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Abstract

Motivated by recent work in the area of dynamic magnetic resonance imaging (MRI), we
develop a new approach toward the problem of reduced order MRI acquisition. Recent efforts
in this field have concentrated on the use of Fourier and Singular Value Decomposition (SVD)
methods to obtain low order representations of an entire image plane. We augment this work
to the case of imaging an arbitrarily shaped region of interest (ROI) embedded within the full
image. After developing a natural error metric for this problem, we show that determining the
minimal order required to meet a prescribed error level is in general intractable, but can be
solved under certain assumptions. We then develop an optimization approach to the related
problem of minimizing the error for a given order. Finally we demonstrate the utility of this
approach and its advantages over existing Fourier and SVD methods on a number of MRI
images.
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1 Introduction

Over the past few decades, magnetic resonance imaging (MRI) has become a powerful tool

for imaging soft tissue. MRI provides high resolution images of internal tissue structure through

non-invasive means and has been used extensively in medical diagnosis and treatment planning.

Traditional MRI techniques use a series of magnetic field gradients and radio-frequency (rf) pulses

to encode the position and composition of molecules within a tissue volume. These excitation

sequences are used to scan a volume in a sequence of slices, typically by direct sampling of the

two-dimensional spatial Fourier domain, or k-space, of the slice. An inverse Fourier transform is

then used to reconstruct images of the tissue composition within each slice. For a review of MR

imaging from a signal processing perspective, see [1].

A promising new application of MRI technology is dynamic MR sequence imaging. In dynamic

imaging, one acquires a sequence of images to monitor changes in the tissue [2]. Clinical applications

where dynamic MR imaging is of interest include observation of the early flow of contrast agent [3,4],

real time monitoring of surgical interventions or thermal treatments [5], and cardiac imaging [6].

In these cases, there is always a trade-off between temporal resolution, spatial resolution, volume

coverage and signal-to-noise ratio. For example, the ability to image cardiac activity in real time

comes at the expense of limited volume coverage and low spatial resolution [8]. Thus, there is a

real need for faster image acquisition techniques.

The physical dynamics of MR imaging constrain the image acquisition time. Typically, one line

in k-space is sampled for each excitation sequence. The required acquisition time for an image is

proportional to the number of lines sampled in k-space, or equivalently, the number of excitations

used. One approach to reduce the acquisition time of a single image is to lower the number of

excitations employed and thus obtain a low order representation of the underlying image. Thus

the problem of reducing acquisition time is equivalent to choosing both an appropriate number of
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excitations and the particular excitation sequences themselves.

Previous proposals to reduce acquisition time follow one of two general approaches. The first

defines the set of excitations using no information about the underlying image. Here, the physical

MRI acquisition process suggests using a reduced order Fourier basis set. Such techniques include

the Fourier Keyhole method [9], and the multiple region MRI method [10]. Predefined non-Fourier

excitations have also been proposed, such as the wavelet techniques in [11,12]. The second approach

is to generate excitations based on some known information about the image obtained from a pre-

viously acquired scan. For example, a full image scan may be obtained just before the introduction

of contrast agent or prior to surgical intervention. Information from this known image can then

be used to design excitation sequences to efficiently acquire subsequent image data in the dynamic

sequence. One such method is to construct excitation sequences using singular value information

from the given image [2].

A key characteristic of both the Fourier and SVD methods is that they rely on image decompo-

sitions using basis functions that span the entire image region. For many dynamic MRI problems

however, the relevant information is often contained within a small region of interest (ROI) within

the scanned volume. Imaging tissue outside the ROI consumes time and resources, and yet provides

only extraneous information. If one is able to adequately image just the ROI using a relatively

small number of excitations, then the time to acquire the ROI will be correspondingly reduced.

In this work we extend image dependent excitation determination methods to the acquisition

of arbitrarily shaped ROIs. As in the full image SVD approach, we assume a known prior image

and use it to design appropriate image acquisition sequences. Unlike the SVD, Fourier, or wavelet

methods, we are concerned with explicitly selecting a sequence that optimally represents an ar-

bitrary ROI. Our technique is based on the linear system model for the MRI acquisition process

developed in [2, 13]. Here the excitation sequences are represented as a set of finite-dimensional
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input vectors. In addition, this model requires a set of corresponding reconstruction vectors to build

an image from the output data1.

Our formulation of the ROI problem is motivated by the framework presented in [13]. When

the ROI is in fact the whole image, it is well known that truncating the SVD results in an optimal

low order representation of the original image where optimality is measured in a Frobenius norm

sense [14]. Thus, we start our formulation of the arbitrary ROI problem by specifying a Frobenius

norm cost function relating the error in representing the ROI in the known image to a collection of

excitation and reconstruction vectors. Using this cost function, we present a method for choosing

these vectors.

From a practical perspective, it seems natural to determine both the minimal number of vectors

and the vectors themselves such that the error does not exceed a prescribed threshold. Since image

acquisition time is proportional to the number of excitations, we optimize speed for a given level of

error by minimizing the order. Unfortunately, this minimal order problem is exceptionally difficult

to solve. In § 3 we explain why this is the case and discuss some restrictive situations where we can

say something concrete about the solution to the problem or properties the solution must possess.

Given the difficulty of the minimal order problem, we next examine the case where we fix

the approximation order and seek a minimal error solution. This formulation yields a non-linear

optimization problem which we solve using a coordinate descent algorithm. A key component of

this approach is the a priori specification of the number of vectors to be used. We employ upper

bounds obtained through analysis of the minimal order problem to guide this choice. Our simulation

results indicate that for convex ROIs the upper bound for zero error is especially tight.

Before continuing, we make two observations. First, by solving the minimum error problem for

every possible number of excitations, one can obtain a solution to the more difficult minimal order

1We note that both Fourier and SVD methods also require reconstruction vectors. As explained in § 2.1, in these
cases, the reconstruction vectors are trivially specified once the excitation sequences are determined.
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problem. Second, an assumption underlying both this work and the SVD method of [13] is that

tailoring the excitation and reconstruction vectors using the known, previously acquired image will

be useful for the subsequent problem of tracking dynamic changes. For the SVD method, this has

been shown to hold for some important applications in [2,15]. The application of these methods to

an arbitrarily specified ROI is an area in which we are currently working.

The remainder of this paper is organized as follows: In § 2, we review the linear MRI model

used in this paper and present a cost function formulation for finding the excitation vectors for an

arbitrarily shaped ROI. The minimal order problem is discussed in § 3. We approach the more

tractable minimal error problem in § 4 and present a coordinate descent algorithm to provide

numerical solutions. Simulation results are presented in § 5 with conclusions and future efforts

described in § 6.

2 Background

2.1 A Linear Model for MR Imaging

The magnetic resonance imaging process can be described by a linear response model if the

acquisition uses rf encoding with a low flip angle excitation [13]. For a given image A and input

excitation sequence vector x, the output of a single scan, y, is equal to the matrix-vector product,

y = Ax. Here x represents time samples of the rf excitation waveform envelope and y represents

time samples of the received rf signal envelope. The matrix A then represents the information of

interest in the slice being sampled via the representation detailed in [13]2.

Generally, one collects r such scans together to form the matrix equation Y = AX, where A

is an M × N matrix, Y = [ y1 y2 · · · yr ] and X = [ x1 x2 · · · xr ]. To reconstruct the image,

one must unwrap the effects of the input vectors to expose the underlying image. This is typically

2As originally presented in [13], x, y and A were frequency domain representations of the input, output, and
image. However, appropriate use of the inverse Fourier transform allows for the spatial/temporal interpretation of
these quantities which is employed in the work here.
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accomplished by applying an r × N reconstruction matrix L to the output matrix to produce

Â = Y L∗ = AXL∗ where ∗ indicates complex-conjugate (Hermitian) transpose.

A number of MRI modalities can be represented by this model. In the case of the Fourier

Keyhole (FK) method [9], the matrix X captures the lower spatial frequency components of k-

space. With L = X, Â contains r low frequency components of the two dimensional spatial Fourier

transform of the actual image. For SVD methods [2,16], the vectors in X are chosen from the right

singular vectors of the real image matrix A and the acquired image is again reconstructed with

L = X.

A key advantage of these Fourier and SVD based methods is that one can easily generate a

reduced order reconstruction of A. That is, useful image information is recoverable even if one uses

r < N excitation and reconstruction vectors. From our perspective, the primary disadvantage of

these methods is that the vectors in X and L are global in nature, while in many cases the desired

information in A is restricted to a limited region. As we demonstrate in § 5, methods that derive

input and reconstruction vectors solely from global orthogonal basis sets are not well suited for

arbitrarily shaped limited region problems.

2.2 Problem Formulation

Given the linear response model above, the problem approached in this paper is to build on

current MRI techniques to acquire and represent only certain elements of the image matrix A. In

particular, we adopt the outer-product machinery, XLT , suggested by the previous methods, but

choose X and L to reconstruct a specified but arbitrarily shaped region of interest within the image

matrix. The elements of interest are described through an M ×N selection matrix matrix S, with

elements sij ∈ {0, 1}3. The ROI is designated as the region of A corresponding to the non-zero

elements of S.

3We use selection matrices with binary elements in this paper. However, the results can be extended to weighted
selection matrices by using selection elements in the range 0 ≤ sij ≤ 1.

6



We identify a set of acquisition and reconstruction vectors through explicit formulation and

minimization of the cost function

J = ‖S ◦ (A−AXLT )‖2F , (1)

where A and S are of size M × N , and X and L are of size N × r. The ◦ operator denotes an

element-by-element (Hadamard, or Schur) product. For an arbitrary matrix B, the Frobenius norm

is ‖B‖2F =
∑
i,j b

2
ij . We assume that A and any principle minor of A are full rank.

As discussed in § 1, this cost function immediately suggests two problems which could be posed.

On the one hand we can set an error tolerance level and seek a minimal r such that some X and

L exist which produce a cost not in excess of that value. We term this the minimal order problem

and discuss it in § 3. Alternatively, we can fix r and seek an X and L which minimize J . § 4 is

devoted to an analysis and solution of this minimal error formulation.

3 The Minimal Order Problem

It turns out that the general case of the minimal order problem is quite intractable for math-

ematically precise reasons. To understand why, consider the simpler problem where we ask only

for some Q ≡ XLT such that the cost is zero. We ignore for the moment the requirement that Q

be factorizable into the XLT form, with X and L of column width r, and seek only the individual

elements of Q itself. This formulation belongs to a class of matrix completion problems [17–20].

The best known matrix completion problems in signal processing involve maximum entropy

extensions of autocorrelation sequences in which case the matrices possess a Toeplitz structure.

Other common problems approach the completion of partially specified Hadamard or symmetric

matrices. Solutions to these problems typically make deep use of the intended structural properties

of the completed matrix, Â. The more general problem of choosing an unstructured Q (with or

without the factorization constraint) and requiring the cost to be less than some non-zero threshold
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is much more complex. Other than its known usefulness in extending autocorrelation matrices for

spectral estimation [21], no strong results for non-zero costs have been obtained to date.

Despite the difficulty in determining a solution to the general minimal order problem, we have

found that there are cases with significant structure that allows us to say a bit more. We present

two below which provide some useful insight and results which we use in our approach to the

alternate, more tractable, minimal error formulation described in the next section.

3.1 Rectangular ROI, Arbitrary Error Threshold

The first case of interest is when the ROI is rectangular in shape. In this case the optimal

solution to the fixed error problem can be found from the SVD of the sub-matrix chosen by S. To

begin, let us assume that S takes the form

S =

[
1 0
0 0

]
(2)

with 1 the matrix of all ones. If the rectangular ROI is not located in the upper left corner, row

and column permutations can be performed to arrive at the structure in (2). It is easily shown that

J is permutation invariant and no change in the cost results from these operations. Let A11 be the

upper left block of S ◦A and define r11 to be the number of rows in A11. With these definitions we

have

Theorem 1 For rectangular ROIs, the solution to the minimal order, fixed error problem is given

by the largest r such that
r11∑

i=r+1

σi ≤ ε

where ε is the error level, and σi is the ith singular value of A11 with σ1 > σ2 > . . . > σr11.

Furthermore, the optimal X and L matrices for this solution can be obtained from the singular

vectors of A11.

The proof is given in Appendix A.1.
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This theorem has a number of consequences of interest to us in this work. First, if the ROI

is rectangular, then the SVD of the ROI (rather than the whole image) will in fact provide an

optimal solution to our problem. More importantly, if the ROI is not rectangular, then the SVD of

the smallest rectangle covering the ROI represents a sub-optimal solution and provides an upper

bound on the solution to the underlying, arbitrary ROI problem. We use this observation in § 4.3

to guide the determination of an appropriate order for the minimum error problem.

3.2 Arbitrarily Specified ROI, Zero Error

This second case concerns arbitrary ROIs and a fixed error of zero. Here we present a sub-

optimal parameterization of (X,L) which provides the following sufficient condition for an order r

solution to satisfy the zero error requirement:

Theorem 2 For a given selection matrix S, an order r solution of the form

X =

[
Ir
0

]
L =

[
Ir
QT12

]
or Qr = XLT =

[
Ir Q12
0 0

]
(3)

will give zero error if
∑
i sij ≤ r for each column j of S such that j > r. Here Ir is the r × r

identity matrix, and Q12 is an r× (N − r) sub-matrix of free parameters. The minimum r for this

form is found by permuting S such that its columns contain a non-increasing number of non-zero

elements.

The proof is given in Appendix A.2.

With the above parameterization of X and L, the solution can be written in closed form.

There also exists a simple mechanism to find the minimal order required for zero error for this

parameterization. However, there may exist other zero error solutions with an XLT structure

different than the one given in (3) and with a lower order. Thus, this theorem provides an upper

bound, ru, on the order required for zero error. Specifically, this upper bound is the smallest r that

satisfies the inequality
∑
i sij ≤ r for all j > r.
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To summarize, we have presented two results for the minimal order problem. On the one hand,

we have a full solution to the problem for a rectangular region and arbitrary error. This result also

provides an upper bound on the smallest r required for a given error threshold and arbitrary ROI.

Second, we have a sufficient condition for a size r solution to the general ROI, zero error problem.

This latter result provides an upper bound on the minimum order required to meet a zero error

condition. Given that non-zero error solutions require fewer vectors than zero error solutions, this

latter result also provides an upper bound on the order needed to meet any error threshold.

4 The Minimal Error Problem

Given the restrictive nature of the results in the previous section, we now present an alternate

formulation to the problem of choosing X and L. Specifically, rather than fixing the error level

and minimizing r, we fix r and find some X and L that provide minimum error. Formally, with

the cost function given in (1) we seek a solution to

(Xopt, Lopt) = argmin
X,L

J (X,L) = argmin
X,L

∥∥∥S ◦ (A−AXLT )
∥∥∥2

F
(4)

for a given number of columns r in X and L.

We note that for any given r, the (X,L) pair that minimize J are not unique. Any solution can

be modified by an invertible matrix R of appropriate size via XLT =
(
XR

) (
R−1LT

)
= X1L

T
1 .

In principle, one could think of either seeking an alternate parameterization of the problem which

yields a unique solution or of using the extra degrees of freedom in R to achieve other design

objectives for X and L. All we desire here are some X and L which minimize J .

Because (4) is quartic in the elements of X and L, a minimum of J cannot in general be

determined in closed form. Thus we pursue a numerical solution to the optimization problem. To

start, we observe that all minima of J must satisfy both of the following equations: ∂J /∂X = 0,
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and ∂J /∂L = 0. Computing these partial derivatives gives

∂J
∂X

= −2AT
[
S ◦ S ◦ (A−AXLT )

]
L (5)

∂J
∂L

= −2
[
S ◦ S ◦ (A−AXLT )

]T
AX. (6)

To determine an X and L satisfying (5) and (6) we employ a variant of the Cyclic Coordinate

Descent (CCD) algorithm described in [22].

4.1 CCD Algorithm

The CCD algorithm alternately solves each of the two gradient equations, (5) and (6), once in

each iteration. For each iteration step, first X is held fixed, and L is found such that ∂J /∂L = 0.

To complete the iteration, L is held fixed, and a corresponding X is found such that ∂J /∂X = 0.

Setting each of the gradient equations above, (5) and (6), equal to zero gives

AT (S ◦ S ◦A)L = AT
[
S ◦ S ◦

(
AXLT

)]
L (7)

[S ◦ S ◦A]T (AX) =
[
S ◦ S ◦

(
AXLT

)]T
(AX). (8)

These equations can be manipulated to yield a system of equations with the form Ba = c

through the vec{} operator, which stacks the columns of a matrix into a column vector, and the

Kronecker product, ⊗ [23]. The vectorized versions of (7) and (8) are

vec{AT (S ◦ S ◦A)L} =
[
(LT ⊗AT )diag{vec{S ◦ S}}(L⊗A)

]
vec{X} (9)

vec{[S ◦ S ◦A]T (AX)} =
[
((AX)T ⊗ In)diag{vec{ST ◦ ST }}((AX)⊗ In)

]
vec{L} (10)

Both of these systems contain a singular matrix of the form MTdiag{vec{S ◦ S}}M . The

elements of S appear as a diagonal matrix embedded in the middle of the matrix product. For
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region of interest problems, some elements of S will be zero, thereby causing the overall matrix to

be rank deficient even if A is square and full rank. We use the Moore-Penrose pseudo-inverse [14]

to solve these systems at each iteration.

Although straightforward, a direct implementation of the coordinate descent algorithm is quite

computationally intensive. Equations (9) and (10) both contain a matrix of size (rN)× (rN) that

must be solved via a pseudo-inverse at each iteration. However, as described in Appendix A.3,

there exists a significant level of structure in these matrices that can be exploited to reduce the

computational requirements for finding the system solution.

4.2 CCD Initialization

The CCD method described in § 4.1 converges to a local minimum of the cost function. Because

many local minima may exist on the cost surface, convergence to a “good” minimum is dependent

on the initialization point of the algorithm. After experimenting with a number of initialization

heuristics, we found an approach that performed particularly well based on the X and L parame-

terization given in (3) of § 3.2.

Specifically, substituting (3) into (4) leaves a linear least squares problem for determining Q12.

To determine Q12, we solve a set of normal equations whose structure is similar to that of (8) and

(10). We then form the matrix

Qr =

[
Ir Q12
0 0

]

and compute its SVD, Qr = UΣV T . The CCD algorithm is initialized with X = UΣ and L = V .

4.3 Choice of approximation order

Solution of the minimum error problem requires a prior specification of the approximation order

r, i.e. the number of vectors in X and L. Here we concentrate on selecting the order based on

upper bounds of the resulting error. Given the discussion in § 3, it is not surprising that we have
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two types of bounds: one error bound based on an SVD argument for the case where we allow the

cost to take on some finite, non-zero value; and one order bound based on the restricted forms of

X and L in (3).

For those cases where a non-zero error is acceptable, one may use an SVD of the smallest

rectangle covering the ROI to find an upper bound on the ROI reconstruction error at a given

order. As shown in Theorem 1, the SVD is optimal for reconstruction of a rectangular ROI. If the

SVD solution at a given order can provide an acceptable approximation error, we can guarantee

that the error resulting from the localized ROI (X,L) solution will be no larger.

For arbitrarily shaped regions of interest, Theorem 2 of § 3.2 provides an upper bound on the

minimum order for zero error, which we denote as r0. According to this theorem, after permuting

S and then comparing each successive column index to the number of non-zero elements in that

column, the upper bound, ru, is the smallest r that satisfies the inequality
∑
i sij ≤ r for all j > r.

5 Examples

In this section, we present results from the application of our method to a few representative

examples. For the images in this section, the region of interest is shown with a standard intensity

map, while the region outside the ROI is shown with an inverse intensity map. That is, outside the

ROI, pixels of high intensity are shown darker than pixels of low intensity.

Two extended examples are given here. In the first, we compare our method to other low order

approximation techniques currently used in MR imaging. In the second example, we compare

solutions found for three related ROIs applied to one image. To quantitatively compare the ROI

approximations in terms of an average error per pixel, we used a normalized value of the cost

function. This was calculated as the ratio between the square root of the cost function for a given
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solution, J , and the number of non-zero elements in the selection matrix S, or equivalently,

Error per Pixel (EpP) =

√
J
‖S‖2F

=
‖S ◦ (A− Â)‖F

‖S‖F
.

5.1 Example 1: Comparison with previous methods

In the following example we compare the ROI reconstruction results given by three different

methods: Singular Value Decomposition (SVD); Fourier Keyhole (FK); and the method proposed

in this paper, Cyclic Coordinate Descent (CCD). For the FK reconstructions, only the r lowest

spatial frequency components of the smallest sub-matrix of A containing the ROI were used in

the reconstruction. For the SVD reconstruction, only the right singular vectors of the smallest

sub-matrix of A containing the ROI corresponding to the r largest singular values were used. The

CCD reconstruction vectors were found as described in § 4.1.

Arc S in 94 x 54 rectangle

20 40 60 80 100 120

20

40
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Figure 1: Original MR Image and ROI. The region outside the ROI is indicated with an inverse
intensity map.

Figure 1 shows an MRI scan of a human head along the sagittal plane. The ROI selection
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Figure 2: Permuted selection matrix for Figure 1 and geometric determination of ru.

matrix is contained within a 94 × 54 pixel rectangle. Thus to achieve zero error using either the

SVD or FK techniques, 54 input vectors would be needed. Given the sparseness of the ROI and

Theorem 2, we expect the order of the zero error CCD solution, r0, to be much lower than this.

The permuted selection matrix used to determine the upper bound ru is shown in the right panel

of Figure 2. The non-zero element count for each column and a marker for the upper bound ru is

shown in the right panel. The upper bound on r0 is determined as per § 4.3 and is found to be

ru = 43. We note that if the upper bound is tight, using 43 input vectors to re-scan the ROI will

still give a decrease in the acquisition time of about 20% compared to the orthogonal techniques,

with perfect accuracy in the ROI.

Figure 3 compares the error curves for the three different methods of low order approximation

over a range of solution orders. The right panel shows the upper range of orders with the average

error per pixel value plotted on a log scale to show greater detail near zero error. The figure shows

that at a given order, the CCD solution provides lower reconstruction error than either the FK or the

SVD methods. Furthermore, Figure 3 shows that for a given error tolerance, a CCD reconstruction
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of the ROI is available at a much lower order than either the SVD or Fourier approximation methods

provide. For instance, if the number of input vectors is fixed at 10, the CCD solution has an average

pixel error that is one half that given by the SVD. Conversely, for a given error per pixel of 10, the

ROI can be acquired in less than half the time using the CCD method. We found similar results

for the many image examples we examined with a general ROI specified.
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Figure 3: Estimation cost curves for SVD, Fourier Keyhole, and Cyclic Coordinate Descent solutions
for Figure 1 ROI. Right panel shows logarithmic scale for better detail near zero error per pixel.

Comparison of the three ROI reconstructions methods, (SVD, FK, and CCD), are given below

for two specific orders, r = 10 and r = 25.

Figure 4 shows the order 10 ROI reconstructions. The absolute difference in pixel values for

the same methods and order are shown in Figure 5. It is clear from both figures that the solution

found by the CCD method has significantly less pixel error than either the FK or SVD methods.

The CCD solution also shows a more even distribution of the error across the ROI, and greater

structural information in the ROI than either of the global orthogonal approximation methods.

The order 25 reconstructions are shown in Figure 6, with the absolute error illustrated in
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 Error per Pixel  = 12.9046
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Figure 4: Comparison of order r = 10 ROI reconstructions for (a) Cyclic Coordinate Descent
[ÂCCD], (b) SVD [ÂSV D], and (c) Fourier keyhole [ÂFK ] methods
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Figure 5: Pixel value difference comparisons of order r = 25 ROI reconstructions for (a) Cyclic
Coordinate Descent |A− ÂCCD|, (b) SVD |A− ÂSV D|, and (c) Fourier keyhole |A− ÂFK | methods
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Figure 7. While all three approximations now show structural detail in the ROI, there is still an

order of magnitude difference in the error per pixel measure. This is confirmed visually in the

absolute difference illustrations shown in Figure 7. Here, negligible error is shown for the CCD

solution, while significant error still occurs in the other two.
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Figure 6: Comparison of order r = 25 ROI reconstructions for (a) Cyclic Coordinate Descent
[ÂCCD], (b) SVD [ÂSV D], and (c) Fourier keyhole [ÂFK ] methods

5.2 Example 2: ROI comparison

In this example, we compare three separate ROIs for the same image. The ROIs used are a

square, a circle, and a “horse-shoe” shape, each contained within a 75×75 pixel region. The image

and the selection matrices are shown in Figure 8. Note that the square ROI is in fact the smallest

rectangle that covers both of the other two ROIs.

For the square ROI, Theorem 1 shows that the SVD is in fact the optimal solution. For the other

two ROIs however, the CCD algorithm provides a significant improvement over the SVD solution

at any order specified. This is demonstrated in Figures 9 and 10 which show the average error per

pixel for each ROI reconstruction over a range of approximation orders. Again, the right panel
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Figure 7: Pixel value difference comparisons of order r = 25 ROI reconstructions for (a) Cyclic
Coordinate Descent |A− ÂCCD|, (b) SVD |A− ÂSV D|, and (c) Fourier keyhole |A− ÂFK | methods
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Figure 8: MRI image of a knee with a square ROI shown. Other ROIs applied to the same 75× 75
pixel region are: (a) a circle, and (b) a “horse-shoe” shape.
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shows a logarithmic plot for greater detail near zero error. In both figures, the ROI approximation

error for the CCD solution is significantly smaller than for the SVD solution. This improvement is

more pronounced in the case of Figure 10, and is attributed to the fact that the horse-shoe selection

matrix is much more sparse than the circle.
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Figure 9: Estimation cost curves for the SVD and CCD reconstructions of Figure 8 with the circular
ROI. Right panel shows logarithmic scale for better detail near zero error per pixel.

In addition, the order required for zero error occurs at a much lower order as the ROI becomes

more sparse. From Theorem 1, we know that for the square ROI, r0 = 75 is required for zero error

in the reconstruction. Theorem 2 provides an upper bound on r0 for the other two ROIs. As per

the discussion in § 3.2, the upper bound for zero error is found to be ru = 53 for the circle ROI and

ru = 26 for the horse-shoe ROI. This is confirmed by Figure 11, where the results of the simulations

show r0 = 75 = ru for the square, r0 = 53 = ru for the circle, and r0 = 20 < ru = 26 for the

horse-shoe. Note that with the exception of the horse-shoe ROI, the upper bound on zero error is

tight despite the constrained form of (X,L) used to compute ru.

Reconstructions of order 10 for the circular ROI are shown in Figure 12. Reconstructions of
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Figure 10: Estimation cost curves for the SVD and CCD reconstructions of Figure 8 with the
horse-shoe ROI. Right panel shows logarithmic scale for better detail near zero error per pixel.
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Figure 11: Error per pixel comparison over a range of orders for the CCD reconstruction of three
ROIs in Figure 8.
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order 5 for the horse-shoe selection matrix are shown in Figure 13. Both figures show the CCD and

SVD ROI reconstructions and the absolute value of the approximation error at each pixel. These

figures clearly show that the CCD algorithm provides much higher quality ROI reconstructions at

low orders over the SVD. This difference in quality performance becomes more pronounced as the

ROI grows more sparse in a given rectangular region.
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Figure 12: SVD and CCD order r = 10 comparison for the circular ROI in Example 2. Top row
shows ROI reconstructions, Â. Bottom row shows absolute difference in pixel values, |A− Â| .

6 Summary

In this paper, we presented a problem formulation, associated analysis, and a computational

method to find a set of excitation and reconstruction vectors for efficient MRI acquisition of an

arbitrarily shaped ROI. The solution provides an ROI reconstruction of a given order with mini-

mum error in the least squares sense. We illustrated that solutions found with this method have

significantly lower approximation error in the ROI than solutions found through traditional SVD or

Fourier based methods. Additionally, we showed that one can find a zero error ROI reconstruction
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Figure 13: SVD and CCD order r = 5 comparison for the horse-shoe ROI in Example 2. Top row
shows ROI reconstructions, Â. Bottom row shows absolute difference in pixel values, |A− Â| .

with fewer scans (i.e. with lower approximation order) than traditional methods allow.

A key focus of our future efforts will be the use of the framework developed here in a dynamic

setting. Assessing the utility of our optimal vectors for tracking changes in a ROI is clearly of

interest. Developing efficient methods for jointly estimating the ROI and adaptively updating our

low order excitation sequence as the scene changes is another area of interest.

A Appendix

A.1 Proof of Theorem 1

Theorem 1: For rectangular ROIs, the solution to the minimum order, fixed error problem

is given by the largest r such that
∑r11
i=r+1 σi ≤ ε where ε is the error level, and σi is the i singular

value of A11 with σ1 > σ2 > . . . > σr11. Furthermore, the optimal X and L matrices for this

solution can be obtained from the singular vectors of A11.

Proof: As mentioned in § 3.1, selection matrices with a rectangular ROI can always be permuted
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to the form of (2). Such matrices can be described by an outer product of two vectors, S = s1s
T
2 .

If the non-zero sub-block 1 is of size m× n, then s1 and s2 are vectors with m and n leading ones

and (M−m) and (N−n) trailing zeros, respectively. As shown in [23, p.304], a Hadamard product

involving such a matrix can be rewritten as a conventional matrix product containing two diagonal

matrices. Thus for matrices with a rectangular ROI, the cost function can be written as

J = ‖(s1s
T
2 ) ◦ (A−AXLT )‖2F

= ‖D1(A−AXLT )D2‖2F

where D1 and D2 are diagonal matrices with s1 and s2 along their respective diagonals. This can

further be simplified to

J =
∥∥∥(S ◦A)− ZW T

∥∥∥2

F

where Z = D1AX and W = D2L. The optimal solution for W and Z can be found through the

SVD of (S ◦A). The structure of the optimal solution is

Z = D1AX =

[
Z1
0

]
W T = LTD2 =

[
LT1 0

]
(S ◦A) =

[
A11 0
0 0

]

Let the singular value decomposition of the rectangular sub-matrix A11 be A11 = U1Σ1V
T

1 .

The error at a given approximation r is therefore the sum of the discarded singular values, or

equivalently

J =
r11∑

i=r+1

σi

For the approximation to be less than a given error threshold ε, one need only choose r such that

∑r11
i=r+1 σi < ε.
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Returning now to choose an optimal X and LT , one may use the SVD decomposition to find

X = (D1A)†
[
U1Σ1

0

]
=

[
V1
0

]
and LT = [ V T

1 0 ].

A.2 Proof of Theorem 2

Theorem 2: For a given selection matrix S, an order r solution of the form

X =

[
Ir
0

]
L =

[
Ir
QT12

]
or Qr = XLT =

[
Ir Q12
0 0

]

will give zero error if
∑
i sij ≤ r for each column j of S such that j > r. Here Ir is the r × r

identity matrix, and Q12 is an r× (N − r) sub-matrix of free parameters. The minimum r for this

form is found by permuting S such that the columns contain a non-increasing number of non-zero

elements.

Proof: This theorem is shown true by considering that for J = 0, the following equation must

hold,

S ◦A = S ◦ (AXLT ) = S ◦ (AQr). (11)

From this, one can recognize that all columns in the Qr formulation may be treated independently.

The first r columns of the Qr parameterization contain the identity matrix in the upper sub-block,

and zeros elsewhere. Thus, the first r columns of the approximation (AQr) will be identical to the

first r columns of A, satisfying (11) for those columns.

For the remaining columns, indexed from (r + 1) to N , each of the column equations can be

rewritten as a system of equations with row size dependent on the number of non-zero elements in

the jth column of S. If one constructs the vector αj to contain the index values of the non-zero

elements in the jth column of S, then this column system may be written as

A(αj , j) = A(αj , 1 : r) qj . (12)
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Here qj is a length r vector containing the free parameters of the jth column of Qr. The vector

A(αj , j) is composed of elements from the jth column of A as specified αj . The matrix A(αj , 1 : r)

is composed by taking certain rows as specified by αj from the first r columns of the original A

matrix. The number of rows in each column system depends on the number of ones in the jth

column of S. If
∑
i sij is greater than r, then the system is over-determined and the system can

only be solved in an approximate sense. However, if
∑
i sij is less than or equal to r, then the

system is under- or exactly-determined, and with our previous assumptions on A, an exact solution

exists. Thus, if r is chosen such that
∑
i sij ≤ r for each of the columns {j; j > r}, then none of

the column systems will be over-determined. Under this condition, collecting each of these column

systems together, the order r solution of the form

Qr =

[
Ir Q12
0 0

]

has a sufficient number of free parameters to ensure that J = 0. If we permute S such that the

columns contain a non-increasing number of non-zero elements, we will find the minimum value of

r in the above expressions.

We note here that other zero-error solutions exist for a given problem, possibly with order less

than the order of the Qr solution. Thus, Theorem 2 provides an upper bound on the minimum

order needed for a zero error solution. This result is used in the algorithm initialization discussion,

presented in § 4.2, and verified in § 5.

A.3 Efficient solution of vectorized systems

In the development of the CCD algorithm, systems of linear equations appear which are de-

scribed by matrix equations that contain Kronecker products. Systems containing Kronecker prod-

ucts tend to be very large and require a substantial amount of memory and processing power to

solve. However, the system matrices presented in this paper, (9) and (10), contain a significant

26



level of structure that can be exploited to assist in finding the system solution.

In each of the equations mentioned, the matrix to invert is symmetric, and can be written to

contain expressions of the form R = (BT ⊗ I)diag{vec{C}}(B⊗ I). For example, in (9), B = (AX)

and C = (S ◦ S). Expressions of this type can be rewritten in block matrix form, with each block

containing a diagonal matrix, determined as

Rij = (BT
(:,i) ⊗ I)diag{C}(B(:,j) ⊗ I) = diag{C(B(:,i) ◦B(:,j))}.

Collecting the sub-blocks together, we find

R =


diag{C(B(:,1) ◦B(:,1))} diag{C(B(:,1) ◦B(:,2))} · · · diag{C(B(:,1) ◦B(:,m))}
diag{C(B(:,2) ◦B(:,1))} diag{C(B(:,2) ◦B(:,2))} · · · diag{C(B(:,2) ◦B(:,m))}

...
...

. . .
...

diag{C(B(:,m) ◦B(:,1))} diag{C(B(:,m) ◦B(:,2))} · · · diag{C(B(:,m) ◦B(:,m))}

 .

This matrix can then be permuted to form a block diagonal matrix via

PrRPc =


2

2

. . .
2

 .
To find the pseudo-inverse of this matrix, one may use the SVD of each individual sub-block.

By decomposing the matrix in this way, the processing resources required to compute the pseudo-

inverse can be dramatically reduced. This enables the solutions required in each iteration of the

CCD algorithm, § 4, to be calculated very quickly.
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