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Statistical Method to Detect Subsurface Objects
Using Array Ground-Penetrating Radar Data

Xiaoyin Xu, Eric L. Miller, Member, IEEE, Carey M. Rappaport, Senior Member, IEEE, and Gary D. Sower

Abstract—We introduce a combination of high-dimensional
analysis of variance (HANOVA) and sequential probability ratio
test (SPRT) to detect buried objects from an array ground-pene-
trating radar (GPR) surveying a region of interest in a progressive
manner. Using HANOVA, we exploit the transient characteristic
of GPR signals in the time domain to extract information about
buried objects at fixed positions of the array. Based on the output
of the HANOVA, the SPRT is employed to make detection deci-
sions recursively as the array moves downtrack. The method is
on-line implementable and of low computational complexity. Our
approach is validated using field-data from two quite different
GPR sensing systems designed for landmine detection applica-
tions.

Index Terms—Analysis of variance (ANOVA), array signal pro-
cessing, GPR mine detection, sequential detection, transient signal
analysis.

I. INTRODUCTION

GROUND-PENETRATING radar (GPR) is widely used in
detecting subsurface objects such as buried landmines,

unexploded ordnance, and utility lines [1]. Compared with other
subsurface sensing technologies, GPR has a few advantages.
First, it is sensitive to changes in all three electromagnetic char-
acteristics of a medium, electric permittivity, electric conduc-
tivity, and magnetic permeability. Thus GPR is capable of de-
tecting both metallic and nonmetallic objects. Second, unlike
sensors that can only survey an area directly beneath them, GPR
can survey an area in front of it [2], [3]. Therefore, a GPR system
can be used to detect dangerous objects before the system moves
over and past them. This can be important for operations such
as buried landmine detection and unexploded ordinance reme-
diation. In practice, GPR data are either processed on-line or
off-line. On-line processing can be fast and provides real-time
detection and requires a more sophisticated hardware and pow-
erful computer [4]. Off-line processing requires a large amount
of data storage and can use data of a full scan [5].

A typical GPR transmitter/receiver configuration is shown in
Fig. 1(a). The system consists of one transmitter and one re-
ceiver. The transmitter emits a short pulse of electromagnetic
energy and the receiver collects the echo for a certain time pe-
riod. The exact type of the transmitter and receiver, shape of the
electromagnetic pulse, and system setup depend on the specific
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application of the GPR [1], [6]–[8]. To improve performance
and efficiency, a GPR array is usually employed to sweep a large
area in a relatively short time. Fig. 1(b) shows a typical GPR
array moving in the direction. At every stop of the array, the
GPR array operates in the following sequence: 1) the first trans-
mitter radiates a pulse into the ground and then turns off; 2) the
first receiver turns on to collect reflected signal; and 3) the first
receiver turns off after a short time, usually 10 to 20 ns. The
above process repeats from every pair of transmitters and re-
ceivers and then the GPR array moves to next position. Based
on the echoes, the processing objective is to determine if an ob-
ject is present in the GPRs field of view.

The inherent near-field nature of the GPR detection problem
coupled with the fact that the objects of interest are embedded
in an inhomogeneous halfspace with a typically rough interface
present some significant challenges in the area of GPR signal
processing. Indeed, assuming one has detailed knowledge of the
air–earth interface as well as the electrical properties of the sub-
surface, just modeling the received signal using, for example, a
three-dimensional (3-D) finite difference time-domain code, is
a daunting task [6], [9]. The use of such a forward model in any
form of on-line processing routine where one might need to ac-
count for, e.g., unknown ground structure is clearly infeasible at
the current time.

Thus, here we consider detection methods which are less
computationally demanding with an eye toward approaches
that could be used in real-world scenarios. Our interests are
in techniques possessing three important characteristics. First,
to reflect the manner in which GPR data are acquired and the
nature of the GPR mission, the algorithms should be causal in
that they need only the data at the current and previous sensor
position to determine whether an object is present in the field of
view of the sensor. Second, they should be of low complexity.
Preferably the number of calculations would grow linearly with
the size of the data set. Finally, the processing schemes should
be robust to uncertainties in the GPR environment and hence
the particular detailed structure of the received signals.

Current signal processing methods with some or all of these
characteristics fall into one of three categories. First, pattern
matching methods [10] employ techniques such as fuzzy set
theory and neural networks. Such methods can be fast but also
require extensive training to function well. Second, image-then-
detect techniques [11] employ a beamforming or backpropaga-
tion approach to build an image of the subsurface which is then
post-processed to detect objects. These approaches generally re-
quire the data from the full GPR scan to form an image and are
thus not well suited to on-line computations in which informa-
tion is processed sequentially as the array proceeds down-track.
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Fig. 1. Setup: (a) a single GPR system and (b) a GPR array (plane view).

Fig. 2. Observation from one T/R pair, for a metal mine TM15 buried at position 45. (a) Raw data. (b) Data after mean subtracted. Unit in down-track position
is about 7.6 cm. Unit in time axes is 0.02 ns.

Finally, there has been much work done in statistical signal pro-
cessing, where one can employ statistical tools to detect ob-
jects and examine quantities such as probability of detection and
probability of false-alarm [12].

Here we consider a statistical, transient detection approach.
By “transient” we mean that the signals of interest are man-
ifest in the GPR data for a small number of sensor positions
and for relatively few samples in any received waveform. For
example, in Fig. 2 we plot raw observations obtained by one
transmitter/receiver (T/R) pair from an EG&G GPR system
[13], over an M20 metal mine. Each column of this image
is a time-series of observations for a given stop of the array.
It is seen that the received GPR signal is transient in two
ways. First, for each time-series (i.e., for each column of the
image) containing an object signal, the signal appears only in
a brief window, roughly from samples 350 to 700. The reason
is that the object signal always comes after the signal arising
from the bounce off of the air–ground interface and attenuates
quickly in lossy media. Second, the object signal shows up
only at a few down-track positions of the GPR array, specif-
ically locations 50 through 65. In both cases, the appearance
of object signal changes the mean value of the data. Our
method for object detection then is based on detecting change
in this mean first in the cross-track direction and then in the
down-track direction.

More specifically, our approach consists of two parts. First,
at each down-track position of the array, we process the data
among all T/R pairs to generate one test statistic. We use
high-dimensional analysis of variance (HANOVA) [14] to test
whether the data consists of reflected signal from a buried
object. The HANOVA is a generalized version of standard
analysis of variance (ANOVA) [14], [15], which is a method for
testing hypothesis about means of random vectors. Second, a
sequential probability ratio test (SPRT) [4] is applied to process
the statistic of the HANOVA as the array moves down-track.
The SPRT is a recursive statistical hypothesis testing technique
that provides early indication of the onset of changes in a time
series. The output of the SPRT is compared with a threshold. If
it exceeds the threshold, a detection is declared, otherwise, the
GPR array moves one more step down-track and new data are
collected and processed in the above manner.

As explained in greater detail below, our approach does in
fact satisfy the three requirements we discussed previously. It
is causal and has computational complexity that grows linearly
with the size of the data. Moreover, we show through real-data
examples that it is robust, requiring little in the way of training
and able to successfully address the object detection problem
for a number of GPR systems operating in a wide range of
environments, such as Socorro test site in New Mexico and
Dedham test site of Northeastern University in Massachusetts.
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We do stress here that the algorithm in this paper is intended
only to find anomalies beneath the GPR array andnot to solve
the far more challenging classification problem. Thus, from a
practical perspective our approach will serve well as an effi-
cient “pre-screener” in a larger automatic target detection algo-
rithm suite. Finally, our method is motivated by landmine detec-
tion using GPR, however it can also be used in other detection
application, such as laser-induced acoustic subsurface objects
detection [16].

The paper is organized as follows. Section II discusses the
problem formulation and our method. Section III gives some
examples of using the method in different situations. Field data
from different radar configurations and test sites are used to
show how the algorithm works. Conclusion and direction of fu-
ture work are given in Section IV.

II. PROBLEM FORMULATION AND ALGORITHM

To begin, we consider a single GPR T/R pairs as shown in
Fig. 1(a). After each transmission, the receiver collects an echo
for a certain amount of time. Depending on the presence of an
object, there are either two or three components in the echo.
One is measurement noise, assumed to be white and Gaussian.
Another is background, i.e., “nominal” signal observed in ob-
ject-free regions. The third component is object signal, reflec-
tion from a buried object.

For the GPR array shown in Fig. 1(b), assume we have
GPR T/R pairs surveying an area in steps, the task is to use
present and previous array measurement to detect buried mines
as the array moves down-track. At each down-track position,
we model the array detection problem in a typical hypotheses
testing framework [4]

there is no object

there is an object.

The null hypothesis means that there is no buried object in
the field of view of the GPR array, so the total received signal
is comprised of nominal background and measurement noise.
By nominal background, we mean any portion of the received
waveform not sensor noise and not arising from the interaction
of the transmitted pulse with the object. Reflection from the
air–ground interface is the dominant component of this part of
the signal. The alternative hypothesis indicates that there is
a buried object so that the received signal consists of nominal
background, measurement noise, and an object signal.

In this paper, we assume that the nominal background signal
has been removed via a preprocessing stage. The most often
used background removal methods include casual methods,
such as subtraction of a moving average from the observation
[17], [18], and noncausal methods, such as subtraction of an
ensemble average from the observation [19], [20]. Causal
methods use data from previous and present collection, non-
causal methods use data from previous and future collection.
Other background removal methods include linear predic-
tion method [21] and adaptive method [22]. In this paper, a
moving average (MA) filter is used to eliminate the nominal
background.

In practice, the receiver collects time samples of the reflection
and stores it as a vector. For convenience, we use vector notation
in our discussion, i.e., is a column vector representing
observation of the th T/R pair at the th down-track position.
The length of is , the number of samples in time.
Fig. 3 shows the received signal after the nominal background
removal.1 We then have the hypothesis test

(1)

where , are positions of GPR,
is the assumed signal due to presence of a buried object,
is assumed to be a white Gaussian noise with a zero

mean, and covariance matrix , where is the identity matrix
of size and independent of .

The statistical assumptions aboutare not strictly accurate
in describing the noise in a GPR signal. For example, the back-
ground removal process will not be perfect, leaving a component
of correlated “clutter” in the data which may or may not possess
Gaussian statistics. Despite the mismatch, the use of the additive
white Gaussian noise (AWGN) model is useful for a number of
reasons. This model allows us to develop an algorithm for ob-
ject detection which is firmly rooted in Gaussian-based statis-
tical decision theory and which can be generalized in the future
for more complex noise processes. Moreover, the complexity
of such algorithms is quite low making them well suited for
real-world implementation. Finally, test results in Section III
from real field data demonstrate that the method is quite ef-
fective in detecting objects. Thus, the Gaussian noise model is
shown to work in practice. While it may be interesting to ex-
plore other, more accurate models for the sensor noise to deter-
mine for example what can be gained in terms of performance
and what would be lost in terms of computational complexity,
such an effort is beyond the scope of the work in this paper.

Based on the previous discussion, after background removal
the hypothesis test in (1) may be written as

(2)

where the notation indicates that is distributed
as a Gaussian random vector with meanand covariance matrix

.
As stated in the Introduction, we take a two-step approach

to the processing of . First, for each we use the
HANOVA procedure to generate a single test statistic, ,
from the data from all T/R pairs. Second, a recursive, sequential
detection scheme is employed to process as we proceed
down track in order to determine where objects are present.

A. Cross-Track Processing

We begin by discussing the use of HANOVA to process data
in the cross-track direction. HANOVA is a generalized version

1For the purpose of illustration, in this section we use field data from a buried
metal mine to illustrate clearly the concept under consideration. Examples
which demonstrate better the utility of our approach on more challenging
problems, including buried plastic mines, are given in Section III.
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Fig. 3. Signals from four T/R pairs, after background removal. (a) Pair 1. (b) Pair 2. (c) Pair 3. (d) Pair 4. Unit in down-track position is about 7.6 cm. Unit in
time axes is 0.02 ns.

of analysis of variance (ANOVA). ANOVA is a body of methods
to analyze the data with a view to test hypotheses about the
effects of one or more factors [23]. To review the basics of
ANOVA, we follow the notation established above for the GPR
problem and for simplicity assume we have one data vector of
size from a single T/R pair with normalized to one.
Hence, and we wish to test (i.e., no
object) versus (i.e., an object present).2 Standard
ANOVA is essentially an “energy detection” scheme [14] where
we estimate by , generate the test statistic , and
compare to a threshold, . If exceeds the threshold, is
chosen, else is selected. The probability of detection of the
standard ANOVA is [14]

(3)

where is the test threshold decided by setting an acceptable
probability of false alarm under and is the complementary
cumulative distribution function (cdf) and is strictly decreasing
[24]

(4)

2For notional simplicity, we drop the explicit dependence of all quantities on
m andn in this discussion.

Recently, Fan [14] and Fan and Lin [15] have noted that the
performance of ANOVA suffers for problems when the signal
of interest is limited to a window of the observation vector.
The reason is that a full dimensional test loses its power due
to accumulation of stochastic noise. To see why, supposeis
different from only for say the first samples of the full
observation vector. Then, on average, as goes large,

decreases due to the accumulation of zero
mean noise samples and the term within the parenthesis of (3)
increases, thus reducing. Therefore, for higher probability of
detection, we would like to confine the test on a window mostly
containing the signal of the observation vector. The window we
choose is a box window , defined as

otherwise
(5)

where . The and are chosen in a
preset manner, as discussed later in this section. Multiplying
each element in by the corresponding element ofgives the
windowed

(6)

This kind of method of reducing a full dimensional test to a
windowed version is called HANOVA [15]. To demonstrate the
utility of HANOVA, we test the time series shown in Fig. 4(a).
We choose to test the vector at its full dimensionin (5) is
1 and , and two windowed subdimensions (each
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Fig. 4. Motivating example for use of HANOVA rather than ANOVA. (a) Sample data collected by a GPR when over an object. The transient nature of the relevant
portion of the signal is clear. Using this signal, in (b) we display the decreasing detection rates associated with including increasing numbers of “noise” samples in
the processing.

containing fewer and fewer noise components) and
, and and . From Fig. 4(b), it

is seen that, by setting the window properly, higher probability
of detection is gained at different levels of detection thresholds,

in (3). It demonstrates that when signal is not “full-dimen-
sional,” looking for a window of signal-rich subdimensions to
test will increase the probability of detection.

When the observation is a sequence of high-dimensional vec-
tors whose components are mostly noise, as is the case for our
GPR problem, it is desirable to adaptively choose the window
to maximize the probability of detection. Fan’s original work
was limited to problems in which the first dimensions are
believed to be signal-rich and used in HANOVA, with found
from the data. Here we consider a generalization of Fan’s work
to take into account the fact that for the GPR problem the tran-
sient signal is significant over a window not generally starting
with the first dimension but in the middle of the observation
vector. Moreover, this window will vary with .

To choose this window we note that (3) indicates that the
probability of detection achieves its maximum value when the
term inside the parenthesis is minimized. Fan [14] proposed
a one-side maximization when there is prior information that
large absolute values ofare mainly located on the first di-
mensions. In his work, the window is chosen by finding asuch
that [14]

Based on Fan’s work, we generalize it to a two-side maximiza-
tion, in which we want to maximize the quantity

(7)

where , is the standard deviation defined
in (2), and is the mean value of the previousvectors, defined
as

(8)

where and the corresponding window
is decided based on as are defined by (7). More
will be said about choosing a properin the Appendix.

Rather than looking for the optimal window by searching over
all pairs, we pursue a suboptimal, but more efficient
two-stage approach. First, we fix as 1, incrementally increase

, and stop when (7) is maximized. Thus, we determine the end
point of the window . Starting from , working backward
toward the first point, we similarly determine the starting point
of the window, . In the backward search, to make the math-
ematics concise, we introduce a new operator, which takes a
vector as its input and rearrange the elements backward, i.e.,

(9)

where the superscript denotes transpose. Both searching steps
can be computed in linear complexity: it takes steps to find
the and steps to find the .3 In summary, the steps for
looking for windows at the th stop of the GPR array are given
in Fig. 5.

Having determined the window at the position , the
next stage of processing is to generate a single detection statistic
at stop . Here we generalize HANOVA to multiple vector ob-
servations via

(11)

3The notationo(K) means that the computational complexity grows slower
than or equally fast asK increases.
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Fig. 5. Steps of deciding windoww(m; n) andy (m; n).

Fig. 6. HANOVA and SPRT processing results for metal mine data shown in Fig. 3. Unit in down-track position is about 7.6 cm.

Note that can be of different lengths because of dif-
ferent windows applied. Fig. 6(a) shows the result of applying
HANOVA to the data in Fig. 3. Where the HANOVA output is
high, so too is the likelihood of an object being present. Thus,
in Fig. 6(a), the object is clearly detectable. More examples in-
volving different types of objects will be given in Section III.

B. Down-Track Processing

While HANOVA detects statistical significance at one stop of
the array, it does not capture the object signal structure seen as
the array moves down-track. To improve detection performance,
we employ a sequential detection scheme to process re-
cursively as increases in order to identify the transient signal
arising from the mine [4], [25]. Specification of this SPRT be-
gins by noting that under our models takes on a distri-

bution under both and . Letting
, standard statistical analysis [14] yields

(12)

for where the notation indicates
that the random variable is distributed according to a law
of order and noncentrality parameter [24]. For the GPR
problem, it is easy to show that

(13)

For our problem, the length of each window is large (on the
order of hundreds) and the central limit theorem permits us to
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Fig. 7. Sequential processing.

Fig. 8. Results of a single GPR measurement above a steel object around position 50. (a) Raw observation. (b) Observation after nominal background removal.
(c) ANOVA output. (d) HANOVA output. In (a) and (b), unit in down-track position is about 7.6 cm, unit in time axes is 0.02 ns.

approximate the distribution using a Gaussian distribution
[24]. We then have

(14)

At stop , the log likelihood ratio for the hypothesis testing
problem in (14) is

(15)

where is the probability density function (pdf) of
evaluated at the th stop under and is the

pdf of evaluated under . Under , and are esti-
mated using data from an object-free area. Therefore, for this al-
gorithm, the GPR array must start by collecting data in a calibra-

tion region to initialize these variables. Under, one difficulty
with generating is that and are typically not
knowna priori since the underlying are not assumed
known. It turns out that we only need to estimate , and

can be found from the following relation:

(16)

At the th stop, we estimate the mean of by its maximum-
likelihood estimator [26].

The SPRT statistic is a cumulative sum, changing with
the acquisition of each new

(17)

Because subsurface object detection is a binary hypothesis
testing problem, e.g., we are only interested in knowing whether
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Fig. 9. Comparison between the ANOVA and HANOVA. (a) Raw data over an M19, anti-tank mine, buried at position 50. (b) Demeaned data. (c) Result of the
ANOVA over the M19. (d) Result of the HANOVA. Unit in down-track position is about 7.6 cm.

there is a buried object, the SPRT statistic is bounded from
lower bound, zero. When is negative,
is reset to zero. For a preset threshold, the SPRT will make
one of two decisions at each

choose

take another observation.

The sequential detection is then essentially a repeated SPRT [5]
and summarized in Fig. 7. Fig. 6(b) shows the sequential test
statistic when the SPRT is applied to the data in Fig. 6(a). Be-
cause the SPRT in (17) has the form of a modified “integrator,”
a typical time series for the SPRT statistic takes a step-like form.
The larger and sharper the step, the more likely it is that a target
is present. At the position where there is an object, the sequen-
tial test statistic has a clear upward change again indicating the
existence of an object at about position 16.

III. EXAMPLES

In this section we use field data as examples to illustrate
the performance of our method. The field data are collected
by both single GPR and GPR arrays at different test sites.
For each data set, we compare the results from using stan-
dard ANOVA, HANOVA, ANOVA followed by SPRT, and
HANOVA followed by SPRT. Comparison indicates that gen-
erally HANOVA performs better than ANOVA, and with SPRT,
both ANOVA and HANOVA make fewer false alarms. In other

words, HANOVA with SPRT gives the best receiver-operating
characteristics (ROCs), as we shall see later in this section. Test
sites are different in the number of targets buried underneath,
moisture of the soil, roughness of the ground surface, and level
of vegetation in the test sites.

At first, we apply our method on data collected by single
GPR at Socorro test site, New Mexico. Data were collected by
a GPR moving along a linear track at 5 km/h sampling every
7.6 cm. Some data are taken under relatively favorable condi-
tion, while most are from more hostile test sites which involve
rough ground surface and other clutter. Fig. 8 compares results
of ANOVA and HANOVA on a buried steel object at position 50.
For comparison, the outputs of ANOVA and HANOVA are nor-
malized to one. It is observable that while both methods detect
the object easily, the HANOVA is better in suppressing noise
output where there is no object, e.g., at position 1 through 40
and 60 through 100, Fig. 8(c) and (d). Fig. 9 shows the results
from detecting a plastic mine, M19, at position 50. Again, the
HANOVA performs better in suppressing noise. At positions 20
through 40, the HANOVA creates a much lower noise level than
the ANOVA does. Similarly, the HANOVA produces a cleaner
output at the end of the run. The order of MA process used in
window selection is 4.

Fig. 10 shows the results of ANOVA and HANOVA in de-
tecting an anti-tank mine, TM62, from a very “noisy” data set.
The mine is buried at position 60. Outputs of both HANOVA and
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Fig. 10. More comparison between the ANOVA and HANOVA. (a) Raw data over a TM62, anti-tank mine, buried to the side of the track at position 58.
(b) Demeaned data. (c) Result of the ANOVA. (d) Result of the HANOVA. Unit in down-track position is about 7.6 cm.

ANOVA consist of the correct detection and some false alarms.
The HANOVA maintains a better performance than the ANOVA
in the sense that, for a given detection threshold, the HANOVA
would generally have a smaller number of false alarms. For
the HANOVA, no false alarm will be declared for a threshold
greater than 0.5, while for the ANOVA, the threshold must be set
above 0.8 to avoid making a wrong decision. Between threshold
0.5 and 0.8, the ANOVA will make two false alarms while the
HANOVA has zero false alarms.

Next, by comparing the outputs of the SPRT in the above
three examples, we see that sequential processing generates
fewer false alarms than by using ANOVA (or HANOVA) only
(Fig. 11). In all three examples, SPRT following HANOVA
performs better than SPRT following ANOVA, in the sense that
the jump at the position of the buried object is sharper and the
curve is close to zero-level in the object-free area.

To study the ROC of the method, we test our method on
multiple runs of different types of targets. Fig. 12(a) shows the
ROC curves of ANOVA and HANOVA to detect 60 metallic ob-
jects. The objects include metallic mines such as TM15, TM46,
and PMN. Fig. 12(b) shows the ROC of ANOVA-SPRT and
HANOVA-SPRT. Compared with Fig. 12(a), SPRT improves
the performance of both ANOVA and HANOVA. In generating
these curves, a correct identification of any of the objects was
taken to be a “detection” whether or not the object itself was a
mine. Indeed, as noted in the Introduction, the algorithm in this

paper is intendedonly to detect the presence of objects below
the array and not to solve the classification problem. Still, given
the “real-world” conditions under which the data were taken,
the low false-alarm rates here point to the robustness of our
approach.

Next, we compare the performance of ANOVA, HANOVA,
ANOVA-SPRT, and HANOVA-SPRT in detecting 70 plastic
mines. The mines are M19, VS-1.6, T72, and C4A1. Fig. 13
shows the ROC curves of the above four methods. It is seen that
both the ANOVA-SPRT and HANOVA-SPRT perform better
than the ANOVA and HANOVA, respectively.

As another example, we test our method on a different array
radar system at another test site. The setup of the GPR array
is shown in Fig. 14. There is one transmitter in this system. In
front of the transmitter, four receivers are positioned in a 22
pattern. Above the transmitter and the receivers there is a hyper-
bolic reflection plate; it is set so that the transmitter is at the focal
point of the reflection plate. The array moves on a linear track
to collect data. At each step, the transmitter sends a spherical
wave to the reflection plate and after reflection, the sphere wave
becomes plane wave. The four receivers then collect reflection
of this plane wave from the ground. The system has the advan-
tage of generating plane wave and points it forward to reduce
ground reflection. The order of MA process used in window se-
lection is 4. Fig. 15 displays collected data from the two front
receivers at the Dedham test site of Northeastern University and
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Fig. 11. Results of the SPRT, a buried steel object. (a) Output of ANOVA-SPRT. (b) Output of HANOVA-SPRT; a buried M19. (c) Output of ANOVA-SPRT.
(d) Output of HANOVA-SPRT; a buried TM62. (e) Output of ANOVA-SPRT. (f) Output of HANOVA-SPRT. Unit in down-track position is about 7.6 cm.

the corresponding signal after background removal. In an area
of 58 m , there are 12 buried landmines of different types, such
as M19, PMN, VS-2.2, and so on. Using our method we are
able to detect all 12 mines with a few false alarms (see Fig. 16).
The results are similar to those obtained by a single GPR. For
a detection rate above 90%, the HANOVA has a significantly
smaller number of false alarms.

IV. SUMMARY

In this paper, we have proposed a sequential, high-dimen-
sional ANOVA to process GPR returns. The method is tested on

real data and has a relaxed requirement on the physical model
used in the processing routine. The method is on-line imple-
mentable and has a linear computational load. The method
works in two stages: first it looks for statistically significant
difference from array observations, and second, it applies a
sequential detection as new data are obtained. HANOVA is
powerful in the sense of maximizing probability of detecting
statistically significant difference among subdimensions of a
full vector of observations. Sequential detection recursively
processes the result of the HANOVA and enables real-time
processing as new data are collected. We have demonstrated
the performance of this technique on samples of field data.
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Fig. 12. Rate of detection and rate of false alarm in detecting metallic objects. Solid line is the result of HANOVA, and the dashed line is the result of ANOVA.
(a) ANOVA versus HANOVA. (b) ANOVA-SPRT versus HANOVA-SPRT.

Fig. 13. Rate of detection and rate of false alarm in detecting plastic mines. The solid line is the result of HANOVA, and the dashed line is the result of ANOVA.
(a) ANOVA versus HANOVA. (b) ANOVA-SPRT versus HANOVA-SPRT.

Fig. 14. GPR array used at Dedham test site of Northeastern University. (a) Plane view. (b) Side view.

Future research will focus on localization. Localization is
based on optimized frequency-wavenumber (F-K) migration.
F-K migration is an inversion method that back-propagates the
wavefield from the ground surface to the subsurface and con-
structs an image of subsurface reflectivity. Regular F-K migra-

tion is well modeled for seismic signal processing. Though GPR
signal is different from seismic signal, F-K migration can still
work very well in processing GPR signals. Nonetheless, im-
provement in terms of resolution and accuracy can be achieved
by considering optimization in F-K migration.
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Fig. 15. GPR data from the Dedham test site (a) from the left front receiver, (b) from the right front receiver, (c) signal (a) after background removal,and
(d) signal of (b) after background removal. Unit in down-track position is about 7.6 cm. Unit in time axes is 120 ps.

Fig. 16. ROCs of the Dedham test. Solid line: HANOVA-SPRT; dashed line:
ANOVA-SPRT.

APPENDIX

WINDOW SELECTION IN HANOVA

Ideally, we want to find a window that is sensitive to the pres-
ence of a signal and provides little response in the test statistic
when there is noise only. But these two requirements are often
in conflict with each other. From (8), we can change the order

of the MA process to control the window we use. The smaller
is, the more sensitive the window is to the presence of signal

and strong noise. On the other hand, the largeris, the more ro-
bust will the statistic be to noise, which translates into a smaller

probability of false alarm. But a largereduces sensitivity of the
HANOVA to signal. Fig. 17 shows the effect ofon window se-
lection and the corresponding HANOVA results. Three different

are used, i.e., . In the data, there are three mine
objects: two metal mines at positions 110 and 170 and a weak
mine object at position 25. For comparison, we normalize the
HANOVA outputs in each case by its maximum value, which
corresponds to the strong metal mine buried at position 110.
Fig. 17(a) and (b) show the window chosen by an MA of order 1
and the resulting HANOVA output. The two strong objects can
be detected at a threshold of 0.7, the weak object can only be
found at a threshold of 0.2. Fig. 17(c) shows the window chosen
by an MA of order 4. The window oscillates much less than the
window in Fig. 17(a). From the HANOVA result, Fig. 17(d), we
can find all the three objects at a threshold of 0.3. Increasing
the order of MA process can make the results worse, Fig. 17(e)
and (f). A large window reduces the sensitivity of the HANOVA
to the signal and actually makes detection more difficult. Now
the weak object at position 25 can not be detected at a threshold
greater than 0.3. As a guideline, we find that MA processes of
order between 3 and 10 yield good windows both in sensitivity
to signal and robustness to noise. This selection is affected by
the step-size of the array. An array moving at small step-size
will allow an MA process of large in selecting windows, and
vice versa.
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Fig. 17. Choices of window and effect on HANOVA. The lower line isk (m; n), and the upper line isk (m; n). (a) Window selected by an order-1 MA process.
(b) HANOVA result from the window to the left. (c) Window selected by an order-4 MA process. (d) HANOVA result from the window to the left. (e) Window
selected by an order-10 MA process. (f) HANOVA test result from the window to the left. Unit in down-track position is about 7.6 cm.
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