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Abstract

In this paper we present an algorithm for the detection, localization, and characterization of
anomalous structures in an overall region of interest given observations of scattered electromag-
netic fields obtained along the boundary of the region. Such anomaly detection problems are
encountered in applications including medical imaging, radar signal processing, and geophysical
exploration. The techniques developed in this work are based on a non-linear scattering model
relating the anomalous structures to the observed data. A sequence of M-ary hypothesis test
are employed first to localize anomalous behavior to large areas and then to refine these initial
estimates to better characterize the true target structures. We introduce a method for the in-
corporation of prior information into the processing which reflects constraints relevant directly
to the anomaly detection problem such as the number, shapes, and sizes of anomalies present in
the region. The algorithm is demonstrated using a low-frequency, inverse conductivity problem
found in geophysical applications.
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1 Introduction

A common problem arising in a variety of application areas is the non-invasive detection, local-
ization, and characterization of anomalous areas in an overall region of interest given observations
of scattered acoustic or electromagnetic radiation collected along a portion of the region’s bound-
ary [9,15]. For example, tumor detection in otherwise healthy tissue arises frequently in many
areas of medical signal processing [1]. In geophysical exploration, particularly low values of elec-
trical conductivity in a region of the earth provide one indication as to the presence of oil [18].
Finally, there has been significant interest recently in the use of ground penetrating radar for the
detection of buried objects such as land mines and metallic drums containing hazardous waste [14].

Typical methods for solving this anomaly detection problem proceed by first forming an image
of distribution of a particular physical quantity (eg. sound speed or electrical permittivity) internal
to the medium and subsequently post-processing the reconstructed profile to locate and classify
anomalous areas [9,15]. The problem of image formation from scattered field measurements (also
known as the inverse scattering problem) presents a collection of difficulties which makes this image-
then-detect approach rather unattractive. First, because the reconstructions are obtained typically
over a fine scale grid of pixels, these problems are computationally intensive. The complexity of
many practically interesting problems is further increased by the non-linear relationship between the
physical parameter of interest and the observed scattered fields. The resulting imaging algorithms
require the solution of a large-scale, non-convex, non-linear optimization problem [18].

Additional problems arise from the fact that one often is restricted to probing the medium with
sources operating at only a few frequencies and observing the scattered fields over a limited portion
of the region’s periphery. As discussed in [11,13] under these circumstances the imaging problem is
highly ill-posed in that the information content in the the data does not support a stable fine-scale

reconstruction of a pixelated representation of the physical parameter. Commonly, this problem



of ill-posedness is solved through the use of a regularization scheme which enforces a degree of
smoothness in the reconstruction [10]. The use of such a regularizer for anomaly characterization
serves to increase the difficulty of detection and identification after image formation. Typical targets
represent regions where the medium’s structure is locally not smooth. Imaging with a smoothness
regularizer results in a low-pass image in which these distinguishing anomaly characteristics are
softened thereby increasing the difficulty of subsequent detection and identification.

Over the past decade, significant research has been performed on the detection of anomalies
directly from scattered field data. Rather than solving a large, ill-posed imaging problem, these
techniques employ statistical signal processing methods to extract from the data a relatively small
number of geometric parameters describing the distribution of anomalous structures. In [15], Rossi
and Willsky considered the use of estimation-theoretic analysis and algorithmic methods for deter-
mining the location of a single object of known size and structure given noisy and sparse computed
tomography (CT) measurements. Devaney and co-workers [3,17] extended these results to diffrac-
tion tomography (DT) and exact scattering applications. In [2], Bressler, Fessler and Macovski pre-
sented an algorithm for determining the locations and geometric structures of an unknown number
of anomalies based on CT measurements. A similar problem is considered in [16,20], where the
authors were concerned with the detection of an unknown number of circular objects of unknown
radii given noisy CT observations. The iterative algorithms in [16,20] began by identifying a large
collection of likely targets with subsequent steps (a) pruning away structures which were deemed
unlikely to be actual objects (b) refining the estimates of the radii and locations for the remaining
objects.

A decision-theoretic, multiscale algorithm based on a sequence of M-ary, hypothesis tests was
presented and analyzed in [11] for the characterization of an unknown number of anomalous regions

of unknown size, shape and amplitude for problem in which a linear model related the anomalies to



the measurements. The approach in [11] began by identifying a small number of large sized regions
in which anomalies were likely to exist. Subsequent processing steps refined these estimates and
provided for the re-partitioning of each coarse scale region to account for the existence of multiple
structures. The application of interest was a diffraction tomography problem arising in geophysical
exploration.

In this paper, the problem of detecting and localizing an unknown number of anomalous areas
is addressed for problems where linear scattering models are not valid so that the full, nonlinear
physics must be incorporated into the processing. As in [11], the fundamental idea behind the
approach presented here is the use of a sequence of hypothesis tests which begin by localizing
anomalous behavior to a few, large sized areas and subsequently “zoom in” to better localize
the true target structures. It should be noted that the spatial subdivision process considered
here is quite different from that in [11]. In addition to the use of a non-linear scattering model,
here we introduce a decision-theoretic regularization method which allows for the inclusion of
prior information specifically tailored to the anomaly detection problem. Expectations regarding
the number, sizes and shapes of anomalous areas are easily and naturally incorporated into the
hypothesis testing process. While we do not examine the issue extensively in this work, the anomaly
detection algorithm has a structure making it well tailored for a computationally efficient, parallel
implementation. As in [11], we concentrate on a low-frequency geophysical inverse conductivity
problem.

In Section 2 of this paper the scattering model and problem of interest are presented. An
overview of the relevant detection methods is provided in Section 3. The multiscale anomaly
detection algorithm is described in Section 4 and examples provided in Section 5. Section 6 is

devoted to conclusions.



2 Problem Formulation
2.1 The Scattering Model

We consider a two-dimensional inverse conductivity problem illustrated in Fig. 1 where there
exist a set of electromagnetic line-sources oriented perpendicularly to the page emitting time-
harmonic waves into a lossy medium. The medium is characterized by the free space values for
electric permittivity, €y, and magnetic permeability, g and a conductivity profile modeled as the
sum of a constant background, g, and a collection of anomalies described by the function g(r). The
goal of the problem is to characterize ¢g(r) from noisy, pointwise observations of the component of
the scattered electric field oriented perpendicularly to the page. These measurements are obtained
along receiver arrays positioned on the vertical edges of A from K scattering experiments. Each
experiment produces a vector of measurements, y;, comprised of the in-phase and quadrature
components of the scattered field obtained over a single receiver array due to energy put into the
medium from one of the sources operating at a frequency, f; = w;/27.

As discussed in [18], the relationship between g¢(r) and the jth element of y;; that is, the
measured scattered field at position r; is

(ey) = wino [ Gl ) E()g(x')’ + () (1)
where n;(r;) represents additive noise, }(1}'2-(1', r’) is the Green’s function for the problem and F;(r)
is the component of the total electric field perpendicular to the page. From [18], £;(r) satisfies

Ei(r) = Ei(r) + wipo /A Gi(r, ") g(x")E;(x')dr’ (2)
with E;(r) = Lw;uoG;(r,r;) the background field generated by a line source with current density
I; positioned at r;. Finally G;(r,r’) = 2/4H(gl) (kio|r — r'|) is the Green’s function for this problem
with k? = w?po(€o + 2g0/w;) and Hél)(z) the zeroth order Hankel function of the first kind.

A discrete representations of (1) is obtained using the method of moments (MOM) [8] where ¢(r)

and F;(r) are expanded in pulse bases (i.e. zeroth order splines). A Galerkin scheme is employed



to discretize (2) using the same same pulse bases. Upon discretization, (1) and (2) reduce to
yi = GisD(E;)g+n, (3a)
E; = E,+G,D(g)E; (3b)
where g is a lexicographically ordered vector of expansion coefficients for g(r), E; (resp. E;) is
a vector of coefficients for F;(r) (resp. Fi(r)), G;s (resp. G;) is a matrix representation of the
integral kernel in (1) (resp. (2)), and D(x) is the diagonal matrix whose (7, 7)th element is the ith
component of the vector x. Solving for E; in (3b) and substituting the result in (3a) gives
yi = G, D {[1 — G D(g)]" E} g+ n; = hi(g) + n,. (4)
In this paper, n; is taken to be additive, white Gaussian noise uncorrelated from one observation
vector to the next. Thus, n; ~ A (0,r;I) and E[ninf] = r;16(i — j) where I is an appropriately

1

sized identity matrix and é(n) is the Kronecker delta.” Finally, we collect the data from the K

scattering experiments into a single vector, y so that the overall observation model is given by

y =h(g)+ n (5)
where yT = [yl yI ...yL], h(g) and n are defined accordingly, and n ~ A(0,R) with R =
diag(r1,roI, ..., rg1).

One difficulty with the use of (4) in the context of an inverse problem is that of computational
complexity. A basic component of any inverse problem is the evaluation of y; for various values
of g. According to (4), each such evaluation requires the inversion of the large, dense matrix
I - G;D(g). In fact, for a discretization of A into an N, x N, array of pixels, this matrix is of
size Ng2 X N;. To overcome this computational burden, the algorithm discussed in Section 4 is
implemented using the nonlinear, extended Born approximation (EBA) [6] to the true scattering

EBA
hi

model. That is, for all computations, h;(g) is replaced by (g) where a detailed discussion

of h¥B4(g) may be found in [6,13,18]. Like the true scattering physics, the EBA is a nonlinear

!The notation x ~ A (m, P) indicates that the random vector Mx has a Gaussian probability distribution with
mean m and covariance matrix P.



function of the conductivity. For the geophysical application of interest here, the EBA has been
shown to provide a highly accurate approximation of h;(g) even for conductivity profiles where the
more common Born or Rytov linearized models are no longer valid [6,18]. The principle advantage
of the EBA is that the computational complexity of the approximation is a small fraction of that

associated with the exact scattering model [18].
2.2 The Anomaly Model

Because the MOM discretization procedure pixelates A into an array of rectangular cells and
because the algorithm in Section 4 performs anomaly localization through a process of spatial
subdivision, we are lead naturally to consider a representation for g in which anomalous regions
are defined to be superpositions of rectangular subsets of A. Referring to Fig. 2, the structure of
the ¢th anomaly in A is defined by its magnitude, its size, and its location in A. Mathematically,
the form for the anomalous behavior of the conductivity over the region A is

Na

g = Z b;a; = Ba. (6)
Here, N, is the number of anomalous region]s:li)cated in A, a; is a scalar defining the magnitude of
each anomaly, and b; represents the discrete indicator function over the jth rectangular region. In
(6), the column vector a represents the collection of anomaly amplitude coefficients while B is the
matrix whose jth column is the lexicographically ordered form of b;. We note that the algorithm
in Section 4 is not dependent upon the assumption of rectangular anomalies; rather structures with
arbitrary shapes and orientations can be employed in principle through the appropriate specification
of the matrix B. Finally, the anomaly detection problem may now be stated in the following manner:
Given the data and the noise statistics, determine the structure of the matrix B and the vector a,

i.e. find the number, locations, sizes, and the amplitudes of the anomalous regions in A.



3 M-Ary Hypothesis Testing

The anomaly detection algorithm to be presented and analyzed in Sections 4 and 5 is based
on a sequence of M-ary hypothesis tests [19] in which each hypothesis corresponds to a particular
anomaly distribution in A. That is, the mth hypothesis for one such test takes the form

H,: g=B,a, (7)
for m = 0,1,...,M — 1. In (7) B,, describes the geometric characteristics of the hypothesized
anomaly configuration and a,, is the associated amplitude vector.

Given a data vector, the hypothesis test itself may be viewed as a rule for selecting the “best”
anomaly configuration from among the M possible choices. In this paper, the following maximum
a posteriori (MAP) procedure is employed

Choose H,, with m = argmax log |pym;,(Y|H;)| + log(p;) (8)

J

where py|HJ(Y|Hj) is the probability density function for the data under H; and p; represents the
prior probability that H; is in fact true. The Gaussian model for n allows (8) to be written as

Choose H,, with m = argjmin %HY —h(Bjaj)||g-1 + 7 (9)

= arg minﬁj(y) + 7;
j

where ||x||a = xT Ax and 7; = —log (p;).

For the anomaly detection algorithm in Section 4, the amplitude vectors, a,,, are assumed to
be deterministic, but unknown quantities. Thus, a generalized hypothesis test is employed in which
a,, in (7) is replaced by the following estimate of a,, given the data

~ L1

A = argmin Ly — b (Bra) [ + 07| (10)
am>—4go

The notation a,, > —go implies that each element of the vector a,, is greater than the negative of

the background conductivity and is required to ensure that the overall conductivity in region A, is

greater than zero [18]. Asin [11], (10) represents a regularized, maximum likelihood estimate of the

amplitude vector where the second term is used to offset any ill-posedness in the estimation problem.



The solution to this constrained non-linear, least squares optimization problem is obtained using a
Gauss-Newton algorithm [4] modified to account for the bound constraint in a,,.

The evaluation of the each likelihood statistic, £,,(y), requires the solution of a non-linear
optimization problem; however, the dimension of each problem is equal to the number of anomalies
associated with H,, which is typically far less than the number degrees of freedom found in imaging
application [13,18]. Thus, the computational burden of each optimization problem is quite small
relative to an image-then-detect approach. For all examples presented in Section 5, the Gauss-
Newton method typically converged in well under 10 iterations. Finally, while the hypothesis
test does require the solution of many small optimization problems, each £,,(y) may be evaluated
independently so that complexity can in principle be kept low through a parallel implementation

of the test.

4 The Anomaly Characterization Algorithm

Here we present a multiscale algorithm for the detection and characterization of an unknown
number of anomalous areas in region A based on a sequence of MAP hypothesis tests. Two classes
of tests are employed in this algorithm where each test takes as input the current estimate of the
anomaly structures in the form of a geometry matrix, ]§, and an estimated amplitude vector a.
The overall algorithm is a sequence of localization hypothesis tests which “zoom in” on the true
anomalous regions coupled with pruning tests designed to eliminate false alarms thereby controlling
the amount of work required to identify true anomalous structures.

In Fig. 7, a pseudo-code listing of the algorithm is displayed. The algorithm begins with a
single localization test in which anomalous activity is identified in a collection of relatively large
size areas in region A. After this coarse-scale detection procedure, the basic processing step is

comprised of a single localization-type test followed by a sequence of one or more pruning tests.



The algorithm terminates when successive null hypotheses are chosen for both a localization test
and then a pruning test; that is, when it is determined that no further subdivision is warranted and
no structures should be removed from the current configuration. Essentially, this approach grows
a tree of hypothesized anomaly configurations where the root of the tree is a single anomaly over
all of region A and the leaves are either new anomaly structures or increasingly localized estimates
of current anomalies.

A key feature of this procedure is the specification of the non-negative penalty terms, 7;, in
(9) (or equivalently the prior probabilities p; = e~"/) to control the manner in which the tree
is both grown (i.e. new anomalies are added or old ones further refined) as well as pruned (i.e.
structures are removed from processing.) For example, hypotheses may be penalized to a greater
or lesser degree depending on features such as the number of anomalies associated with B,,, the
spatial distribution of these structures, or geometric characteristics such as area or shape. Thus,
in their ability to mathematically capture prior expectations and constraints, the 7; play the same
role in the hypothesis testing framework as that of a smoothness regularizer in a more traditional
imaging-type problem [10]. In the anomaly detection context, the property of smoothness is not of
concern, but rather geometric characteristics of the anomaly distribution are the natural features
for which prior models are required. The remainder of this section is devoted to a description of
both classes of hypothesis tests.

4.1 The Localization Hypothesis Test

Given an estimated configuration of anomalies in region A, the spatial refinement hypothesis
test used here indicates either that no further localization is deemed necessary or further refinement
is warranted in which case only a single structure in the current anomaly collection is further sub-
divided. Formally, suppose that N regions in A have been identified as containing anomalies so

that B contains N columns, Bj, 7=1,2, ..., N. Localization to smaller regions of A is obtained
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through the use of a test with 8 N 4+ 1 hypotheses. The first hypothesis corresponds to retaining the
current B indicating that no further localization is warranted. Under the next 8 hypotheses, the
first column of B is replaced by one or more columns corresponding to anomalies with support over
a subset of the region corresponding to Bl. This same construction is repeated with Bl replaced by
Bj for j =2, 3, ..., N. Thus, the non-null hypotheses correspond to 8 V ways in which anomalies
can be better localized by perturbing only one of the N elements of B.

In Fig. 4, the decompositions of Bj of interest in this paper are displayed. The first six choices
correspond to the true anomaly being located in the top, bottom, left, right, vertical middle, and
horizontal middle of the region given by Bj. The last two decompositions allow for the presence of
two anomalies in Bj: one in the top and one in the bottom or one in the left and one in the right.
By choosing one of these last two hypotheses, we are able to identify multiple structures in A.

As discussed in Section 3, we associate with each hypothesis a matrix, B,, form =0,1,...,8N
where By = B and for m > 0, B,, is equal to B with one column replaced either by a single
column, as is the case for the first six hypotheses in Fig. 4, or two column vectors for the last two
hypotheses. In either case, we define Bm to be the column(s) in B,, different from those in B.

In addition to specifying B, the MAP test requires that the penalty terms 7,,, also be specified.
For the cases where Em contains one column, we begin by defining a collection of quantities 7, as

o = 107 fo (m}gx|gk|) (11)

and for m > 0

+00 b| < 4 or ¢(by) >4
T = (12)

107 card(gm)fl <|Em

) otherwise

where |gm| is the number of non-zero pixels in Em; e(gm) is the ratio of the length of longer to the

shorter side of the anomaly and provides a measure of the eccentricity of the structure; card(b,,)

is the number of columns in by, (in this case one); and fo(|b,|) and fi(|by,|) are plotted in Fig. 5.
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When Bm contains two columns, the number of nonzero pixels in each column are equal and the
geometric structures of the underlying anomalies are the same (only their positions in A differ), so
that there is no ambiguity in assuming that |b,,| and ¢(b,,) refer to the first column in these cases.

Finally, ,, are obtained from 7, via

8N
Tm = o — lOg (E frk> (13)

thereby ensuring that 3% p,, = S8

The parameter o in (11) and (12) determines the overall magnitude of the penalty terms in
the hypothesis test. Thus, selection of ¢ is analogous to the determination of the regularization
parameter in many imaging type inverse problems [5,7]. For ¢ too small the prior information
will have negligible impact on the hypothesis test while an excessively large value of o negates the
influence of the data. In this paper, o is chosen using the following somewhat ad hoc approach

7= g0 3y ~ @3- -1 (14)
where 1 is the indicator function over all of region A, a is the ML amplitude for an anomaly with
this structure, and |z] is the greatest integer less than or equal to z. Thus, o is selected so that
the largest of the 7,, is roughly an order of magnitude less than the size of the covariance weighted
error between the data and the initial estimated anomaly structure used in the algorithm.

Fig. 5 and egs. (11) and (12) demonstrate that the penalty terms are chosen to reflect prior
expectations regarding the sizes, shapes and number of anomalies in region A. The structure
of fo(|by,|) indicates that as the size of the largest structure in B increases, the penalty for not
performing a decomposition increases thereby encouraging the decomposition of larger structures.
The first condition in (12) is used to ensure that no structures are identified if they contain few than
four pixels or if they are too long and fat or tall and thin. That is, we require anomalies to have
a minimum area and not be excessively elongated. The second condition in (12) and the form of

fi(|by]) indicate that the penalty increases as the number of columns in b,, increases and the size
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of the structures decreases. Thus, the prior expectations serve to prevent the identification of many
small anomalies in region A. Clearly, depending on the application, other prior modeling choices are
both possible and interesting. The selection made here is useful for the inverse conductivity problem
under consideration and provides a successful demonstration of the utility of prior modeling in an
hypothesis testing framework for capturing information not commonly accessible to traditional
regularization schemes.
4.2 The Pruning-Type Hypothesis Test

The second class of hypothesis tests used here are designed to eliminate from consideration
previously identified regions which are unlikely to actually contain anomalies. Given an estimated
geometry matrix B with N columns, the anomaly removal hypothesis test consists of N + 1 hy-
potheses with By = B and for m = 1,2,...,N,B,, equals B with the mth column removed. Thus,
at most one structure is eliminated per hypothesis test.

With Bm the column of B removed for the mth test, T,, for the pruning-type hypothesis test is

10°6,(N)  m=0
Fm = (15)

10°f5(|by|) m=1,2,..., N

where f5(N) and f3(|Bm|) are shown in Figs. 5(a) and (b), o is chosen as in (14), and 7, are
obtained from 7,, using (13). As seen in Fig. 5, the form of f5(V) indicates an increasing penalty
as the number of estimated structures rises. Also, Fig. 5(a) shows that 7, increases as the size
of the anomaly being removed from consideration rises thereby penalizing against the premature
removal of large-scale structures.
4.3 Initial Localization

For the algorithm presented in this section to detect and localize relatively small anomalies,
during the initial processing stages the correct large scale structures which overlap the true, smaller

sized anomalies must be chosen for further processing. In [11], this coarse-scale localization issue

13



was analyzed in depth for a decision-theoretic anomaly detection algorithm applied to a scattering
problem identical to the one considered here but using a linearized model rather than the non-linear
model of Section 2. There, it was shown that the probability of a coarse scale miss was unacceptably
high. In that case, performance was improved simply by retaining a greater number of coarse-scale
regions for further decomposition than would otherwise be the case.

With these results in mind, in this paper we address the problem of coarse scale localization
by modifying the hypothesis set used in the first localization test. Specifically, we supplement the
decompositions of region A presented in Fig. 4 with those shown in Fig. 6 making for a 15-ary initial
hypothesis test rather than the 8-ary test described in Section 4.1. Additionally, after performing
this expanded localization-type test, we retain for further processing all other areas in region A not
part of the chosen decomposition. For example, if the selection labeled “Horizontal middle two”
is chosen from Fig. 6, then four anomalies are identified for further processing: the two square
structures in the middle of region A as well as the two long, narrow regions at the top and bottom.
While alternate means may be developed for addressing this issue of coarse scale localization, the
method described here balances the conflicting requirements of an exhaustive, fine scale search over

region A for likely targets and the desire to limit the computational overhead of the algorithm.

5 Examples

We consider the problem of characterizing conductivity anomalies given data from the scattering
experiments described in Table 1. Region A is 100 m X 100 m and discretized into a 16 X 16 array
of pixels. The background conductivity is 0.1 S/m. The source frequencies are 100 Hz (used in
a cross-well configuration) as well as 1 and 10 kHz (used to obtain information near the left edge
of A). Both receiver arrays consist of 32 equally spaced elements extending from z = —0.05 m to

z = 100.05 m. The left array is located at 2 = —0.05 m and the right at « = 100.05 m. The six
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sources are located along the line z = —0.05 m equally spaced from z = 0.05 m to z = 99.95 m.

The anomalies in all experiments are taken to have amplitudes of 1 S/m representing a 10:1
contrast against the background conductivity. Under conditions such as these, it is well known that
the Born and Rytov linearizations of the scattering physics fail to hold thereby necessitating the
use of a more complete, nonlinear scattering model. While the detection algorithm is based on the
extended Born approximation (EBA) described in Section 2.1, the data vectors for all simulations
are generated using the exact scattering model in (3a) and (3b).

The performance of the anomaly detection algorithm is assessed using a collection of different
anomaly configurations under a variety of signal to noise conditions. For the model y; = h;(g)+ n;

with y; € RV and n; ~ AV(0,72I), the signal-to-noise ratio (SNR) in decibels is defined as

SNR; =10 logy, {—[hi(gi]vig”(g)]}. (16)

For each anomaly configuration performance is examined at SNRs of 40, 20, 10, and 0 dB. Given an
anomaly and SNR combination, the detection algorithm is executed for 10 independent realizations
of the measurement noise process with the results of these runs forming the basis for our evaluation.

The information for each anomaly configuration is analyzed both quantitatively as well as
qualitatively. From a quantitative perspective, we are concerned with the detection and false alarm
probabilities associated with the algorithm. An anomaly is classified as having been detected if the
B matrix produced at the last stage of the algorithm contains at least one structure which overlaps
the true anomaly structure. All structures in the final B matrix not corresponding to detections are
taken to false alarms. The statistic of interest here is the rate of false alarms per unit area defined
as number of falsely identified pixels divided the total number of pixel in A. Finally, the results of
the anomaly detection algorithm are compared against those of an imaging-type inverse scattering
algorithm described in [13]. This reconstruction procedure requires the solution of a nonlinear least

squares problem. The method of [13] is based on a form of the Levenburg-Marquardt algorithm
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and makes use of the EBA to lower the algorithm’s computational complexity.

While it is not the objective of this paper to provide an exhaustive analysis of the computational
complexity of the anomaly detection algorithm, this approach is generally more efficient than the
imaging technique of [13]. All algorithms in this paper have been implemented in Matlab and
executed on a dual processor, SparcStation 20 with 64Mb of internal RAM. The time required
for a single run of the anomaly detection algorithm varied from 4 to about 7 hours depending
on the underlying anomaly configuration and the noise conditions. For the imaging algorithm, 50
iterations of the Levenburg-Marquardt technique were used to process each data set at which point
the algorithm had converged to a minimum of the least-squares cost function. In contrast to the
detection-based approach, the imaging algorithm required between 24 and 36 hours of processing.
5.1 Experiment I: A Single Anomaly

The first anomaly configuration of interest here is shown in Fig. 7(a) and consists of a single
structure located near the middle of region A. As discussed in [11-13], for inverse problems of
the type considered in this paper, the ability to resolve anomalous behavior is greatest near either
vertical edge of region A where the sources and receivers are located. For locations in the middle
of the region, it becomes increasingly difficult to detect structures or resolve fine scale detail in
the conductivity profile. Finally, the structure in Fig. 7(a) is aligned on the underlying grid of
16 x 16 pixels in such a manner that it is not possible for a decomposition scheme based upon the
hypotheses in Figs. 4 and 6 to produce an estimated anomaly which is ezactly of the same shape
as the truth. Thus, this example represents a particularly challenging anomaly configuration for
the algorithm.

In Fig. 7(b), the detection and false alarm probabilities are displayed for this case where the
error bars indicate plus and minus two standard deviations from the sample mean. For the 40,

20, and 10 dB SNR cases, the anomaly was detected 100% of the time. At 0 dB, the detection
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rate drops to 80%; however for the two cases in which the target was missed, the output of the
algorithm did include an estimated anomaly located directly above the true structure. Thus, the
target essentially was localized for all runs at all SNRs. Finally, the false alarm rate is at most
5% or 12 falsely identified pixels out of the 256. Sample estimates of anomaly configuration at
40dB and 10 dB SNR are presented in Fig. 8(a)—~(b). The dashed lines overlaying these images
indicate the region of A occupied by the true structure. We note that at both SNRs, the anomaly
is detected. At 40 dB, there is also a small amplitude, falsely identified structure while the 10 dB
example is free of such false alarms.

In Fig. 9, we display intermediate results of the algorithm for one trial at 0 dB. In Fig. 9(a), the
estimated anomaly structure is shown after the first location test. Here we see that the algorithm
has chosen to examine the 4 quarters of region A. Even at this coarse processing stage the structure
with the largest amplitude is the quarter in which the true anomaly resides. In Figs. 9(b)—(e), the
identified anomaly configuration is shown after one quarter, one half, three quarters and all of
the processing for this trial. It is evident that well before the algorithm has terminated, the true
anomaly is rather well localized. While there do exist falsely identified structures in the left side
of Fig. 9(e) their amplitudes are far smaller than that of correctly identified anomaly. Thus, post-
processing the results of the anomaly detection algorithm to remove structures whose magnitudes
are in some sense small would further lower the false alarm rate. Finally, in Fig. 9(f) the results
of the imaging algorithm are displayed for the same data set used to generate Figs. 9(a)—(e). In
this case, the imaging algorithm does indicate the existence of a structure in the correct location.
However, the geometric and amplitude information in this image is inferior to that generated by
the detection algorithm, and as noted previously, the generation of this image took significantly

longer than that of Fig. 9(e).
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5.2 Experiment II: Two anomalies close to the left edge

In Fig. 7(c), the second anomaly configuration of interest in this paper is presented. Here we
are interested in recovering the composition of two structures both of which are located close to
the left vertical edge of region A. As discussed in Section 5.1, previous work has demonstrated that
anomalous behavior is most easily detected near the sources and receivers. Thus, the structures
in Fig. 7(c) are meant to test the ability of the detection algorithm to successfully isolate multiple
anomalies.

For all trials and at all SNRs, Fig. 7(c) indicates that both structures are detected with a false
alarm rate again less than 5%. Sample estimates are displayed for trials at 40 dB and 10 dB SNR
respectively in Fig. 8(c)—(d). The reconstruction at 40 dB is basically identical to the true structures
both in terms of geometry as well as amplitude. For the 10 dB case, both structures are correctly
identified with the geometry of the lower anomaly rotated relative to that of the true structure.
Again, the amplitudes are close to the true values of 1 S/m. In Fig. 10(a)—(e), the results of the
detection algorithm at various stages of processing are displayed for one trial at 0 dB SNR. After
the opening localization test, the most likely region for further decomposition corresponds to a
subset of A containing both structures. As the algorithm proceeds, this area is further decomposed
to better localize the two individual structures. Like the previous example, the falsely identified
regions at the end of the algorithm are also those with the smallest amplitudes. Finally, in Fig.
10(f), the results of the imaging algorithm are displayed. For this particular data set, the imaging
approach provides a severely degraded representation of the bottom structure and entirely misses
the top anomaly.

5.3 Experiment III: Two separated anomalies
The anomaly configuration for the last example considered in this paper is shown in Fig. 7(e).

From the previous experiments, the anomaly located close to the left edge of A should be relatively
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easy to detect while the second structure positioned closer to the right vertical edge should be less
detectable. This intuition is born out by the curves in Fig. 7(f) which show that both structures
were detected for all trials at SNRs of 10, 20 and 40 dB. At 0 dB SNR, the smaller structure was
identified in all 10 trials which the larger one was detected in 8 out of the 10 experiments. Asin the
first example, for the two cases in which this structures was not detected there was an estimated
anomaly whose support was directly adjacent to that of the true structure. Finally, the false alarm
rate for this example is again below 5%.

Sample results of the algorithm at 40 and 10 dB SNR are displayed in Fig. 8(e)—(f) where it
is seen that at both noise levels, the structures are well localized. The amplitude of of the smaller
structure is quite close to 1 while that of the second structure is about 1.5 for the 40 dB case
and 2 at 10 dB. In Fig. 11, the results of one experiment at 0 dB SNR are plotted. Unlike the
previous two cases, at the opening stages of the algorithm, the anomaly with the largest amplitude
is located in a region not containing one of the true structures. Nonetheless, in the final estimate,
the smaller structure is exactly identified and one of the estimated anomalies fully overlaps the
second, larger structure. In contrast to the results of the detection algorithm, the imaging results
for this problem, shown in Fig. 11(f) demonstrate that only a severely blurred representation of
the left anomaly is available with essentially no information present regarding the structure on the

right of region A.

6 Conclusion

In this paper, we have developed and tested an algorithm for the detection, localization, and
characterization of a collection of anomalous areas in an overall region of interest from observations
of scattered radiation obtained along the region’s boundary. Our approach employs a full, non-linear

measurement model relating the anomalous structures to the observed fields and thus provides a
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method for solving the target detection problem in cases where more common models based on the
Born or Rytov linearizations are not valid. The algorithm makes no assumption concerning the
number of anomalies present in the region or the amplitudes of these structures. While the method
presented in this paper is adapted to the detection anomalies of which are rectangular in shape, as
discussed in Section 2.2 the rectangular assumption is not required.

The anomaly detection algorithm is structured as a sequential hypothesis testing procedure
which begins by localizing anomalous behavior to relatively large areas in the overall region. Sub-
sequent tests are used to spatially refine the coarse-scale regions and prune away structures which
are deemed unlikely to contain anomalies. Finally, we have developed a decision-theoretic scheme
for the easy incorporation of prior information directly relevant to the anomaly detection problem
into the spatial subdivision process. A MAP hypothesis testing framework was used to capture
expectations regarding issues such as the number, shapes, and sizes of structures in the region.

The algorithm has been tested on a low frequency inverse electrical conductivity problem arising
in geophysical exploration. The results in Section 5 demonstrate that high detection and low false
alarm rates are obtainable even in highly noisy environments where more conventional imaging-type
reconstruction algorithms fail to produce useful results. The decision-theoretic detection algorithm
considered in this paper was far more computationally efficient than the full scale imaging algorithm
and has a structure making it well suited for implementation in a parallel or distributed processing

environment where these computational gains would be significantly enhanced.
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7 Figure and Table Captions
Figure 1 Inverse conductivity problem of interest in this paper.

Figure 2 General structure of anomalous regions of interest in this paper. The magnitudes, ay
and ag of the two anomalies shown here are proportional to the color of the corresponding
rectangles.

Figure 3 Pseudo-code for anomaly detection algorithm

Figure 4 Hypothesized regions of support used in localization-type hypothesis tests.

Figure 5 Penalty functions used in construction of prior models for anomaly detection algorithm.
Figure 6 Additional regions used in initial localization-type hypothesis test.

Figure 7 Anomaly structure to be reconstructed and associated performance curves for all exam-
ples in this paper.

Figure 8 Sample reconstructions for all anomaly configurations at 40 and 10 dB SNR. Dotted
lines indicate true positions of anomalies

Figure 9 Reconstructions for anomaly in Fig. 7(a) in (a)—(e) and estimate obtained using imaging
algorithm of [13]. Dotted lines indicate true positions of anomalies

Figure 10 Reconstructions for anomaly in Fig. 7(c) in (a)—(e) and estimate obtained using imaging
algorithm of [13]. Dotted lines indicate true positions of anomalies.

Figure 11 Reconstructions for anomaly in Fig. 7(e) in (a)—(e) and estimate obtained using imaging
algorithm of [13]. Dotted lines indicate true positions of anomalies.

Table 1 Data set definitions for observation processes of interest in the paper.
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INITIALIZE ANOMALY ESTIMATES
Bcw = 1; B, = Bnew;
Apey = 0; agg :=0;

PERFORM INITIAL LOCALIZATION
[Brew,; anew] := extended_localization_test(Boid, ao1d);

B, = Bnew; Aold ‘= Anew;

START PROCESSING LOOP
done_all := false;

while (done_all # true) do

end

PERFORM A LOCALIZATION TEST.
[Brew, anew] := localization_test(B o4, ao14);

IF NO MORE LOCALIZATION, THEN SET FLAG.
OTHERWISE UPDATE B AND CONTINUE.
if (identical_anomalies(Bycw, Boid))
no_localize := true;
else
Bold = Bnew; Aold ‘= Anew)
no_localize := false;
endif

PRUNE AWAY FALSE ALARMS ONE STRUCTURE AT A TIME
done_prune := false;
while (done_prune # true) do
[Bnew ) aneu)] = prune_test(Bold, aold)§
if (identical_anomalies(Bycy, Boia) V (number_anomalies(Byy ) == 0))
done_prune := true;
no_prune := true;
else
Boig := Brew; a01d = anew;
endif

end

IF NO NEW LOCALIZATION AND NO PRUNING THEN TERMINATE

if ((no_localize == true) A (done_prune == true))
all_done == true;
endif
Figure 3:
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