefore be appropriate for the conductivity inverse problem developed in Sections 2 and 4.

The direct scale-space form of these models facilitates the explicit analysis of the tradeoff between
the incorporation of fine scale detail in a reconstruction and the accuracy in the resulting estimate. In
particular, the relative error covariance matriz (RECM) introduced in [28] provides a rational basis for
dealing with resolution/accuracy tradeoffs and identifying the optimal scale to which the conductivity
may be reconstructed as a function of spatial position, the physics of the problem, the prior model,
and the spatial coverage and measurement quality of the data. Moreover, the RECM allows for an
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Experiment | Source Frequency Receiver
number Position | of source (Hz) | Array
1,2,3 T,M,B Jur = 398 Left
4,5,6 T,M,B Smm = 119 Left

7,8,9 T,M,B flo=6 Right

Table 1: Data set definitions for observation processes of interest in the paper. The abbreviations
in the column labeled “Source Position” correspond to the Top, Middle, and Bottom line sources in
Figure 1

explicit description of the information provided by the various data sources both individually and
collectively at each point in space and scale. Thus, we develop new, quantitative insight into the
issue of multisensor data fusion in that (a) we are able to determine those regions in space where
the information provided by several data sets together significantly exceeds that provided by any one
set individually and (b) we use the RECM to assess the incremental value of additional sources of
information.

In Section 2, we develop the physical model relating the observables to the conductivity field and
review common inversion methods for this problem. In Sections 3.1 and 3.2, we present an overview
of the discrete wavelet transform and a discussion of its application to the inverse scattering prob-
lem. Sections 3.3 and 3.4 respectively contain the description of the fractal multiresolution statistical
regularization formulation and the tools for RECM-based analysis. A set of examples illustrative of
the different facets of our approach are presented in Section 4. Conclusions and directions for further
investigation are given in Section 5.

2 An Inverse Electrical Conductivity Problem

2.1 A Linear Forward Model

We consider an inverse scattering problem illustrated in Figure 1 and arising in the context of geo-
physical exploration [21,33]. A set of three electromagnetic line-sources oriented perpendicularly to
the page emitting time-harmonic, cylindrical waves into a medium. The electrical properties of this
environment are decomposed into the sum of: (1) an infinite, known, and constant background and
(2) a conductivity anomaly, g, which varies as a function of the two variable z and z and which is
known to lie in region C' of the plane. The transmitted energy is scattered by g and the resulting
field is measured by one of the two arrays of point receivers. We consider inversions based upon the
data obtained from a number of scattering experiments the details of which are provided in Table 1.
Fach experiment produces a vector of measurements comprised of the scattered field (both in-phase
and quadrature components) observed over a single receiver array due to energy put into the medium
from one of the three sources operating at a particular frequency. In particular, the left receiver array
consists of 64 equally spaced elements extending from z = 4.8m to z = 95.2m all located at z = —0.2m.
Similarly, the right array is composed of 48 equally spaced elements from z = 14.9m to z = 82.2m all
located at x = 100.2m. The three sources are located along the line z = —0.1m at z = 25m, 50m, and
75m.

In this paper, we consider the situation in which the exact, nonlinear physical relationship between
the observed scattered fields and the conductivity perturbation g is represented accurately by the linear
relationship obtained through the use of the first Born approximation [5]. The conditions under which
such an approximation may be made are well documented in [5,22] and are assumed to hold for
the remainder of this work. For the i** data set, the model linking the data to to the conductivity
under the Born approximation takes the form of a first-kind Fredholm integral equation [20] which,
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Figure 1: Configuration of inverse conductivity problem. The electromagnetic sources (indicated by
the black circles) emit time-harmonic waves into a lossy medium which subsequently are scattered
by conductivity inhomogeneities located in the darkly shaded rectangle, C'. The secondary fields are
observed at one or both receiver arrays located on either vertical edge of region under investigation.
Based upon these observations, the objective of the inverse problem is the reconstruction of the
conductivity perturbation.

upon discretization using a method of moments (MOM) approach with a pulse basis [23], yields the
matrix-vector observation model

yi = Tig+ ni (1)
where y; is the vector of scattered field observations obtained along the receiver array, T; is the MOM
operator matrix associated with the Fredholm integral kernel, g is the vector containing the MOM
expansion coefficients of the conductivity perturbation and n; represents additive noise which is is
taken to be uncorrelated and stationary so that n; ~ (0,7;/) where [ is an appropriately sized identity
matrix!. We define the “stacked” system of data as

y=Tg+n (2)

where y = [y] yd y}f]T, with T and n defined accordingly. Thus, the objective of the inverse

!The notation  ~ (m, P) indicates that the random vector z has mean m and covariance matrix P.
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scattering problem is the determination of g given the data and the model in (2).

2.2 Regularized Inversion and Its Probabilistic Interpretation

A commonly used technique [18,25,36] for solving linear inverse problems of the form in (2) is to
choose the estimate of g according to
g = argmin ||y = Tg|[%1 + llgll7rp (3)
where ||z||3; = 2T M. The first term in (3) enforces fidelity to the data where the weighting R~
reflects the relative quality of each of the measurement sets as measured by the inverse of the noise
covariance while the second term can alternatively be viewed as a regularization term or as a prior
statistical model for g. In particular, as discussed in [26], this penalty term is equivalent to a prior
model of the form?
Lg=w w~ (0,1). (4)
Thus, the nature of the regularization or the prior knowledge is captured in the structure of the matrix
L. Common choices for this term are discussed in [3,8,24,31].
The optimization problem given by (3) admits a solution which defines § in terms of the normal
equations
(TTR'T+ L7L)g=TTRy. (5)
As discussed in [26], this solution, § can be interpreted as the linear least squares estimate (LLSE) of
g given the noisy measurements in (2) with n ~ (0,R) and the prior statistics for ¢ implied by (4),
i.e. ¢ is zero mean and has LT L as the inverse of its covariance. Furthermore, the estimation error
covariance matrix, i.e. the covariance of g — g is

Ellg-a)g- 97| = (T"TR'T+ LTL)". (6)

3 A Multiscale Representation of the Problem

We are interested in the use of estimation-theoretic methods for solving the linearized inverse scattering
problem in which the statistical quantities are examined and the inversion executed directly in the
wavelet transform domain. Hence, we begin this section with a brief overview of the discrete wavelet
transform (DWT). A more detailed description of this new signal processing tool including details
associated with its implementation and examples of its application may be found in [1,4,6,7,10-12,
16,17,37]. Subsequent to its introduction, we describe in greater depth the manner in which the DWT
can be employed in the context of the linearized inverse scattering problem.

3.1 A Wavelet Representation of ¢ and y

The fundamental idea behind the discrete wavelet transform is to decompose signal, here represented
as a vector, into a sequence of increasingly “coarser” representations while at the same time retaining
the information lost in moving from a fine to a coarse scale. In our case, we will be concerned both
with one and two dimensional signals where for simplicity, we first describe the wavelet representation
and notation for a 1D signal vector, a. Following the wavelet literature, the elements of this vector
are termed the finest scale scaling coefficients associate with a, and the vector a is denoted by a(M,)
indicating that these scaling coefficients represent a at scale M, where the integer M, reflects the
dimensionality of a.

Beginning with a(,), a coarser representation (that is, a coarser set of scaling coefficients),
a(M, — 1), is obtained by first passing a(M,) through a low pass, finite impulse response (FIR) filter,
[, and then decimating the filtered output by a factor of two. Thus, a(M,—1) is “coarser” than a(M,) in

2Note that we assume zero-mean in the prior model for g only for notational simplicity. There is no complexity added
if we incorporate a prior mean, e.g. in a penalty term of the form ||L(g — go)]?
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Figure 2: A sample lattice structure corresponding to a D4 wavelet transform. The finest scale is
taken as M, while the coarsest is L,. Also, the downward impact set associated with node matked by
an open square, is comprised of all nodes marked with the closed square.

that the filtering/downsampling procedure has removed the high frequency structure from the original
signal, and a(M, — 1) is half as long as a(M,). The detail lost in moving from a(M,) to a(M, — 1) is
extracted separately by first high pass filtering a(M,) with the FIR filter A and then downsampling by
two. This detail vector is denoted a(M, — 1). The filtering and decimation procedure is successively
applied to the coarsened versions of a resulting in a sequence of scaling coefficient vectors, a(m), and
a sequence of detail vectors, a(m), for m = M, — 1,..., L, where L, is the coarsest scale at which «
is represented.

As described extensively in [9,10,16], the filters [ and h are designed so that we may construct
an operator,® W, which relates the finest scale scaling coefficients, a = a(M,), to the coarsest scaling
coefficients, a(L, ), and the full set of detail coefficients a(m) for scales m = L,, L, +1, ..., M,. That
is, we may write

a=W,a (7)
where a = [a(M, — )T ... a(L,)" a(L,)"]T. Moreover, W, can be made to be orthonormal so that
the equality W2W, = I holds. We call the vector a the wavelet transform of a. The n'* element of
a(m) is denoted a(m,n) and is termed the n'* shift of a at scale m. Also, a(m,n) represents the n'"
element of the vector of scaling coefficients at scale m. In general, we use Roman letters to represent
vectors of approximation coefficients and their Greek counterparts for detail coefficients.

The relationships among the scale space component in the decomposition of a are graphically
represented in the form of a lattice as shown in Figure 2 for the case of a wavelet decomposition
with [(n) and h(n) of length 4. The coefficients at any scale all lie on a common horizontal line with
the finest scale coefficients at the bottom of the lattice and the coarsest at the top. Two nodes are
connected by an arc if and only if there is a linear relationship between the two as dictated by the
structure of the wavelet transform matrix W,. We say that a coarse scale node impacts a finer scale
one if there exists a strictly downward path on the lattice from the former to the latter. Finally, as
illustrated in Figure 2, we define the downward impact set, D(m,n) associated with node (m,n), as
the set of finest scale nodes which (m,n) impacts.

3We choose to subscript the wavelet transform operator here as W, to make explicit that this is the transform for a.
We may (and in fact will) use different wavelet transforms for the different variables.
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The wavelet decomposition of the scaling coefficients of a two dimension function is obtained by
considering a as a matrix and applying one wavelet transform, W, ., to the columns and a second
wavelet transform, W, ;, to the rows. We use W, to represent the composition of the operators W, ,
and W, , and write

a=Wea =W, .aW ,.
Furthermore, it is easily shown that WW, = I. As in the 1D case, we denote a particular element of
a by a(m,n). Here, we understand m and n to be two-vectors indexing the scales and shifts in the z
and z directions, i.e. m = [m, m,]T and n = [n, 1]’ respectively and define downward impact sets
in the same manner as was the case in 1D.

3.2 A Multiscale Inversion Problem

Using the methods in Section 3.1 we define orthonormal, discrete wavelet transform operators W; and
W, which transform the measurement vectors, y; and the discretized conductivity field, g, into their
respective wavelet decompositions:

ni = Wiyi and 7 =Wgyg.
In our analysis of (1), we use W; and W, to move from physical to scale space via

ni = Wiyi = (WITWV;)(W,g9) + Wini = 07 + ;. (8)
Finally, the wavelet-domain stacked system is
n=0y+v (9)

with n = [pf 7 ...9E]T and © and v are defined accordingly.

Analogously to Section 2.2, we define a linear least squares estimation problem in the wavelet
transform domain. Specifically, we wish to reconstruct 7 based on the prior model v ~ (0, F),
together with the noisy measurements (9). Thus, the LLSE, 4, is

¥ = argmin [ — 077 + 1[5 (10)
so that 4 satisfies normal equations of the form
(TR0 + Py =0TR 1y (11)
and the corresponding error-covariance matrix is jgiven bjy
P=E[(y-9)(y-9)"=(0 RO+ )" (12)

Comparing (3), (5), and (6) to Egs. (10), (11), and (12), we see that the wavelet transformation has
left us with a formulation of exactly the same structure as we had originally. The advantages of this
transformation come from two important facts. First, as we will see in Section 3.3, a specific diagonal
choice for PO_1 implies a smoothness penalty (or equivalently a fractal prior model) analogous to that
captured by LT L in (3), (5), and (6) when L is a differential operator while different choices for the
diagonal matrix £} I allow us additional flexibility to capture a rich variety of other regularization
objectives or prior models. Second, as discussed in Section 3.4, the use of these prior models is
instrumental in obtaining a great deal of insight into issues associated with the manner in which the
information embedded in the data impacts the structure of the reconstructed conductivity field.

3.3 Multiscale Prior Models

A key component in our formulation of the inverse problem is the use of a multiscale stochastic model
for g to regularize the inversion and to capture prior information. To motivate the particular choice
of prior model used here, consider the case of a one dimensional function whose covariance matrix
is (LTL)~! with L representing first order differentiation. This implies that g is a Brownian motion
satisfying Lg = w with w ~ (0,7). Work by Wornell and others [15,32] has demonstrated that
Brownian motions and other related fractal processes can be closely approximated via a statistical
model in which the wavelet and coarsest scale scaling coefficients of g are independent and distributed

according to
y(m, ng ~ EO, K22 gl3ag
g(L97n ~ OapLg)- 13b
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Here, x% controls the overall magnitude of the process and the parameter yu determines the fractal

structure of sample paths. The case g = 0, corresponds to g being white noise while as p increases,
the sample paths of g show greater long range correlation and smoothness. The scalar pr,, is chosen
to be sufficiently large number so as to avoid any bias in the estimator of the low frequency structure
of g. Finally, for these models, the matrix Py in (11) is diagonal with nonzero entries corresponding
to the variances associated with each component of .

For the case where g is a two dimensional function, we consider the separable representation with

3(m,m) ~ (0, k2227 Garma )

for Ly, < my < My, —1and L,, < m, < M,, — 1. For my = L, we take y(m,n) ~
(07pLg7I532—(#zmz)) with analogous results holding when m, = L, ..

Clearly, other choices of statistics for the components of v may be appropriate in specific appli-
cations, and our methodology can readily accommodate these. The choice we have made, leading
to a 1/ f-like fractal model, is useful both in its ability to model natural phenomena [14,34,38] and
because the successively decreasing variances of the fine scale wavelet coefficients control the incor-
poration of high frequency information into the reconstruction. As will be seen in Section 4, this is
precisely the type of regularization required for the inverse conductivity problem. Additionally, we
observe that the methods presented in the paper are not dependent upon a model with the variance
structure of (13); rather, all that is required is the uncorrelated property of the wavelet coefficients
(i.e. a diagonal F;.) In fact, work performed in [6,7,13,16,26] indicates that a rich variety of stochastic
phenomena can be described using more general wavelet-type models with uncorrelated coefficients
thereby demonstrating that the methods presented in this paper are applicable in a wide range of
circumstances.

3.4 The Relative Error Covariance Matrix

A key advantage of the use of statistical estimation techniques is the ability to produce not only the
estimate of v but also an indication as to the quality of this reconstruction in the form of the error-
covariance matrix P defined in (12). While the information contained in P is certainly important
for evaluating the absolute level of uncertainty associated with the estimator, in many cases, we have
some prior level of confidence in our knowledge of v and we seek to comprehend how the inclusion of
additional data in our estimate of v alters our uncertainty relative to this already established level.
In this section we define the relative error covariance matriz (RECM) and demonstrate its utility as
a tool for capturing such changes in uncertainty. The analysis of the RECM in the wavelet domain
is especially interesting because it allows for a localized characterization of the manner in which data
impact a reconstruction.

The definition of the relative covariance matrix is motivated by the definition of the relative
difference between two scalars @ and b given by

b
1- - (14)

a
The matrix analog to (14) to be considered in this paper is as follows. Let {1, ..., K} denote the
index set for the observations sets y;. For any subset A of {1, ..., K} let P4 denote the estimation

error covariance as in (12) resulting from the estimation of v based upon the data sets corresponding
to A (i.e. {y;|i € A}) where for A = {0}, the empty set, Py = Fo, the prior covariance. The RECM
provides a measure of the relative quality of the estimate based upon data in two sets A and B and
is given by

T/2

(A, B)=1- P, *pgr;'/? (15)

where PX/Q = (P12,
The definition of II(A, B) in (15) possesses many useful properties. First, the structure of the
RECM is dependent upon the model relating the data to the observations (i.e. ®, R, and F,) but

not upon the actual values of the data. Thus, II(A, B) may be computed off-line and the associated
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analysis performed prior to the collection of data. Second, like the error-covariance matrix,the RECM
is symmetric. Also if T[(A, B) represents the relative error covariance matrix for the estimation of
g, i.e. the physical-space representation of the conductivity, then this is directly computable from
II( A, B) using the wavelet transform

(A, B) = WITI(A, B)W,.

g
Moreover, it is not difficult to show that II[( A, B) is normalized to the extent that for A C B,

0<II(A,B)<I.
We note that in this case II(A,B) = 0 iff P = P4 which indicates no additional reduction in
uncertainty results from augmenting A with the data sets inin B— A. Also, II(A, B) = I if and only if
Pp = 0i.e. only when all uncertainty in 7 has been removed when we use the additional information
in B relative to A.

In the event P4 is diagonal, the diagonal components of 1I( A, B) are particularly easy to interpret.
Let 0?(A) be the error-variance of the i component of v arising from an estimate based upon data
from set A. Then, the i component of the diagonal of T[( A, B) is just

1 - a}(B)/of(A) (16)
which is nothing more than the relative size difference of the error-variance in the i** component of v
based upon data from sets A and B. Note that the diagonal condition of P4 is met in this paper when
P4 = Py, since the wavelet and scaling coefficients are uncorrelated for the fractal 1/f priors used
here. Thus, the diagonal elements of T[({(}, B) represent the decrease in uncertainty due to the data
from set B relative to the prior model. As II({}}, B) will be of interest frequently in the remainder
of this work, we shall abuse notation and write II({0}, B) as II( B) in cases when there will be be no
confusion. Finally, the expression for II( B) simplifies from (15) to
(B)=1- P, "*(0LR5' 05+ ;') ' '/? (17)
where ®p and Rp are the system matrix and noise covariance matrix corresponding to an inversion
based upon data sets from B and Pg = (O5R5'@p+ Py ')~! is the error-covariance matrix associated
with this estimate.

The quantity II( A, B) represents a useful tool for quantitatively analyzing the relationship between
the characteristics of the data and the structure of the estimate 4. Consider, for example, the case in
which we wish to assess the overall value of a collection of observation vectors. Letting II]*( B) denote
the diagonal element of the matrix I[( B) corresponding to the wavelet coefficient at scale/shift (m, n)?
provides a natural way to define m*(j), the appropriate level of detail which should be included in a
reconstruction of g(M,) at shift j. For each location j, we can examine the quality of the information
present at this point and at all coarser scale “ancestors” of j. Using the terminology introduced
in Section 3.1, we say that the data support a reconstruction of g(M,, ) at scale m if there exists
some node in the wavelet lattice of ¢ at scale m which (1) impacts g(M,,j) (i.e. for some shift n,
g(M,,j) € D(m,n)) so that (m,n) is an ancestor of (M,,7) and (2) for which the data provide a
sufficiently large quantity of information regarding the structure of g at node (m,n) (i.e. II"*(B) is
in some sense large). Clearly, m*(j) is the finest scale for which a node (m,n) may be found that
satisfies the above two criteria. For the problems considered here, the diagonal structure of Py imply
that 0 < II7*(B) < 1 so that determining whether II”'(B) is sufficiently large is accomplished by
comparing this quantity to some threshold, 7, between zero and one. Additionally, we are led to

define 4., a truncated version of 4, as follows:

. 0 (B)<r

el = [(Y](m,n) otherwise (18)
where [’y](mm) is the component in the vector 4 at scale m and shift n. Thus, 4, is obtained by selecting
a value for the threshold 7 between zero and one, determining 4 from (11), and then using (18) to zero

all elements in 4 for which the associated value of II7" is less than 7. Defining 4, in this way ensures

*At scale m = L, we are interested in both the wavelet and scaling coefficients of g. To avoid ambiguity, we use the

notation H,ng to refer to the RECM information for the coarsest scaling coefficient of g at shift n.
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| Parameter | Value |
Wayvelet Daubechies 6-tap

M, 6
L, 3
1 1
o’ 1

PL, 0.5

SN R? for Dy 200

SN R? for Dy 400

Background conductivity 1S/m

Table 2: Parameters for radial profiling problem.

that ¢, = W74, is in fact a reconstruction of g which at each shift n contains detail information at
scales no finer than m*(n).

4 Examples

4.1 A One Dimensional, Radial Profiling Problem

We begin by considering a radial profiling problem similar to that analyzed by Habashy at. alin [19,21].
Here, g is assumed to vary only in the horizontal direction in Figure 1 with the specific true conductivity
profile g to be used in this example shown as the dotted line in Figure 3. The numerical values
specifying the prior model and the parameters describing the background medium are given in Table
2. In this work, the signal to noise ratio of the vector n; = ©;7 + v; with v; ~ (0,72) and v ~ (0, Pp)

is defined as
Power per pixel in®;y tr(0; P07)

Power per pixel in v; N,r?

SN R} =
9"

where N, is the length of the vector v and ¢r is the trace operation. In this example we explore
inversions using data from the following three different combinations of the high and middle frequency
scattering experiments described in Table 1:

1. Dyr: Data from experiments 1-3 in Table 1.
2. Dyip: Data from experiments 4—6 in Table 1.
3. DHLMID: Data from DypU Dy

In Figure 3, the estimate obtained using data sets 1-6, §( Durmip) (solid line), is compared with
the true function. We can resolve the left edge and to a lesser extent the magnitude of the conductivity
anomaly located closest to the origin; however, the information provided by Dyymip is insufficient to
obtain an accurate estimate of the right edge of this structure or any but the coarsest information
regarding the rightmost block. This situation is best explained by appealing to the physics of the
problem where the propagation and associated dissipation of energy through a lossy medium implies
that the ability to resolve the structure of g should decay radially from the borehole [5,27]. To
understanding how Dyr and Dyp individually contribute information to this estimate, §( Dyip) and
§(Dyr) are also shown in Figure 3 as the dashed and dot-dashed lines respectively. Again, we see
that the data from the high and middle frequency sources provide information about g close to z = 0.
Further from the origin, §(Durmm) follows neither §(Dyr) nor §(Dwmip) so that some level of data
fusion must be taking place in that the presence of both data sets yields an estimate of g over this
region which is substantially different from that obtained from either set alone.

A more accurate assessment of the manner in which this information is merged is obtained in
Figure 4 via the analysis of the diagonal elements of the relative error covariance matrices, II(B)



Accepted for publication in IEEE Trans. Geoscience and Remote Sensing 11

3

Conductivity (S/m)
- N

o

1 20 A0 60 80 100

Distance from borehole

Figure 3: Estimates of g using various combinations of high and middle frequency data. Dotted line
= g, solid line = §(Durmip), dashed line = §(Dwmip), dot-dashed line = §(Dyy). In all cases, the
measurements provide sufficient information to reconstruct only those features of g near x = 0. At
points further from the origin, only the coarsest scale characteristics of g are resolvable. Moreover,
as §(Durmip) is significantly different from both §(Dur) and §(Dyp) we conclude that some type of
sensor fusion is occurring over the region far from z = 0.

for B € {Du1, Dvmimp, Duimin}. As there is strictly more information in Dyypmip, than in either
Dyr or Dyip alone, the elements from II( Dyrvmp) must lie above the other two. In those cases
where II”"(Dyrmip) is significantly larger than both II7'(Dyr) and II'(Dmip), we say that active
sensor fusion is taking place. In Figure 4(a), this is the case for the estimates of elements 5 — 8 of
g(L,). Examination of Figures 4(b)—(d) shows that active sensor fusion is occurring with respect to
the estimates of the wavelet coefficients of g near the origin at scales 3, 4, and 6. We have omitted
the RECM plot at scale 5 as no such fusion occurs at that scale in this example. Finally, the fact
that IIJ" is close to zero at all scales and for all wavelet coefficients corresponding to shifts far from
z = 0 indicates that the information in Dy and Dyp either alone or in combination is insufficient to
reconstruct any detail in g over this domain.

In Figure 5(a), m*(j), the optimal scale as defined in Section 3.4 is plotted for 7 = 0.05 (solid
line) and 7 = 0.5 (dashed line) using data from Dyrmm. At 7 = 0.05, we see that as z grows large,
the optimal scale drops from 6 to 3 in a manner quite consistent with the intuition developed by
examination of the estimates. The 7 = 0.50, case shows similar characteristics; however, the more
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Figure 4: Diagonal elements of relative error covariances for three radial profiling experiments. In all
cases, the symbol “+” corresponds to II( Dyrmimp ), “o” to II(Dyy) and “X” to I(Dyvp). From (a) we
see a significant level of sensor fusion taking place with respect to the estimates of the coarsest scale
scaling coefficients far from the origin = 0. From (b)—(d), we conclude that accurate reconstruction
of the detail components of g is limited to shifts close to = 0.

stringent threshold results in a more rapid decrease in scale as a function of distance. Finally, in
Figure 5(b) the truncated estimates, §.(Dnimimn), defined by (18), are compared against §( Dyrmm)
for 7 = 0.05 and 7 = 0.50 respectively showing little difference among the three.

The relative error covariance matrix also represents a useful tool for analyzing the incremental
benefits associated with the addition of data to an already-formed estimate. In Figure 6, the diagonal
elements of II( Dyr, Darmip) (i.e. the relative variance reduction information associated with the ad-
dition of middle frequency data to an estimate based upon high frequency information) are displayed
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| Parameter | Value I Parameter Value |
z Wavelet Daubechies 6-tap x Wavelet Daubechies 2-tap
M, . 4 M, . 2
Ly, . 2 Ly 1
Mz 1 Ha 1
o? 1 o2 1
PLg,» \/5 PLg,x \/§
SN R? for Dyt 250 SN R? for Dy 500
SN R? for Do 1000 Background conductivity 1S/m

Table 3: Parameters for cross-well tomography problem

for the coarsest scaling coefficients and the finest wavelet coefficients®. These plots illustrate that the
middle frequency data sets contribute new information to a high frequency estimate at the coarsest
scale away from the origin and at the finest scale closest to the origin which is in accord with the plots
in Figure 3.

From this example, we see that the relative error covariance matrix provides new and useful insight
into multisensor data fusion. Specifically, one would conclude that the data from the high and middle
frequency data sets are useful for the recovery of the conductivity detail structure near the origin;
however, additional observations are required to recover all but the coarsest scale information far from
z = 0. The RECM analysis also suggests that the original parameterization of g involving 128 degrees
of freedom is excessive. Rather, at a threshold of 7 = 0.50, the data dictate that only 9 elements of v
(the nonzero elements of 9g.50( Du1min)) can be accurately recovered representing a 93% reduction in
complexity of the inverse problem. Although not considered in this paper, the reduction in complexity
might be realized in an inversion algorithm where we compute only those nine coefficients rather than
following the procedure in (18) where we first computed all 128 elements of 4 and then set all but nine
to zero. In particular, we observe that just such an approach is considered in [27,29] in the context of
a nonlinear inverse scattering problem.

4.2 A Two-Dimensional, Cross-Well Tomography Problem

In this example we consider improving resolution near the right side of the conductivity anomaly by
augmenting Dyrmip with data sets 9-12 from Table 1 which are generated by low frequency sources
located near the left side of the region of interest and measured by the receiver array located at right
side. We denote this addition collection of observations Dy and note that examination of the structure
of the integral kernels for this problem leads to the observation that the low frequency observations
are most sensitive to variations in g near the left and right vertical edges with little resolution in the
center of region C' [27]. Additionally, for this problem, g varies both in the z and the z directions with
the true conductivity anomaly to be reconstructed in this example displayed in Figure 7(a) and the
parameter values needed for this experiment given in Table 3.

In Figure 7, we see that the addition of the low-frequency, cross-well data do significantly im-
prove the resolution on the right side of C'. Figure 7(b) (resp. (c)) is a display of §(Durmip) (resp.
§(Durmin.Lo)). Given only the high and medium frequency information, the anomaly near z = 100
is almost completely undetected; however, the addition of the low frequency data clearly improves
the ability to resolve this second structure. While both conductivity perturbations are reflected in

5In this case, because Pa is not in general diagonal, the diagonal elements of II(A, B) do not have the exact interpre-
tation as the relative size difference of the error variance of 4 based upon data from A and B; however the size of these
diagonal components of II{ A, B) still provides useful insight as to the scales and shifts where the observations from set
B provide information not found in the data from set A.
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the estimates of ¢, the nature of the physics of the problem allows for only a comparatively coarse-
scale or blurred reconstruction near the right vertical edge of the anomaly. In general, for inverse
scattering problems of the type considered here, one requires data at more frequencies and/or from
many source/receiver combinations in order to obtain significantly higher resolution estimates of such
anomalies.

Because this is a fully two dimensional example, we have the ability to use the RECM for the
analysis of sensor fusion issues in both horizontal and vertical directions. In Figure 8, the finest scales
supported in the reconstruction in both the x and z directions are plotted as a function of position for
7 = 0.50 for the two cases where data from Dyrmm and Durmip,Lo respectively are available for the
reconstruction. From Figure 8(a)-(b) we see that given only high and middle frequency information,
detail in the reconstruction is limited to the region near 2 = 0 in both 2 and 2z which is consistent
with the actual estimate in Figure 7(a). Figure 8(c)-(d) shows that the addition of the low-frequency
measurements significantly raises the level of detail in the reconstruction over the right half of the
region of interest which is in accord with the intuition provided by the structure of the kernel functions
associated with these observations. Specifically, we note that the minimum level of z oriented detail
increases from 2 in Figure 8(a) to 3 in Figure 8(c). Moreover, the finest scale of horizontal detail
moves from 1 to 2 in the area near the right vertical edge.

In Figure 7(d), go.s(Durmmp,Lo), the truncated estimate of g defined in (18), is plotted. Here
§o.5(Durmip,1.o), is composed of only 75 nonzero wavelet coefficients as opposed to the 256 in the
original corresponding to a 70% reduction in inversion complexity. Visual comparison of this recon-
struction with the full, untruncated estimate indicates that all of the features captured in the optimal
estimate are in fact present in the truncated version as well.

To demonstrate the flexibility of our multiscale prior modeling structure we observe that given
the sets of data considered in this experiment, more detail can be obtained on the right side of the
conductivity anomaly by changing a limited portion of the matrix Py. Indeed, because each wavelet
coefficient in v reflects our prior knowledge of g over a limited area, we have extensive flexibility for
choosing the spatial scale and physical location over which we modify the impact of the data on the
reconstruction. To explore the possibility of improving the resolution near the rectangular structure
located close to the right edge of €', we increase the variances in Fy associated only with the finest
scale wavelet coefficients that impact ¢ near the location of this perturbation. The result is shown in
Figure 9 where we clearly have an improved picture as to the true nature of g near the left side of the
region of interest. Note that the prior model in this case is not strictly of the 1/f variety as we have
manually altered the variances of a small number of the coefficients in 7. A natural extension of this
exercise would be the development of automated methods for jointly determining the “appropriate”
variance structure of the prior model and the estimate of the conductivity.

5 Conclusion and Future Work

In this paper, we have presented an approach to the solution of the inverse scattering problem in
the Born approximation based upon techniques drawn from the fields of multiscale modeling and
statistical estimation. We pose the problem directly in the wavelet-transform domain and use a linear
least squares estimator for the inversion algorithm and as the basis for the associated analysis methods.
A prior statistical model of v, the wavelet transform of the conductivity field, serves to regularize the
problem. For much of the paper, we used a 1/ f-like fractal model that is often posited as a meaningful
description of natural phenomena; however as discussed in [7,13,16,26] and demonstrated in Section
4.2, the utility of multiscale prior models extend beyond this particular class.

Our approach makes extensive use of scale-space in the analysis of linear inverse problems. The
relative error covariance matriz (RECM) represents a quantitative tool for understanding the various
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ways in which data from a multitude of sensors contribute to the final reconstruction of g. We
demonstrate a method for determining the optimal level of detail to include in the estimate of g as
a function of spatial location. The RECM explicitly provides a means of describing multisensor data
fusion and identifying those degrees of freedom in v for the data contribute useful information. In this
paper, we have made use of this information by first estimating all of 4 and then setting to zero those
coefficients for which the RECM dictates there should be little information. In [27,29], we consider
an alternate approach in which the RECM-based information is used directly in the inversion routine
to lower the computational complexity of the overall estimation procedure.

Although not considered extensively in this work, the inversion algorithms admit highly efficient
implementations. As discussed in [1,4], wavelet transforms of many operator matrices, including those
arising in the problem studied here, contain very few significant elements so that zeroing the remainder
lead to sparse matrices ©;. The sparsity of ©®; combined with the diagonal structure of Py (which
is obtained using any uncorrelated multiscale model) imply that highly efficient, iterative algorithms
such as LSQR [30] can be used to solve the normal equations. In [27], we consider the development of
a modified form of LSQR. designed for the efficient and stable computation of 4 as well as arbitrary
elements in the error covariance and relative error covariance matrices.
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Figure 5: Maps of the optimal scale of reconstruction and the associated estimates of g for threshold
values 7 € {0.05, 0.50}. These illustrations provide a quantitative verification of the intuition that
resolution in the inversion should drop as a function of distance from the origin. The plots of §
against o o5 and §o.50 respectively show that little is lost in reducing the complexity of the model by
eliminating degrees of freedom about which the data provides little or no information.
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Figure 6: The incremental reduction in uncertainty obtained by adding data from the middle frequency
observation to an estimate based upon the high frequency measurement sources. In accordance with
Figure 4(a) we see significant benefits associated with determination of both the coarsest scale structure
of g far from the origin as well as the finest scale structure closest to z = 0.
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Figure 8: Maps of the optimal scale of reconstruction for the z and =z components of detail for the
threshold value 7 = 0.5. The maps verify of the intuition that the low-frequency, cross-well data
provides improved resolution especially in the vicinity of the right vertical edge.
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Figure 9: Estimates of g using high, middle and low frequency data. Here, the variances associated
with the fine scale wavelet coefficients governing the behavior of g near the anomaly on the right side
have been increased so as to allow more information from the data to be reflected in the estimate.



