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Abstract

In this paper we present an algorithm for the detection and localization of an unknown
number of objects present in the near field of a linear receiver array. To overcome the nonplanar
nature of the wavefield over the array, the full array is divided into a collection of sub-arrays, such
that the scattered fields from objects are locally planar at each sub-array. Using the MUSIC
algorithm, directions of arrival (DOA) of locally planar waves at each sub-array are found.
By triangulating these DOAs, a set of crossings, condensed around expected object locations,
are obtained. To process this spatial crossing pattern, we develop a statistical model for the
distribution of these crossings and employ hypothesis testing techniques to identify a collection
of small windows likely to contain targets. Finally, the results of the hypothesis tests are used
to estimate the number and locations of the targets. Using simulated data, we demonstrate
usefulness and performance of this approach for typical background electrical properties and
signal to noise ratios.
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1 Introduction

The problem of detection and localization of objects in the near field of an antenna array has
arisen in a number of application areas in recent years. For example, in the area of landmine
remediation, the goal is to find relatively small, metallic and plastic objects located in a lossy
medium (the soil) but a few centimeters from the transmitters and receivers. Alternatively, for
purposes of environmental remediation, the targets of interest tend to be larger (eg. steel metal
drums filled with hazardous waste), and located on the order of meters from the array. Although
several near-field array processing methods have been reported in the literature, their use has been
restricted to the localization of independent sources radiating spherical waves [1-3] and are thus
not suited to the problem of interest in this work: the detection and localization of extended targets
illuminated by an incident plane wave and positioned such that multiple scattering effects cannot
be ignored.

The problem of target detection and localization for these and related applications often is
addressed by using the data to produce a pixel-by-pixel map of the region near the array and then
post-processing the image to localize the objects [4—8]. Since the initial image generation represents
an ill-posed inverse problem, a stable solution requires the use of a regularization method [9].
Unfortunately, typical regularizers result in smooth images thereby making the detection all the
more difficult. In this paper, we develop an alternate approach to target detection and localization
which bypasses this difficult step of image generation and is aimed at extracting the number of
objects and their locations more directly from the data.

Of particular interest is the measurement geometry shown in Fig. 1. A plane wave illuminates
the region of interest assumed to be a homogeneous, possibly lossy medium containing one or

more targets located in the near field of an array of receivers. The inherent array structure of



the measurement geometry suggests that the high resolution array processing techniques [10,11]
quite popular in the signal processing community would be well suited for the near-field detection
problem. Adapting such methods to the problem of interest here presents a collection of interesting
challenges. First, these array processing techniques typically assume that the sources are infinitely
far away so that the waveform received on the array is planar. For our problem, since the objects
are located relatively close to the receiver array, this key assumption is not valid. Second, for such
near-field objects both range as well as the direction of arrival has to be determined in order to
localize the object. Finally, a problem common to both the near-field and far-field array processing
algorithms is that the number of incident waveforms/targets is not known a priori.

To deal with the nonplanar nature of the wavefronts over the array, we partition the receiver
array into sub-arrays, such that the scattered field is locally planar at each sub-array. Then,
using high resolution array processing techniques, each sub-array identifies a single direction of
arrival (DOA) corresponding to the most dominant scatterer in the vicinity of that sub-array.
The localization of the objects in terms of their ranges and bearings is achieved by triangulating
the directions of arrival from all subarrays which in turn results in a crossing pattern of DOA
intersections. Examination of typical crossing structures reveals that there are two distinct patterns
where the crossings are either dense or sparse. Dense crossing regions clearly indicate object
locations and are distinguished from “background” regions where the crossings are sparse. The
problem of object detection and localization then is reduced to the processing of the crossings
obtained from our triangulation procedure.

For this purpose, we introduce a simple yet accurate stochastic model describing the spatial
distribution of DOA crossings. Such modeling is warranted for two reasons. First, due to the noise

in the data, the DOA intersection points are inherently randomly distributed in the plane. Second,



such modeling forms a solid basis for algorithm development and quantitative performance analysis
in the form of detection and false alarm rates.

In this work, we model the two classes of crossings (dense vs. sparse) using a pair of spatial
Poisson distributions [12]. The Poisson model in the target region has a large rate parameter
while that of the background region is considerably smaller. Based on these target and background
models, we develop a hypothesis testing technique for the joint estimation of the rate parameters
and the localization of dense crossing regions which indicate the existence of targets. Simple post-
processing of the hypothesis testing results provides both the number of targets and estimates of
their locations. Finally, we verify that the a Poisson model is in fact a rather accurate description
of the spatial distribution of crossings.

We demonstrate the performance of this approach for the detection and localization of multiple
mine-like and drum-like targets located in the near field of the receiver array. For mine-like targets
relative positions of the objects are changed to see the effect of object geometry on detectability.
We show that the detectability improves, and false alarm rate decreases as the objects are located
far apart. For drum-like targets, we demonstrate the effect of relative depth as well as relative
distance between objects on detectability.

The remainder of this paper is organized as follows. In Section 2 we describe the models and
notation used in the paper, in Section 3 we introduce the detection algorithm and hypothesis
testing. Examples depicting performance of the algorithm are given in Section 4 and in Section 5

we will draw conclusions and suggest future work.



2 Background

The multi, bi-static measurement scheme depicted in Fig. 1 is considered in this paper. A
perpendicularly polarized plane wave, F;(r), impinges on a collection of objects in a known back-
ground, inducing surface and volume currents which in turn radiate a scattered field, F(r)!. The
scattered electric field from the targets is spatially sampled by a uniformly spaced, N-element linear

array with isotropic receiver characteristics. The measured data at the sensor outputs are:

x = Eq + n, (1)
where Eg = [E,(r1) Fs(r2)--- Ey(rn)]T, rj is the vector from the origin to the ith receiver location

and n is zero mean, white Gaussian noise.

The structure of the receivers in Fig. 1 coupled with the underlying problem of target detection
suggests the use of array processing methods for localizing buried targets. In this paper we con-
sider the MUSIC (Multiple Signal Classification) [13] algorithm. Traditionally, MUSIC and other
direction finding techniques are used to determine directions of arrival (DOA) of plane waves to a
receiver array. Here, we adapt MUSIC to the near-field detection problem.

To make use of the MUSIC algorithm, the experiment as represented by (1) is repeated many
times to determine the statistics of x. In particular, if L scattering experiments are performed,
then the maximum likelihood estimate of the spatLial autocovariance matrix R is given by [10]:

R = % IZ; xxf! (2)
where x; is the data measured at the [th experimen_t, and superscript H denotes conjugate transpose.
Then, the eigenspace decomposition of R yields [10]:

R = U,A, 01 4+ U, [62101 (3)

where U, is the estimated signal subspace matrix and contains the M signal eigenvectors, and U,

TAll analysis is in frequency domain, thus the e’“* dependence is suppressed



is the estimated noise subspace matrix and contains N — M noise eigenvectors of multiple noise

eigenvalue 62. The projection operator onto the noise subspace is defined as [10]:
I, = 0,07, (4)
Assuming plane wave incidence on the array, the idea behind MUSIC is that the reciprocal of
the “distance” between the estimated noise subspace and the true noise subspace has sharp peaks

around the DOAs. Thus, if one plots this quantity versus all possible angles, estimates of DOAs

can be determined by the maxima of the resulting angular spectrum which is given by [10]:

P 0) = ——=——"— 5
music(6) a(0)T,a(0) (5)
where a(f) = [1 e/fdcost  gi2fdoost . pj(N-1)fdcosf]T ig the direction vector, § is the wave

number in the medium of propagation, and d is the distance between two receivers.

As stated previously this formulation of the array processing problem assumes that the radiator
is infinitely distant so that the scattered field has planar wavefronts and the elements of the direction
vector a(f) are complex exponentials. However for the problems of interest here, the receivers are
in the near-field region of the radiating sources, resulting in non-planar wavefronts. Additionally,
the target localization problem not only requires the DOA relative to the array but also the range

of the target from a point on the array (eg. the leftmost element.)

3 Algorithm

A key element of the work in this paper is the development of a sub-array processing method for
detection of multiple objects in the near field of an array. In a previous work [14], we have examined
such a technique for detection and localization of single metallic and dielectric objects. As illustrated
in Fig. 2 (and as is generally the case), the localization problem in [14] is straightforward since
typically all crossings are densely packed within the radius of the object. Therefore, the location

of the object can be inferred quite easily. For multiple objects, however, the crossing pattern is



quite complicated, since DOAs of different objects create unwanted crossings as shown in Fig. 3.
The clusters of object crossings are embedded in this unwanted background crossings, and have to
be extracted carefully. Thus, in this work, we concentrate exclusively on the problem of multiple
object detection.

Before introducing the details of our approach, we want to briefly describe the algorithm with

the help of flow chart in Fig. 4. The algorithm proceeds as follows:

1. Sub-array processing: At this stage of the algorithm, we partition the receiver array so
that the observed scattered field is locally planar at each sub-array. The directions of arrival
(DOAs) are found using MUSIC as if planar waves are impinging on the sub-arrays. The
DOAs are then triangulated to obtain the crossing pattern. This stage of the algorithm is re-
peated several times for plane waves at different temporal frequencies to improve performance
and resolution. The crossing patterns obtained at different frequencies are overlaid to yield

an aggregate crossing pattern which is, then, passed onto the second stage of the algorithm.

2. Crossing analysis: In the second stage, the crossing pattern is modeled with two Poisson
counting processes, corresponding to target and background regions. After estimating the
required rate parameters using the crossing data, a hypothesis testing procedure is employed

to determine a set of “window” regions corresponding to areas containing targets.

3. Target extraction: At the final stage of the algorithm, the individual detection windows are
aggregated into a number of spatially disjoint groups. The total number of groups indicates
the estimated number of targets, and average coordinates of all windows in a group indicate

the estimated center of the corresponding target.



3.1 Sub-array Processing

The direction finding algorithms traditionally assume plane wave incidences and determine the
DOA associated with each plane wave. For near-field problems, however, both DOA and the range
of the source (in our case scatterer) should be acquired. Here, we describe a sub-array processing
(SAP) scheme which only requires one-dimensional search in DOA space of each sub-array. The
idea behind the sub-array processing is that if the aperture of the sub-array is small enough, the
scattered field impinging upon it can be assumed locally planar. Thus, the plane wave MUSIC
can be used to find DOAs at each sub-array, and by triangulation, it is possible to localize the
scatterers.

When there are M > 1 objects in the vicinity of the array, we have two options in terms of how

MUSIC is employed:

1. Each sub-array finds M DOAs for all locally planar waves scattered from M objects, or

2. Each sub-array finds one DOA for the locally planar wave dominant in the total scattered

field (Fig. 3 shows M = 2 case).

Given M objects and 5 sub-arrays, for each operating frequency the first and second options result
in 0.55M(SM—1)and 0.55(5—1) crossings, respectively. The first option creates many unwanted
crossings when DOAs belonging to different objects intersect. In addition, we have to know the
number of objects under the array to use this option. On the other hand, the second option does
not require the knowledge of number of objects, and the scattered fields from targets closer to the
sub-arrays, particularly in a lossy medium such as soil, dominate the total scattered field at the
sub-arrays. Therefore, the latter option seems more practical especially when one wants to avoid

estimating the number of scatterers first, and is used in the remainder of this paper.



Once one DOA at each sub-array is determined, all DOAs are triangulated to estimate the target
locations. Fig. 3(a) shows the triangulation of DOAs, and (b) shows the crossings. In contrast to
the single object case, for multiple objects, the crossing pattern may get quite complicated since
DOAs belonging to different objects also intersect each other to create unwanted crossings. Thus, a
second level of processing is required to extract the clusters indicating the estimated object centers.
3.2 Crossing Analysis

In this section we present an approach that models the DOA crossings with Poisson point
processes. Inspecting Fig. 3(b), we see two distinct regions where the density of the crossings are
quite different: in the first region (background region) the crossings are sparse, and in the second
region (target region) the crossings are dense. By exploiting this difference, it is possible to isolate
target locations. Hence, we introduce a Poisson model for DOA crossings which has a large rate
parameter (intensity) in target regions and a small rate parameter in the background region.

Formally, for a given crossing pattern, we count the number of crossing Y;, 7 =1,2,---, Ny, in
a window of size w, X w,, where N, is the total number of non-overlapping windows, w, and w, are
the width of the windows in z and y directions, respectively. The windows must be non-overlapping
to guarantee the independence of random variables Y;.

In order to ensure that Y; is Poisson distributed, we tested for fitness to Poisson distribution
by using the graphical technique presented in [15]. The technique proposes that for each count k
observed in Y, we plot k versus (Ink! + In F}) where Fj, = Zé\]:'yl [Y; = k] is the number of data
values Y; equal to k. If the fit to the Poisson model is satisfactory, then the plot should form a
straight line with slope approximately In A, where A is the rate parameter of the distribution. When
we apply this test to a typical crossing pattern, instead of a straight line, we observed the curve in

Fig. 5. By examining this curve, we notice that it can be decomposed into two parts, each roughly



corresponding to a straight line. The first part is when the crossing count & is small (between 0

and 2), and the second part is when k is large (greater than 3.) It is clear that these two regions

correspond to the background process which is expected to have a small count of crossings, and the

target process which is expected to have a large count of crossings. Furthermore, using these two

approximately linear regions, we can decouple background and target processes by identifying kj

and Fyp for the background, and k; and Fj; for the target regions where ky = 0,1,2, k; = 3,4, - - -,
N,

= Ej\[:yl [Y; = kp] and Fy = 37,2, [Y; = k. Then, the rate parameters for the background and

the target regions are given by their maximum likelihood estimators [15]:

. 1 2
A= o > kyF, (6)
kb=0
and
. 1 &=
A== D0 ke, (7)
e k=3

where Ny = Ekb Frp and Ny = 7, Fj. Having estimated ;\b and ;\t, the probability mass functions

in the background and target regions can be expressed as:
fx(k|Background) = P{X = k|Background} = %E_S\b;\f (8)

and

Fx (k| Target) = P{X = k|Target} = %e_j‘b;\]g. 9)
To extract crossing clusters, we sweep the region of interest with a test window of size w, X w,.
It is important that the area of the test window is equal to the area of the non-overlapping windows
used in estimating the rate parameters. At each location of the test window, we count the number
of crossings 15, j = 1,2, -+, N¢est, where Ny is the total number of overlapping sweep windows
in the region of interest. The number of overlapping test windows Ni.s defines the resolution of
detection, and it is greater than N,. Since we are going to test each 7; against the hypothesis one

by one, the use of overlapping windows is allowed. Hypothesis test permits us determine whether
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the test window is over a background region or over a target region. The hypothesis test is then

formally written as:

o Hy: T; is Poisson distributed with a small rate parameter ;\b,

o y: T; is Poisson distributed with a large rate parameter ;\t.

Based on this hypothesis test, if Hg is true, we decide that the window belongs to a background
process with a small intensity. However, if Hy is true, we declare that the window belongs to a
target process with a large intensity and call it a detection.

The likelihood ratio for the hypothesis test is formed in terms of the probability mass functions

of (8) and (9) as:

A(T]‘) — fX(leﬂl)
fx(Tj|Ho)
The decision is, then, made based on the test:

1

W{A(T)} =T; > K,
where the decision threshold, K, is found from a specified false alarm rate Py, using (10). This
means that all windows which has K or more crossings in them will be declared as target locations.
Probability of false alarm Py, can be written in terms of the decision threshold K and probability

mass function of background process in (8) as :

Pra= Y fx(k|Ho). (10)
k=K
Given the decision threshold K, the probability of detection for the Poisson model developed in

this section is given by:

Py=>" fx(k|Hy). (11)
k=K
It might be argued that since target windows are obtained via thresholding, there would be no

need for a Poisson-based model as described in this section. A plain thresholding scheme on DOA
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crossings would also locate the targets successfully. However, the Poisson model provides a solid
groundwork for a detailed statistical analysis. With the model, it is possible to define probabilities
of false alarm and detection. Based on these statistical analyses, it is possible to make educated
predictions about the performance of the system under different conditions.

3.3 Target Extraction

Hypothesis testing with the Poisson model results in detection windows as shown in Fig. 6.
By looking at this figure, a human operator may conclude the target locations and their numbers.
However, we want the detection algorithm to do these decisions and calculations for us automati-
cally. In effect, we want the algorithm to yield the number of targets in the region of interest and
their estimated locations, rather than the intertwined pattern of detection windows.

The pattern of detection windows suggests that the detection windows belonging to the same
targets overlap. Therefore, we classify the detection windows so that all overlapping windows
form a different group. The number of targets is, then, equal to the number of groups and the
estimated object centers are obtained by averaging the coordinates of the windows in each group.
The grouping algorithm we use, therefore, proceeds as follows. Start with the first window on the
list of detection windows and place it in the first group. For each of the other windows, test if they
overlap with any window in the kth group for &£ = 1,2, ---, G, where G, is the number of currently
available groups. If the window overlaps with only one group, add it to that group. If the window
overlaps with more than one groups, merge those groups, and reduce the number of current groups
G accordingly. If the window does not overlap with any windows among G, groups, then form
(Go+1)th group with that window. When all detection windows are classified, GG, gives the number
of objects, and averaged coordinates of all windows in each group give the estimates of center of

the objects they represent.
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3.4 Frequency Diversity

Frequency diversity is often used in detection applications for two important reasons: to increase
the resolution (high frequencies) and to allow radar signals to penetrate deeper into the medium
(low frequencies). Therefore, with a wide frequency range, one can ideally get more resolution
in the vicinity of the radar, and more penetration to probe deeper objects. To take advantage of
these benefits, we use the sub-array processing in a multi-frequency scheme. For each frequency the
sub-array processing described in Section 3.1 is carried out to obtain the DOAs and the crossing
pattern. Then, these multiple crossing patterns are overlaid to give an aggregate crossing pattern

which is modeled as Poisson counting processes in Section 3.2.

4 Examples

In this section, we present applications of sub-array processing to the detection of multiple
mine-like and multiple drum-like objects. In order to simplify the scattering phenomenon associ-
ated with the detection problem, both mine-like and drum-like objects are modeled with simple,
circular objects. The system parameters for both applications are kept constant to provide a better
comparison of the method between applications. In order to introduce frequency diversity, the
objects are illuminated with plane waves at three different frequencies: 1.2, 1.0 and 0.8 GHz. The
frequency range used is typical of that used in practical subsurface sensing systems. The scattered
field is observed along a 33-element, uniform, linear receiver array which spans an aperture of
1.5 m. The sensors are assumed to be ideal, isotropic receivers, and the inter-element spacing of
the receivers are chosen such that it is less than half a wavelength for the soil characteristics [16]
at the frequencies used. The receiver array is divided into 11 three-element sub-arrays for the pro-

cessing. The objects are placed in a lossy, homogeneous background which has the same electrical
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characteristics of 5% moist San Antonio clay loam or 10% moist Puerto Rico clay loam (e = 6¢g,
o, =5 x 1072 §/m) at around 1.0 GHz [16].

For the simulations, the definition of signal to noise ratio (SNR) is not obvious. In practical
problems, SNR is imposed by the nature of the system noise. However, in computer simulations
we want to reference the noise power to a fixed quantity that does not change as the positions of
the objects change. For this purpose SNR is referenced to the scattered field strength of a single,
cylindrical, metallic object placed at the same depth as the objects, in the same lossy medium.
The radius of the reference scatterer is the same as the radii of the targets. With this definition,
the noise power is always proportional to the power of reference scattered field, not the power of
field scattered from targets which changes as the positions of objects change.

In all examples the exact scattered field due to multiple objects embedded in a homogeneous,
lossy background is calculated using the recursive T-matrix algorithm [17-20] to keep the compu-
tational requirements at reasonably low levels.

4.1 Multiple Mine-like Objects

In these examples, we placed two mine-like objects, each with 7.5 cm. diameter, 15 cm. under
the receiver array. Even though the algorithm is capable of detecting more than two objects, it
seems that for practical purposes no more than two mines will be placed in the array’s aperture of
1.5 meters. We have not explored the performance of the processing with respect to depth assuming
that mine-like objects will be placed at uniform depths under the array.

The first example demonstrates the utility of the sub-array processing in detecting and localizing
both a metallic and a dielectric object in the same medium. For this purpose, a metallic object
and a dielectric object with dielectric constant of 2.5 are placed at (20, —15) cm and (80, —15) cm,

respectively, in the homogeneous background described before, Fig 6. Signal to noise ratio is fixed
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at 10 decibels. Fig 6 shows the directions of arrivals, and detection windows when probability of
false alarm is 10~®, which corresponds to a crossing threshold of K = 7. The two circles in this
figure denote the objects, and the intertwined squares, due to overlaps in test windows, depict
the estimated target windows. The detection windows are then used in the grouping algorithm
described in Section 3.3. As expected two distinct groups of overlapping windows indicated that
there are two objects beneath the array. The estimated center for the objects are found to be
(19.52, —14.02) cm and (80.10, —14.82) cm. Consequently, both metallic and dielectric objects are
detected within acceptable estimation error margins.

Next, we consider an example that demonstrates the detectability of objects and the perfor-
mance of SAP as relative positions of the objects change. In this example, both objects are assumed
to be metallic in order to see the influence of relative distance between same type of objects on
detectability and estimation error. For this purpose, we fixed the location of the first object at
(z,y) = (—40,—15) cm. The other one is moved from z = 0 cm to 2 = 125 cm in the lateral
direction while its depth is kept at the same level as the fixed object, Fig. 7. The signal to noise
ratio is assumed to be 30 decibels.

With this geometry, the moving object is always located under the array, and thus detected for
all combinations of relative positions. Detection of the fixed object, on the other hand, is challenging
since it lies outside the span of the array. Fig 8 shows the average simulated probability of detection
of the fixed object over 100 Monte-Carlo simulations as the other object is moved under the array
when probability of false alarm is set to 107>, As it is clear from this figure, the fixed object can
be detected only if the other object is well away from it. The fixed object may also be detected
with less than 10% probability when the moving object is located between z = 0 and z = 20

cm. This is due to the fact that for these relative locations, both objects are close enough so
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that DOAs belonging to the moving object create crossings around the fixed object as well as the
moving object. In fact, because of this effect, the region between the two objects is incorrectly
detected as targets, and thus false alarm rate is large when relative distance between two objects is
small, Fig. 9. Simulated Py, o as depicted in Fig. 9 approaches to the false alarm rate set at the
beginning of the simulation (dashed line), as the relative distance between the objects increase.

We have also investigated the effect of relative distance on estimated object centers. For this
purpose, we plotted the averaged estimation error in z-direction (Az = Z¢rue — Testimated) VETsus
the averaged estimation error in y-direction (AY = Ytrue — Yestimated) for both fixed and moving
objects in Fig. 10(a-b). The estimated object coordinates are obtained by averaging 100 Monte-
Carlo simulations. The dashed circles indicate the boundaries of the objects. The closer the
symbols (o’s or ¢’s) are to the center, the smaller is the estimation error. Since the moving object
is always detected, each small circle in Fig. 10(a) corresponds to a different position of the moving
object. As seen from this plot, the estimation error of the moving object is only a small fraction
of the radius. Small circles outside the object boundary (dashed circle) correspond to locations
where the moving object is close to the fixed object. Each small circle and diamond in Fig. 10(b)
corresponds to a relative position when the fixed object is detected. The small circles denote the
error in estimated centers when the moving object’s z-coordinate is greater than 95 cm, and small
diamonds correspond to other locations of the moving object for which the fixed object is detected.
The loci of small circles and diamonds clearly imply that as the relative distance between the
objects gets larger, the estimation error in the position of the fixed object gets smaller.

4.2 Multiple Drum-like Objects

In this section, two drum-like objects, each with 50 cm. diameter, are placed at various depths

from the receiver array. Since drums are made up of metals, the objects are assumed to have
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infinitely large conductivity. The signal to noise ratio is set at 10 decibels. The detection windows
for a typical case is shown in Fig. 11. In this example one object is at (—40, —125) cm and the other
is at (140, —125) cm, while the lossy, homogeneous background is the same as previous example.
The threshold of detection corresponding to a false alarm rate of 107% is found to be K = 6.
Fig. 11(b) depicts the detection windows obtained after hypothesis testing. These windows are
then processed by the grouping algorithm of Section 3.3. As expected, there found to be two
overlapping window groups which imply that there are two objects in the region of interest with
centers located at (—40.02, —111.70) cm and (139.93, —108.46) cm.

As the second example of this section, we considered keeping one of the objects at a fixed loca-
tion, and moving the other object around below the array. The first object is fixed at (—40, —125) cm,
and the other is moved from z = 40 cm to = 240 cm in the lateral direction at two different
depths, -125 ¢cm and -137.5 c¢m, Fig. 12. The SNR is set to 30 dB. Contrary to mine-like object
example, in this case the fixed object is at an advantageous location and detected with a probability
of 1.0 regardless of the position of the moving object in the defined region. The moving object is
hard to detect, since it is placed either outside the span of the array most of the time or deeper
than the fixed object. Fig. 13 depicts the average probability of detection of the moving object over
100 Monte-Carlo simulations for two depths when probability of false alarm is set to 1072. It is
clear that as the moving object is placed far from the array, it is less likely to be detected. Relative
to the depth of the fixed object, if the moving object is placed deeper, it has to be nearer to the
array to be detected. Simulated probability of false alarm ( Py, sin, ) for this example is zero for all
positions of the moving object, since both objects are relatively far apart to cause a false detection
window.

We have also investigated the effect of relative distance and depth on estimated object centers.
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For this purpose, we plotted the estimation error in z-direction (Az = ZTyrye — Testimated) VErsus
the estimation error in y-direction (AY = Yirue — Yestimated) for both fixed and moving objects
for two depths in Fig. 14(a-b). The estimated object coordinates are obtained by averaging 100
Monte-Carlo simulations. The dashed circles indicate the boundaries of the objects. Circles shows
the estimation errors when both objects are at the same depth, and diamonds show those when
the moving object is a half radius deeper than the fixed object. Symbols (circle/diamond) inside
the dashed circle indicate the estimation errors less than the radius of the object. In Fig. 14(a-b)
it is observed that as the moving object gets far from the array, the estimation error in position of
moving object increases, and that in position of fixed object becomes smaller. Placing the moving
object at a deeper location increases the estimation error in its position, and slightly improves that

in fixed object’s position.

5 Conclusions

In this paper we present an algorithm that can detect and localize an unknown number of objects
in the near field of a linear sensor array. The issues related to near-field scattering are overcome
by partitioning the full array into sub-arrays so that the non-planar scattered field becomes locally
planar at each sub-array. DOAs corresponding to these locally planar waves are then determined
using array processing techniques. Triangulation of such DOAs results in dense and sparse regions
of crossings which are modeled with a pair of spatial Poisson distributions. Estimated object
locations, and the number of objects are finally obtained by applying a hypothesis test to Poisson
models and then extracting groups of spatially disjoint detection windows.

We demonstrate the performance of the algorithm using simulated data. The usefulness of this

algorithm is exhibited for both mine-like and drum-like objects. For mine-like targets, we show that
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the algorithm can detect and localize multiple targets with different electrical properties. Then,
we demonstrate the detectability of such objects when relative distance between them changes.
We conclude that the detectability improves as the objects are located farther from each other
while staying within a reasonable distance from the array. In addition, it is shown that theoretical
and simulated probabilities of false alarm and detection are in agreement. For drum-like targets,
we demonstrate the usefulness of the algorithm for detection and localization of multiple objects.
Furthermore, the effect of relative distance and relative depth on detectability is treated. Results
of this analysis supports the results obtained for mine-like objects.

As the future work, we want to combine the algorithm of this paper with the matched field
processing (MF'P) adapted for near-field object detection in [14]. The MFP is known for its accuracy
and when used in tandem with the SAP, where SAP supplies rough estimates of object positions
to MFP, it would be possible to localize closely located objects. The combined algorithm would

inherit the best merits of both algorithms, viz. speed and efficiency of SAP and accuracy of MFP.
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Figure 2: Single object localization with SAP: metallic mine-like object in lossy background
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Figure 6: Multiple mine-like object detection with SAP: object on the left is metallic and object
on the right is dielectric with ¢, = 2.5. o’s and *’s denote subarrays
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Figure 10: Estimation errors in object centers, each symbol corresponds to a different position of
the moving object. Number of symbols in (b) is considerably less, since the fixed object is not

detected for all positions of the moving object, see Fig. 8.
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all positions of the moving object, see Fig. 13.
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