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Abstract

The problem of characterizing the structure of an object buried in an inhomogeneous halfs-

pace of unknown composition is considered. We develop a non-linear inverse scattering algorithm

based on a low dimensional parameterization of the unknown object and the background. In

particular, we use low order polynomials to represent the contrast in the real and imaginary

parts of the object and background complex permittivities. The boundary separating the target

from the unknown background is described using a periodic, quadratic B-spline curve whose con-

trol points can be individually manipulated. We determine the unknown control point locations

and contrast expansion coe�cients using a greedy-type approach to minimize a regularized

least-squares cost function. The regularizer used here is designed to constrain the geometric

structure of the boundary of the object and is closely related to snake methods employed in the

image processing community. We demonstrate the performance of our approach via extensive

numerical simulation involving 2D, TMz scattering geometries.
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1 Introduction

We consider the problem of localizing and characterizing the structure of an object buried in a

halfspace given noisy observations of scattered electromagnetic �elds collected near the interface.

Such problems arise in application areas including environmental remediation, humanitarian demi-

ning, medical imaging and non-destructive testing [6,11,14,26]. Here we are particularly concerned

with addressing two of the many challenges associated with such inverse scattering problems. First,

these problems are known to be highly ill-posed in that the quantity of information contained in

the data, which are collected only near the interface, is quite limited relative to the amount of

information one would like to extract. This leads to considerable instabilities in terms of reliably

characterizing the behavior of the subsurface [21,25] . A second di�culty is the need to deal with

clutter. Here we take clutter to be physical characteristics of the medium, in particular volume

inhomogeneities, whose presence impedes our ability to characterize the object of interest.

Typical methods for overcoming these two problems are based on forming an image of the

subsurface and then post processing the results to extract target information [5, 27]. The issue of

ill-posedness is addressed through the use of a regularization procedure [3, 23, 25] to stabilize the

imaging portion of the algorithm while clutter suppression is achieved through the use of image

processing methods to separate targets from background. In forming an image, however, one must

solve a large scale, non-linear optimization problem whose size is equal to the number of pixels

(voxels) in the region of interest; a highly computationally intensive process. Moreover, under this

approach one uses the limited data to generate values for all of the pixels only a few of which

contain useful information about the underlying target. By di�using the information in the data

in this manner, target detection can be problematic [24].

There has been considerable work in the past decade on methods that extract directly from the

data geometric information regarding the shape and location of the object [8{13,19,21,22,29,32].
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The assumption underlying most of these methods is that the object is embedded in a medium of

otherwise known structure (homogeneous or halfspace). Rather than parameterizing the problem

in terms of a large number of pixel values, a relatively small number of unknowns are used to

describe the shape of the target. For these methods the issue of ill-posedness is either addressed

through a regularization procedure related to the shape of the object [21] or through the use of

more traditional Tikhonov or minimum norm least squares methods [11,15,32].

For our problems, these shape-based methods are not applicable. For example, the approach

taken in [13] requires that the object be surrounded on all sides by transmitters and receivers.

While this assumption is satis�ed in, for example, medical imaging applications, we are restricted

here to problems where we have only re
ection-type data at our disposal. Additionally, most of the

previously developed techniques assume that the electrical properties of the background are fully

known and in many cases, the object's contrast function is also speci�ed a priori [22]. Because we

wish to address the issue of volume inhomogeneity, we must look to a di�erent approach.

Hence we consider a parameterization based on a concise description of the object's geometric

structure that provides for the recovery of a limited amount of information regarding the spatial

variations of the complex permittivity over the target and the background. As described in x 2, the

variations in the background and the object contrast are modeled via a superposition of a small

number of expansion functions; one set of functions for the background and separate set for the

object. Thus, the unknowns here are the corresponding expansion coe�cients.

As in [1,11,21], we seek a representation for the shape of the object in terms of a small number

of unknowns. In previous work, a Fourier-type expansion is used in conjunction with an underlying

assumption that the object of interest is star-like. Here we choose to describe the boundary of the

objects di�erently, using a linear combination of quadratic B-splines [4, Chap. 3]. The motivation

for this choice comes from the fact that the parameters governing this representation (known as
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control points) impact the shape of the object only over a small portion of the perimeter. Thus,

the control points provide direct and local control over the object's shape. This control is exploited

in the development of a simple and e�cient inversion scheme described in x 3. Finally, the control-

point parameterization leads to a natural, shape-based regularization technique related to snake

methods [4] used in image processing for contour representation and image segmentation.

We view this approach as a compromise between an ill-posed imaging method that allows for

arbitrary variation throughout the region and the more constrained shape-based methods in which

homogeneity is assumed. By restricting the contrast variations to lie within the linear span of a set

of basis functions, we clearly limit the classes of variations which can be recovered from this inversion

process. The motivation for this decision comes from the fact that a detailed reconstruction of the

medium is often not what is desired nor is it supported by the information in the data. Rather,

the primary information of interest concerns the geometric structure of the object. Thus we are

willing to settle for a coarse reconstruction of the object and background contrast functions.

The remainder of this paper is arranged as follows. In x 2, the scattering problem and the models

for the object and background are presented; x 3 gives a presentation of the inversion procedure

with examples of its performance shown in x 4. Conclusions and future work are described in x 5.

2 Problem formulation

We consider a two-dimensional scattering problem illustrated in Fig. 1. Time harmonic e�j!t

y-polarized plane waves at various incident angles and frequencies are used to probe the medium.

The complex permittivity of the lower halfspace is represented as the sum of a nominal, constant

value, �1 + (j=!)�1, and a space varying perturbation,

g(r) = �0�p(r) +
j

!
�p(r); (j =

p�1); (1)
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that encompasses both the object of interest as well as the clutter. Here, r = [x z]T is a two vector

indicating the position of a point in the plane, �0 is a constant that denotes the permittivity of free

space, and ! denotes angular frequency. The scattered �elds generated by g are observed along an

array of point receivers also located in the upper halfspace. Under this 2D model, there is only a

single component of the electric �eld thereby resulting in a scalar scattering problem.

The model linking the structure of g to the observed scattered �eld at the kth point along the

array, rk, is [7, Chap. 9]

y(rk) = !
2
�0

Z
W

G(rk; r
0)E(r0)g(r0)dr0 + n(rk); (2)

where y(rk) is the datum at rk for a given incident �eld, W is the region over which g is nonzero,

n is zero mean, additive white Gaussian measurement noise with variance �2, and G and E denote

the Green's function and total electric �eld, respectively. The constant �0 denotes the permeability

of free space. In (2), we are only concerned with evaluating the Green's function, G(r; r0), when r

is above the interface and r0 is below in which case [10]

G(r; r0) =
j

2�

Z
1

�1

1


0 + 
1
exp

�
j�(x� x

0) + j(
1z � 
0z
0)
�
d� (3)

with 
i = (k2i � �)1=2 where ki = !

p
�i�0 + j�i�0=! denotes the wavenumber in the upper (i = 0)

and lower (i = 1) halfspace. The total electric �eld E(r) is governed by the Helmholtz equation

�r2 + k
2(r)

�
E = 0

with a Sommerfeld radiation condition where k
2(r) is equal to k

2
0 above the interface and k

2
1 +

!
2
�0g(r) below. Finally, the total electric �eld at r is the sum of the unperturbed electric �eld

generated by a plane wave impinging on a halfspace, Eunp(r), [20, x 3.2] and the scattered electric

�eld, Es(r). With E = Es +Eunp, it is easy to show that:

�r2 + k
2(r)

�
Es = �!2�0g(r)Eunp: (4)

As y(r), the observed �eld, depends on the total �eld in the region W , it therefore implicitly

depends on the particular unperturbed �eld, Eunp, on g(r), and on the frequency !.
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2.1 A Model for g(r)

As described in the introduction, we model the unknown portion of the permittivity in the

lower halfspace as a superposition of a slowly varying, compactly supported anomaly (the target)

on a background of partially known structure (clutter). Mathematically �p(r) is decomposed as

�p(r) = S(r)

NaX
i=1

a1;ib1;i(r) + [1� S(r)]

N
bX

i=1

a2;ib2;i(r) � S(r)B1(r)a1 + [1� S(r)]B2(r)a2 (5)

where S(r) is one over the (unknown) support of the object and zero elsewhere. The functions b1;i

represent basis functions describing the contrast of the real part of the anomaly while the b2;i do

the same but for the background. The ai;j are the expansion coe�cients determining the weight

of each function. The row vectors Bi; i = 1; 2 hold the expansion functions and ai are vectors of

expansion coe�cients. An analogous model holds for �p(r), which is proportional to the imaginary

portion of g(r):

�p(r) � S(r)B1(r)c1 + [1� S(r)]B2(r)c2: (6)

While in principle the expansion functions could di�er between �p and �p, the support function S

is the same since it represents a physical boundary between the object and the rest of the medium.

The particular choice of the bi;j depends on the application at hand. If one thought that

there was a homogeneous dielectric anomaly of contrast a1;1 against a real-valued homogeneous

background of value a2;1 then one would take b1;1(r) = b2;1(r) = 1. Use of higher order polynomi-

als, trigonometric functions etc. provide greater 
exibility in capturing true, underlying inhomo-

geneities. In any event, assuming the Bi are known, the objective of the problem in this paper is

to determine the structure of S along with the ai and ci given the observed scattered �eld data.

In this work, we employ a B-spline model to describe the contour of the anomaly, that is, the

boundary of the set S(r). To de�ne this curve, we start with an interval [0; L] on which a knot

sequence k0; : : : ; kK�1 with 0 � ki � L is de�ned. For this sequence, there exists a periodic basis
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of quadratic B-splines Cki (s) such that

b(s) � [x(s); z(s)] =

K�1X
i=0

Cki(s)[xi; zi]; s 2 [0; L] (7)

for a given set of xi; zi expansion coe�cients, or control points, uniquely de�nes a closed, C2

parametric curve in the plane. The support of each Cki(s) is [ki; ki+3]. Since the basis is taken

to be periodic, the control points are assumed to be wrapped; that is, [x0; z0] = [xK�2; zK�2] and

[x1; z1] = [xK�1; zK�1], so there are a total of K control points, K � 2 of which are unique.

To implement our model, we assume that the boundary of the anomaly is in the form:

b
�(s) �

K�1X
i=0

Cki(s)[x
�

i ; z
�

i ]: (8)

If r = [x z]T is a point inside b
�(s), then for example, �p(r) is B1(r)a1, while for r outside,

�p(r) = B2(r)a2.

3 Algorithm

In this section we describe in detail the algorithm we use to solve the inverse problem. We begin

by discussing the discretized form of the model. The reader is referred to Table 1 for a summary

of the indexing parameters that have been or will be identi�ed.

3.1 Discretization

Using the method of moments [17] with a pulse basis and point matching to discretize (2) and

a lexicographical ordering of the unknowns yields the matrix equation:

y = GD(E)g + n; y 2 C
M�1 (9)

where M is the number of source/receiver pairs, y and n are vectors with components y(rk) and

n(rk) respectively, G the discrete Green's function premultiplied by !
2
�0, D(�) is the diagonal

matrix formed from the vector argument, and E is the vector containing the total electric �eld

(which depends on g) at each pixel. Finally, g 2 C
N�1 is a vector holding the intensity values of
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g(r) at the N grid points in our discretization of the subsurface and from (5) and (6) is given as:

g = �0[SB1 (I� S)B2]a+
j

!
[SB1 (I� S)B2]c �

�
�0V

j

!
V

�
w (10)

where a = [aT1 a
T
2 ]

T , c = [cT1 c
T
2 ]

T , w = [aT cT ]T , S is a diagonal matrix corresponding to S with

Si;i = 1 if any part of pixel i is inside b�(r) and 0 otherwise, I is the identity matrix, and the Bi

denote the N �Na and N �Nb matrices corresponding to evaluating Bi(r) at the N gridpoints.

Finally, using A = GD(E) with (10) and (9) we have

y = [�0AV;
j

!
AV]w+ n � Kw + n; y 2 C

M�1
: (11)

Note that there is one such matrix-vector equation of this form for each frequency and each di�erent

incident angle. In the remainder of the paper, we assume n1 frequencies and n2 angles are used,

and we use double superscripts i; k to denote the corresponding vectors and matrices at frequency

!i and angle �k: single superscripts imply that that quantity depends only on !i. For example,

y
i;k denotes the data obtained via (9) or (11) for frequency !i and incident angle �k

y
i;k = G

iD(Ei;k)gi + n
i;k = K

i;k
w+ n

i;k
; (12)

whereas gi denotes (10) at frequency !i.

3.2 Generating Scattered Field

To generate the data for a given frequency !i and incident angle �j , we need to compute

the M -length vector Ei;j (i.e. we need to solve the forward scattering problem). To do this, we

determine the scattered �eld by discretizing (4) using a �nite di�erence scheme with PML boundary

condition (details are described in [18]) to obtain the matrix equationMi
E
i;j
s = �!2l �0giEi;j

unp where

the unperturbed �eld E
i;k
unp is known and depends on incident angle and frequency, and Mi is the

matrix corresponding to the discretized operator in (4) with the PML boundary condition. The

scattered �eld is determined by solving the matrix equation for E
i;j
s , and �nally, Ei;j = E

i;j
unp+E

i;j
s .
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3.3 Algorithm Description

Our algorithm seeks to �nd a good approximation to g(r) by successively generating better and

better approximations to b�(s), the boundary of the anomaly, and the coe�cient vectors a and c.

In particular, we seek a minimum of the following cost function

J(b(s); a; c) =

n1X
i=1

n2X
k=1

kyi;k �GiD(Ei;k)gik22 + �1
1 (b(s)) + �2
2 (b(s)) : (13)

where we emphasize that both Ei;j as well as gi depend implicitly on the geometry of the anomaly

as well as the expansion vectors via the models developed in x 2 and x 3.1. The �rst term in (13)

enforces �delity to the data while the second and third play the role of regularizers.

Traditional regularization methods used to combat ill-posedness in an image restoration frame-

work function by enforcing smoothness, or in some cases edge preservation, in the reconstruction.

In our case, the 
i; i = 1; 2 are used to in
uence the geometric structure of the recovered anomaly.

Speci�cally, we de�ne these functions as


1(b(s)) =

K�2X
i=0

(zi � z
�)2 and 
2(b(s)) =

K�2X
i=0

(xi � xi+1)
2 + (zi � zi+1)

2 (14)

where K is the total number of control points, xi and xi are the coordinates of the ith control

point, and z
� is a �xed z-value depending on the particular application. The �rst term attempts

to penalize objects that are too deep while the second penalizes the total length between control

points. In this way we dissuade the algorithm from choosing curves that are overly elongated and/or

deep. Our justi�cation for the �rst of these choices comes from our knowledge that signi�cant depth

information is not available in the measured data due to the loss in the soil and the positioning

of detectors only above the interface. Moreover, in most applications one possesses some a priori

information concerning the depth at which targets are likely to be buried. The values of �1; �2 tell

how strongly we want to dissuade the algorithm from reconstruction of curves that are too elongated

and/or deep. Finding near optimal regularization parameters is a very di�cult problem and there is

a whole body of literature dedicated to this issue (see, for instance, [2,16]). In this work, we assume
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that good parameters are known a priori : determining accurate parameter selection strategies will

be the subject of future work.

We consider a greedy-type algorithm for minimizing (13). We begin with an initial estimate,

b
(0)(s), of b�(s) de�ned by a set of K knots and K � 2 distinct control points. From b

(0)(s) the

matrix S is found. Suppose for the moment that initial estimates of a; c, denoted a
(0)
; c

(0), are

known (we address the issue of generating these guesses below). Using (10), the gi are calculated

for the di�erent frequencies. We then use (13) to determine the cost of (b(0); a(0); c(0)).

We update the estimate of b(0)(s) by systematically perturbing each control point from its orig-

inal position by a �xed amount �h in the horizontal, vertical, and diagonal directions, respectively,

for a total of 8 di�erent moves per point. Note that each of these 8 moves corresponds to a new

curve by de�nition in (7). Since there are K � 2 unique points and 8 moves for each point, this

corresponds to 8(K�2) di�erent possible new curves. For each possible curve, we �rst estimate new

values for a and c and then evaluate the cost associated with the current curve and these estimates

using (13). Finally, b(1)(s), a(1); and c(1), our new estimates, are taken as that triple giving mini-

mum cost, provided that cost is less than (or equal to) the cost associated with (b(0)(s); a(0); c(0)).

The process is repeated as many times as is necessary.

In principle, determination of a and c requires the solution of a low dimensional inverse scat-

tering problem. That is, every time we want to determine the cost for a candidate curve, we need

to solve a non-linear optimization problem. To simplify this procedure, we consider an alternative

approach. At the end of the kth stage, we compute the internal �elds associated with the current

estimate of the anomaly. This requires the solution of n1n2 forward scattering problems of size N .

From (9), the data yi;l depend on the anomaly through gi and the internal �elds. At stage k+1, we

assume that as we move the control points to generate new candidate structures, the changes in the

internal �elds are negligible compared to the changes in the gi. Thus, for each of these candidates,
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we hold the internal �elds �xed at the values computed at the end of the previous stage.

This approach is useful for two reasons. First, it reduces the number of forward solves associated

with each iteration from 8(K�2)n1n2 to just n1n2. Second, by holding the internal �elds �xed, (9)

and (11) indicate that the unknown expansion coe�cients are locally linearly related to the data.

Thus, estimates of these quantities can be obtained via a linear least squares procedure that is far

less demanding than a nonlinear optimization problem. In particular, we have

ŵ = argmin
w

kKw� yk22 = (KT
K)�1KT

y (15)

where K is the matrix obtained by stacking all of the real and imaginary parts of Ki;k de�ned

in (11) and (12) and (with a slight abuse of notation) y is the corresponding stacked real and

imaginary parts of yi;k.

Now we address the coice of a(0); c(0). Solving (15) requires K, which by (11) requires Ai;k,

which in turn requires Ei;k. But computing Ei;k according to x3.2 would require prior knowledge

of the unknown gi. Thus, to get initial estimates of the expansion coe�cients, we set Ei;k to E
i;k
unp;

in other words, we use the Born approximation to determine initial guesses of a(0); c(0).

The algorithm is initialized using an object of size larger than any target of interest located in

the vicinity of the true object. There are many possible methods for determining such an initial

guess. For example, there are methods that determine a \best �t" disk as an initialization: one

based on array processing is described in [28] while another based on statistical hypothesis testing

is detailed in [24]. Here, we always assume that the initial object is given and refer the reader to

the literature for speci�c techniques to determine this guess.

The overall algorithm is sketched in Fig. 2. One advantage of this approach is that it is quite

easy to implement and in principle, all candidates at any given stage can be generated in parallel.

Thus it is computationally attractive. It is not di�cult to prove that if we were to recompute

the internal �elds for each possible control point move (rather than leaving it �xed at the previous
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estimate), then we would be guaranteed that at every outer iteration of our algorithm the cost would

be non-increasing. By insuring old curves cannot be regenerated1, this would imply convergence of

the algorithm to a minimum of (13) taken over the collection of anomalies that can be generated by

these moves. However, since we hold the internal �elds �xed as we loop over control point moves

and update them only after a move is chosen, monotonicity of the cost cannot be guaranteed.

Generally, we have noticed through extensive simulation that as long as the parameters �1 and �2

are well chosen, the cost does in fact decrease as the iterations progress.

4 Numerical Examples

In this section we present several numerical examples that illustrate the e�ectiveness of our

algorithm. All experiments were done in Matlab using double precision arithmetic. Creation and

manipulation of the B-spline curves was achieved with Matlab's Spline Toolbox.

In all of the numerical examples, we used three frequencies (500, 700, and 900 MHz) and three

incident angles (0, �=4, ��=4). The region of interest for which we would like to obtain an image

was 40cm across (-20cm to 20cm) and 20 cm deep (0 to 20cm). We discretized this region into

pixels of size 1cm-by-1cm. Data were collected at 19 receivers located at -18cm to 18cm in 2cm

increments. To de�ne the entries of the Green's function matrix G, we set �1 = 2:5�0; �1 = 3E� 3,

which corresponds to assuming that the upper halfspace is air and the lower halfspace is sand.

Depending on the example, we �ll the Bi(r) matrices of (5) and (6) with monomials of at most

degree 2. Finally, Table 2 summarizes the parameters for each of the experiments. The values for

the �i were chosen by trial and error. In all experiments, the value of the step size, �h, was taken

to be one centimeter. Finally, the contours of all the true objects were generated using a B-spline

with K = 6 knots while the reconstructions were generated for a K = 5 knot contour.

1It turns out that our approach to updating the internal electric �eld can create the situation in which distinct

curves yield the same cost. Thus we implement extra logic in our implementation to ensure that we never enter a

loop.
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To produce noisy data, independent additive Gaussian noise was added to both the real and

imaginary parts of the noise free data. Letting ~y denote the vector obtained by stacking Ki;j
w

for all frequencies and incident angles we have y = ~y + n where n = �rnr + j�ini and nr;ni

were generated using Matlab's randn function. The constants �r; �i were determined so that the

signal-to-noise ratio (SNR) with respect to the real and imaginary parts of ~y were the same:

SNR = 10 log10
real(~y)T real(~y)

�rN
= 10 log10

imag(~y)T imag(~y)

�iN
:

We used two measures of success in comparing our reconstructions with the true images. The

�rst is a relative error measure over all pixels in the union of the true curve and the reconstructed

curve, which we index by the index set I:

SE =
k�true(I)� �p(I)k2

k�true(I)k2 +
k�true(I)� �p(I)k2

k�true(I)k2
For each example, we also recorded the maximum pointwise relative error in the real (imaginary)

part of the solution over the pixels in the intersection of the true and reconstructed curves. The

values for these measures for the 5 examples described below are in Table 4.

4.1 Examples 1 and 2: Homogeneous Perturbations

As a �rst example, we consider the problem with a homogeneous object of unknown contrast

embedded in a homogeneous half-space at an SNR of 20 dB, Fig. 3(a){(b). While the inversion

scheme knows the correct basis function to use for the object and background (i.e. Na = 1 = Nb

in (5) and (6) with b1;1 = 1 = b2;2 in both cases) it still does not know the values of the expansion

coe�cients. In Fig. 3(e) we display the true boundary of the object along with the initial guess of

this quantity and the �nal boundary estimate produced by our algorithm. The true and estimated

images of the �p and �p for this problem are shown in Fig. 3(c){(d) where we observe that the

unknown contrasts are estimated quite accurately. This conclusion is supported by the numerical

values for our �gures of merit given in Table 4.

For comparison sake, we have also implemented a more traditional Born iterative method (BIM)
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[31] inversion procedure using a TSVD (truncated singular value decomposition) regularization

technique to stabilize the linear system that must be solved at each iteration. After optimizing the

regularization parameter for this procedure, the reconstructions of the real and imaginary parts of

g are shown in Figs. 4.

This example demonstrates that even under noisy circumstances, the approach we have proposed

is able to capture accurately both the shape and the numerical values of the unknown permittivity

and conductivity of the object. While the BIM clearly indicates the presence of an object in �p,

almost nothing is seen in the �p image. Further, note that the anomaly boundary is much less well

reconstructed compared to our new approach. Also, numerous artifacts appear in both parts of the

reconstruction. By constraining the reconstruction as is done in our algorithm, we obtain a much

more accurate representation of the true pro�le. Our reconstructed object di�ers from the true by

only four pixels. Moreover, the amplitudes of �p and �p are quite close to their true values.

The performance of our approach is further veri�ed in Fig. 5 where we display boundary curves

and true and estimated images of �p and �p for an object rotated relative to the interface. The BIM

plots are shown in Fig. 6. The same level of performance as was seen in the previous example is

also seen here. Moreover, because we reconstruct the boundary explicitly, this approach allows us

to easily characterize the orientation of the buried object, a potentially useful piece of information

for later processing stages concerned with identi�cation and classi�cation.

4.2 Cramer-Rao Bounds for Examples 1 and 2

We next turn our attention to more challenging problems in which the electrical properties of

both the background and the object can vary. A �rst issue of concern is construction of the B

matrices used to model these variations. Intuitively, we expect that that as the size of the object

falls, it will be increasingly di�cult to recover higher order information about the target structure

when the pro�le of the much larger background region is also unknown. In fact, we can quantify
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the validity of this idea using the notion of a Cramer-Rao bound (CRB).

As explained more fully in [30, x 2.4], the CRB provides a lower bound on the variance of

any unbiased parameter estimator in a noisy data information extraction procedure of the type

considered here. The CRB is a deterministic quantity re
ecting the nature of the physical model,

the parameterization of the problem, and statistics of the noise corrupting the data. While we

make no claims here concerning the bias of our estimator, the CRB provides a useful gauge as to

the maximum con�dence we should have in the numerical values of the a and c estimates produced

by our algorithm. Speci�cally, by examining the bounds for di�erent con�gurations of object and

background, we obtain insight into how we may want to structure our inversion algorithm.

Here we consider our ability to recover information concerning at most linear variations in both

the background and the object, i.e. cases in which the real or imaginary parts of these quantities

behave as d0+d1x+d2z where the dj can represent any of the the ai;j or ci;j coe�cients appearing

in the model of x 2.1. This level of complexity is su�cient to understand the basic issues. In

particular, we consider CRB information for objects of three sizes with linear contrast variations

(shown in Fig. 7) embedded in backgrounds whose variations are also linear. Fig. 8 illustrates the

con�gurations of interest for the medium size object. The SNR for all experiments is 30 dB.

The numerical values of the square roots of the CRBs (i.e. the lower bounds on the standard

deviations) for the experiments are provided in Table 3. The �rst column refers to the coe�cient in

the model. For example, the row beginning \Object real: const." holds the information regarding

the true value and the bound on the constant coe�cient in the real part of the object. Similarly,

\Bkgnd real: x" is the row for the coe�cient governing the real part of the x variation in the

background. In all cases, the bounds on the coe�cients governing the background are a small

fraction of the true values and vary little with the size of the embedded object. These small bounds

imply small variance in the estimates of the background structure and thus indicate that we can
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in fact determine these quantities rather accurately. This is true both for the constant term in the

variation as well as the linear terms. In contrast, our ability to recover anything but the unknown

constant term describing the object is more limited. The bounds on the x and z coe�cients are at

best on the order of the true values and grow at a much more rapid rate as the object size decreases

making determination of these quantities a very delicate procedure.

With this in mind, in the remainder of this paper (with the exception of Example 5) we consider

object models comprised of only unknown constants. As we show below, even when the true object

is of a more complex structure, the use of this simple model still allows for accurate localization

and the recovery of limited quantitative information. In light of the underlying objective of our

approach, we view this tradeo� of accuracy in \pixel" space for accuracy in localization and ge-

ometric characterization as acceptable. In terms of specifying the model for the background, the

situation is less clear. Extensive numerical experiments (not reported here) indicate that one needs

a relatively accurate model to achieve good localization. That is, the order of the model should

approximate well the true distribution of the volume inhomogeneity. As a rigorous solution to the

model order determination problem is outside of the scope of this paper, here we consider only

models whose order meets or exceeds that of the true distribution.

4.3 Examples 3-5

The next example we consider is illustrated in Fig. 9. Here we have an object with a piecewise

constant pro�le in a background with linear variation. We invert using a model for a constant

object and a quadratic background variation. The values for the object are intended to represent

a dielectric scatterer with an air gap. It is important to note that this object can never be well

represented using our low order polynomial model. The results of inverting with a model employing

a constant object with a quadratic background are shown in Figs. 10(c){(e). The strong localization

performance demonstrated in these images in spite of this inherent model mismatch points to the
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robustness of our approach to inversion 2.

A similar experiment was repeated except that the values for the real and imaginary parts

of the background were each corrupted by small amounts of appropriately scaled [0; 1] additive

uniform noise. Now neither the object nor the background can be exactly represented using the

polynomial model. As shown in Fig. 10 we achieve highly accurate shape information along with

useful information concerning the variations in the object as well as the background. Again, these

results are indicative of the ability of a low order parameterization to withstand modeling inaccu-

racies. We note that for both of these examples, the results in Table 4 re
ect the fact that we have

sacri�ced contrast accuracy for geometric �delity. However, by modeling the contrasts as unknown

constant, as expected we obtain estimated values that are close to the average values of the actual

perturbations (which can be positive or negative) over the support of the anomaly. In Example 3

the computed real and imaginary perturbations are 8.9E-2 and -2.5E-2, respectively, compared to

the means of the true perturbations to the real and imaginary parts, 8.3E-2 and -2.3E-3. Likewise,

for Example 4 the calculated real and imaginary parts over the anomaly are 5.8E-3 and -7.01E-3

whereas the means of the true real and imaginary parts are 2E-2 and -2.4E-3.

Finally, in Fig. 11 we consider the problem of recovering a linearly varying object in a linearly

varying background. Motivated by the CRB results, the object here is taken to be larger than

those of the previous examples so that there will be su�cient signal to allow us to resolve the

permittivity variations. As in the other cases, we again achieve strong localization. However there

is some noticeable error in the estimates of the permittivity coe�cients which is a re
ection of the

inherent di�culty in accurately obtaining this information. This example points to the need for

further work in re�ning the permittivity estimates after having determined the boundary of the

2For this and the remaining experiments, we do not show the results of the BIM approach to inversion. Even

after extensive �ne tuning of the algorithm, it was impossible to obtain results comparable to those seen with the

currently considered method.

17



object: model order determination and low order parameterizations should both play a role.

5 Conclusions and Future Work

We presented a new and potentially e�cient technique for simultaneously solving the image

formation and object characterization problems from scattered electric �eld data. The key idea was

to formulate the perturbation in terms of a small number of parameters via a B-spline representation

for the contour of the target. The examples illustrated that our technique can lead to good quality

reconstructions: in particular, we found that it was possible to get good localization information

even if the background is not homogeneous. A key issue associated with this strong performance

is the ability to select good regularization parameters that balance the information content of the

data with that of the constraints. In this work, we selected those parameters by hand. Clearly, an

important area of future e�ort is the automation of this process.

Our experiments showed and the computed Cramer-Rao bounds con�rmed that it is di�cult,

if not impossible, to get \linear" or even more complex information about the object unless it was

su�ciently large, the noise su�ciently small, and the perturbation in the object was large relative

to the perturbation in the background (i.e. the background needs to be nearly homogeneous).

One potential computational advantage to our technique is its inherent parallelism: cost eval-

uations can be done in parallel, making it computationally feasible to consider more complicated

structures. For our reconstruction technique to capture more complex structures, however, we need

to consider how to alter the complexity of the boundary representation by inserting and deleting

basis elements in the B-spline representation. Solving this order determination problem in an e�-

cient and close to optimal manner is far from trivial. In the future, we will also consider extensions

of this work to the case of multiple objects. Finally, we hope to extend the work presented here to

the 3D problem and to analyze its performance on real data.
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K total number of control points (K � 2 unique)

n1 number of frequencies used to probe the earth

n2 number of angles used to probe the earth

N number of unknowns in subsurface discretization

M number of data points for given �,!

NM total number of data points

Na number columns in B1

Nb number columns in B2

Table 1: Summary of index parameters. Note that the degrees of polynomials used to represent

the object and the background are Na � 1 and Nb � 1, respectively.

Example SNR True Obj. True Back Obj. Back �1 �2

1 20dB 0 0 0 0 3.28E-4 1.59E-4

2 20dB 0 0 0 0 6.0E-5 6.0E-5

3 30dB PWC 1 0 2 1.55E-4 7.9E-5

4 20dB PWC 1,rand 0 2 9.0E-5 6.0E-5

5 30dB 1 0 1 0 4.0762E-4 1.7015E-4

Table 2: Summary of experiments. Numbers in columns 3 to 6 indicate the degree of the polynomial

used to generate the data (columns 3,4) or to reconstruct (columns 5,6). \PWC" indicates that

the true object had piecewise constant perturbations in both the real and imaginary parts. \rand"

indicates that random uniform perturbations were added to the real and imaginary parts of the

background when generating data.

Coe�cient (True) (Large) (Medium) (Small)

Value Bound Bound Bound

Object

real: const 4E-1 7.43E-2 3.42E-1 4.27

real: x 1 1.02 2.56 4.57E+1

real: z 8 9.17E-1 5.18 9.29E+1

imag: const -2.2E-3 3.09E-3 3.11E-2 8.57E-1

imag: x 1E-2 4.22E-2 1.08E-1 2.05

imag: z 4E-2 4.98E-2 7.09E-1 2.06E+1

Bkgnd

real: const -1E-1 2.42E-2 2.14E-2 1.71E-2

real: x 1 1.72E-1 1.58E-1 1.51E-1

real: z 4 2.09E-1 2.00E-1 1.89E-1

imag: const -1E-3 8.93E-4 7.99E-4 7.32E-4

imag: x 0 6.95E-3 6.15E-3 5.80E-3

imag: z 1E-2 8.25E-3 7.45E-3 7.35E-3

Table 3: Values of the bounds for the case when the background and the object BOTH vary linearly

(at 30dB). Note that the bounds for all 3 linear terms for the object dramatically increase as the

size of the object decreases, whereas the bounds for the background decrease only slightly.
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Ex. SE RE (real) RE (imag)

1 0.335 0.110 0.607

2 0.593 0.367 0.616

3 1.051 1.059 0.172

4 6.182 1.191 2.565

5 1.447 3.185 0.085

Table 4: Measures of success in reconstruction. First column gives the experiment number and

second column gives the error measure de�ned in the beginning of x 4. Last two columns give

maximum pointwise relative error for the real and imaginary parts, respectively, over the pixels in

the intersection between the true and reconstructed images.

Figure 1: Experimental con�guration for general problem of interest
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Algorithm 1

k := 1

Given initial estimates [b(1)(s); a(1); c(1)] compute Ei;j and Ai;j for 1 � i � n1; 1 � j � n2

While (current-cost can still be reduced) do

� For i = 0; : : : ; K � 3 do

1. Select control point (xi; zi)

2. For each of 8 moves of (xi; zi) by �h do

(a) Update (xi; zi) by a move

(b) Form candidate contour, b(s), from other control points and new version

of (xi; zi)

(c) Generate estimates â; ĉ using current Ai;j (see (15))

(d) cost := J(b(s); â; ĉ) (see (9) and (13))

(e) If cost < current-cost

b
(k)(s) := b(s); current-cost := cost; [a(k); c(k)] := [â; ĉ]

(f) Elseif cost = current-cost

If b(s) is di�erent from all previous b(k)(s),

b
(k)(s) := b(s); [a(k); c(k)] := [â; ĉ]

� From [b(k)(s); a(k); c(k)] compute Ei;j and Ai;j for 1 � i � n1; 1 � j � n2

� Update [a(k); c(k)] using the new A
i;j

� current-cost := J(b(k)(s); a(k); c(k))

� k := k + 1

end while

Figure 2: Anomaly Recovery Algorithm
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Figure 3: True distributions, estimates, and boundary structures for example 1 (parameters given

in Table 2).

24



width, in cm.

de
pt

h,
 in

 c
m

.

ε
p
 obtained using the Born Iterative Method

−20 −15 −10 −5 0 5 10 15 20

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1

(a) Estimate of �p(r)

width, in cm.

de
pt

h,
 in

 c
m

.

σ
p
 obtained using the Born Iterative Method

−20 −15 −10 −5 0 5 10 15 20

0

5

10

15

20

0

2

4

6

8

10

12

14

16
x 10

−4

(b) Estimate of �p(r)

Figure 4: Born iterative results for example 1
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Figure 5: True distributions, estimates, and boundary structures for example 2 (parameters given

in Table 2).
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Figure 6: Born iterative results for example 2.
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Figure 8: Permittivity distributions for medium size object CRB analysis.
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Figure 9: True distributions, estimates, and boundary structures for example 3 (parameters given

in Table 2).
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object boundary

Figure 10: True distributions, estimates, and boundary structures for example 4 (parameters given

in Table 2).
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(d) Estimate of �p(r)
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(e) Initial guess, �nal estimate, and true

object boundary

Figure 11: True distributions, estimates, and boundary structures for example 5 (parameters given

in Table 2).
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