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Abstract

In this paper we consider a wavelet-based edge preserving regularization scheme for use in
linear image restoration problems. Our efforts build on a collection of mathematical results
indicating that wavelets are especially useful for representing functions that contain disconti-
nuities (i.e. edges in two dimensions or jumps in 1-D). We interpret the resulting theory in a
statistical signal processing framework and obtain a highly flexible framework for adapting the
degree of regularization to the local structure of the underlying image. In particular, we are
able to adapt quite easily to scale-varying and orientation-varying features in the image while
simultaneously retaining the edge preservation properties of the regularizer. We demonstrate
an efficient algorithm for obtaining the reconstructions from observed data and for choosing the
multiple regularization parameters (Bayes hyperparameters) governing the priors.
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1 Introduction

In many applications recorded images represent a degraded version of the original scene. For
example, the images of extraterestial objects observed by ground based telescopes are distorted
by the atmospheric turbulence [18] while motion of a camera can result in an undesired blur in
a recorded image. Despite the different origins, these two cases along with others from a variety
of fields, share a common structure where the exact image undergoes a “forward transformation”
and is corrupted by observation noise. The source of this noise is the disturbance caused by the
random fluctuations in the imaging system and the environment. The goal of image restoration is
to recover the original image from these degraded measurements.

Often the forward transformation acts as a smoothing agent so that the resulting restoration
problem is ill-posed in the sense that small perturbations in the data can result in large, non-
physical artifacts in the recovered image [1,18]. Such instability is typically addressed through
the use of a regularization procedure which introduces a priori information about the original
image into the restoration process. The prior information underlying the most commonly used
regularization schemes is that the image is basically smooth [1]. While the regularized restorations
are less sensitive to noise it is well known that the smoothness assumption impedes the accurate
recovery of important features, especially edges.

In response to this problem, there has recently been considerable work in the formulation of
“edge-preserving” regularization methods which result in less smoothing to areas with large inten-
sity changes in the restored image. These methods necessarily require non-quadratic regularization
functions and therefore result in nonlinear image restoration algorithms. Along these lines, Geman
and Yang [14] introduced the concept of “half quadratic regularization” which addresses the non-
linear optimization problem that results from using such functions. Later, Charbonnier et. al. [10]

built upon the results of this work by providing the conditions for edge preserving regularization



functions. Another recent advance in this area is the Total Variation (TV) based image restoration
algorithms [17]. In this approach, images are modeled as functions of bounded variation which need
not be continuous. Therefore, formations of edges are encouraged and the restorations obtained by
the TV based algorithms look sharper than those obtained by conventional techniques, especially
if the exact image is piecewise continuous.

In this work, we consider a statistically based, wavelet-domain approach to edge-enhanced image
restoration in which we employ a stochastic interpretation of the regularization process [7,9,23].
We note that most all of the work to date on wavelet-based, statistical regularization methods has
concentrated on the use of multi-scale smoothness priors [3,21,22,26]. While Wang ef. al did
consider issues of edge preservation in [26], their method was based on the processing of the output
of an edge detector applied to the noisy data to alter the degree of regularization in a multiscale
smoothness constraint. As described below and in subsequent sections, our approach is significantly
different as the edge preservation is built directly into the regularization scheme itself.

Specifically, we regard the image as a realization of a random field for which the wavelet coeffi-
cients are independently distributed according to generalized Gaussian (GG) distribution laws [6].
This model is motivated by two factors. First, recent work [7,23] suggests that these models,
which have heavier tails than a straight Gaussian distribution, provide accurate descriptions of the
statistical distribution of wavelet coefficients in image data. Second, in addition to being a basis
for L?(R), wavelets also are unconditional bases for more exotic function spaces whose members
include functions with sharp discontinuities and thus serve as natural function spaces in which to
analyze images [9,12,20]. Because the norms in these Besov spaces are nothing more than weighted
l[,, 1 <p <2, norms of the wavelet coefficients, it is shown easily that deterministic regularization
with a Besov norm constraint is equivalent to the specification of an appropriately parameterized

GG wavelet prior model.



In this work, we make use of GG wavelet priors in a number of ways. We show that their use
in an image restoration problem does in fact significantly improve the quality of edge information
relative to more common smoothness priors. We also provide an efficient algorithm for solving the
convex, non-linear optimization problem defining the restoration. By appropriately structuring the
weighting pattern on the wavelet /, norm, we demonstrate that these models provide an easy and
flexible framework for adaptively determining the appropriate level of regularization as a function
of the underlying structure in the image; in particular, scale-to-scale or orientation based features.
This adaptation is achieved through a data-driven choice of a vector of hyperparameters governing
the prior model. For this task, we introduce and make use of a multi-variate generalization of the L-
curve method developed in [16] for choosing a single hyperparameter. We verify the performance of
this restoration scheme on a variety of images, comparing the results both to smoothness constrained
methods and the TV restorations.

The remainder of this paper is organized as follows. In Section 2 we give the wavelet domain
formulation of the image restoration problem. In Section 3 we introduce a multiscale prior model
for images and use this model in Section 4 to develop an image restoration algorithm. In Section 5
we apply the “L-hypersurface” method to the simultaneous multiple parameter selection problem
posed by our image restoration algorithm. In Section 6 we demonstrate the effectiveness of our
algorithm by comparing our results with existing image restoration schemes. Finally, in Section 7,

conclusions and future work are discussed.

2 Regularized Image Restoration
A grey-scale image, f, can be considered as a collection of pixels obtained by digitizing a
continuous scene. The image is indexed by (m,n), 1 < m,n < 27 and the intensity at the position

(m,n)is denoted by f(m,n). In image reconstruction and restoration problems, the objective is to



estimate the image f(m,n) from its degraded measurements. Mathematically, such a scenario can

be adequately represented by the following linear formulation

g=Hf+u (1)
where the vectors g, f and u represent, respectively, the lexicographically ordered degraded image,
the original image, and the disturbance. The matrix H represents the linear distortion. H is
typically ill-conditioned. This implies that the exact solution to (1) is extremely contaminated by
noise. Rather, a unique and stable estimate f* is sought by replacing the original problem with a
better conditioned one whose solution approximates that of the original. Such a technique is called
a regularization method [1,24].

The Bayesian image restoration method of interest here approaches the problem of regularization
by quantifying the prior information in terms of a probability density on f and then combining this
with information in g to produce an estimate of the unknown image. We assume here a linear,
additive Gaussian noise model to characterize the disturbance so that the probability density for g is
P(glf,o) = m exp {—72z||g — Hf||3} where N? = 227 is the number of pixels in the image.
If it so happens that the probability distribution for f is in the form P(f]|@) x exp {—®(f,0)} then

by the Bayes rule, the MAP estimate, f*, is obtained by minimizing the following log-likelihood
function with respect to f [2,5]

1(£,0,0) = o3 |la ~ Hi|j + a(£,6). (2)
Here, the function ®(f, 8), called a potential function in the context of Bayesian estimation, is the
energy attributed to the image f, and @ is the vector of possibly unknown model parameters. We
give low energy to the images which coincide with our prior conceptions and high energy to those
which do not. Thus, if our prior belief about the image is that the original image is smooth, then

the energy is a measure of the roughness.



2.1 Orthonormal Wavelet Transform

In this paper, we adopt a transform domain approach to the image restoration problem. Before
introducing our image model, we briefly review the wavelet theory [11,19,20]. The fundamental
idea behind the discrete wavelet transform is to decompose a signal into a sequence of increasingly
“coarser” representations while at the same time retaining the information lost in moving from
a coarse scale to a fine scale. Following the wavelet literature, elements of the 1-D signal y =
]T

[¥1,Y2, ... ,yn]" are called the finest scale scaling coefficients and are denoted by ygo) with n = 27,

(0) (0) ()

Beginning with y5;’, a lower resolution representation for y;’ is obtained by first passing y;

through a low pass filter [ and then decimating the output by a factor of two. Thus, ygo_)l is coarser

(0)

than y}’ in that the filtering/down-sampling operation removes the high frequency structure from

the original signal and © s half as 1 O The detail lost i ing f ©) 6 3O
vy q is half as long as y;”’. The detail lost in moving from y};”’ to y;_, is

separately extracted by a high pass filter A followed by down sampling by two. The resulting vector

of wavelet coefficients is denoted by yj_1 The filtering/down sampling operation can be repeated

recursively on the scaling coefficients to obtain a multi-level wavelet decomposition of y

N 0T, T T 1T

§=Iyiy Iyl -yl (3)

(0)

where jo is the coarsest scale at which y is represented and y;” denotes the vector of scaling
coefficients at scale jo and the vectors y;, 7 = jo,...,J — 1, contain the wavelet coefficients at
different scales. In effect, the wavelet transform can be represented as an operator taking the

discrete signal y into its wavelet transform domain representation through matrix multiplication
¥ = Wy. Since the transform is orthonormal it is self inverting, i.e y = WTy.
2.2 Wavelet Representation of Image Restoration Problem

It is possible to obtain the wavelet transform of higher dimensional signals through a separable

representation. If [ and h are the discrete low-pass and high-pass filters associated with a particular

1-D wavelet transform then the discrete high pass filters {h(n)l(m), [(n)h(m), h(n)h(m)} together



with the low pass filter [(9)(n,m) = I(n)l(m) can be used to form the wavelet decomposition of
f(n,m). This decomposition can be implemented by 1-D filtering of rows and columns of images.
In Fig 1., we have schematically illustrated a 1-level wavelet decomposition of an image f(n,m)

with ft(IO)(n,m) denoting the finest scale scaling coefficients. The 1-level wavelet decomposition

of the image ft(IO)(n,m) produces four sub-images of size 271 x 27-1, ft(]k_)l, k=0,....3. ft(IO_)1
represents the scaling coefficients at scale J — 1 and f}li)l, k=1,...,3 are the wavelet coefficients

at scale J —1 corresponding to the vertical, horizontal and diagonal orientationsin the image plane.
Multi-level wavelet decompositions of the image f(n,m) can be obtained by applying the 1-level
wavelet decomposition scheme, outlined above, recursively to the scaling coefficients ft(]()_)l(n,m).
We will use f](i) to denote the vector of wavelet(scaling) coefficients obtained by lexicographically
ordering the elements of the 2-D array f](i)(m7 n) and f to denote a lexicographically ordered version
of all wavelet coefficients f(n,m).

With the conventions above, we can represent the problem in (1) in the wavelet domain as
wg = (WHEWT) W+ Wu
g = Hf+u, (4)
where W is the 2-D wavelet transform matrix, g, f and @ are the vectors holding the scaling and
wavelet coefficients of the data, the original image, and the disturbance, H is the wavelet domain
representation of our linear degradation operator H, and WTW = I follows from the orthogonality
of the wavelet transform. Note that since the wavelet transform is orthonormal @ is again Gaussian

with zero mean and variance o2.

3 A Multiscale Image Model

A key component of our image restoration algorithm is the use of a multiscale stochastic prior

model for the image f. To motivate the particular choice of prior model used here, consider the



wavelet coefficients of a typical image at a particular resolution. Wavelet coefficients are obtained
by differentiation-like operations. Since the spatial structure of many images typically consists
of smooth areas dispersed with occasional edges, the distribution of wavelet coefficients should
be sharply peaked around zero, due to the contribution of smooth areas, and have broad tails
representing the contribution of the edges [7].

Following the work in [7,23] on image coding and denoising, we model the distribution of wavelet
coefficients of images by a Generalized-Gaussian (GG) density [6]. The following distribution

function serves as the prior model

P
1

P (41 m,m)lp, 5 m, m)) o exp § — : (5)

where 1 < p < 2 is a parameter which determines the tail behavior of the density function and

£ (m,n)
(&)

Ky

(m,n)

/@y)(m,n) is a scale parameter similar to the variance of a Gaussian density. For simplicity, we

(1)

will refer to the zero mean density in (5) as GG(0, K; (m,n),p). For p=1 we have the Laplacian
or double exponential density and for p = 2 we have the familiar Gaussian density. Intermediate
values of p correspond to increasingly heavier tails as p approaches one. We assume that the scaling
coefficients f]((?)(m, n), are i.i.d. with GG(0, H;OO)(’ITL, n),p) density.

The specification of one x parameter for every wavelet coefficient results in an image model far
too complex to be of use in a restoration procedure. Generally, there is neither sufficient information
a priori nor in the data to reliably specify or estimate a model with as many degrees of freedom as
unknowns in the original image. Nonetheless, the structure of the model in (5) coupled with the

specification of the problem in the wavelet domain does suggest a variety of simplifications which

are of use for the restoration problem. In this work, we consider the following three models

1. Model 1: The scaling coefficients f]((?)(m7 n), are i. i. d. with GG(0, mgg),p) and the wavelet
coefficients are i.i. d with exponentially decreasing variances, i.e. f]@(m7 n) ~

GG(O,RQ‘a(j_jO),p), 1= 1,2,3, jo <7 < J—1 with jp the coarsest scale, k the scale



parameter corresponding to jo and a > 0. The rationale behind this model is that it is

equivalent to a deterministic modeling of the image as a member of a Besov space [20].

2. Model 2: The scaling coefficients f]((?)(m, n), are i. i. d. with GG(0, K;OO),p) and the wavelet
coefficients at a particular scale are i.i.d. with GG(0,%;,p), j = jo,...,J — 1. This model
is useful in cases where the variance of the wavelet coefficients at different scales cannot be

well-approximated by a simple exponential law.

3. Model 3: The scaling coefficients f]((?)(m7 n), are i. i. d. with GG(0, mgg),p) and the wavelet
coefficients at different orientations (horizontal, vertical or diagonal) are distributed with
GG(O,/@(i)Q_a(j_jO),p), 1= 1,2,3, jo < j < J—1. Such a model is most suitable for
images with significantly different characteristics in different orientations as might arise in

geophysical restoration problems involving layered structures.

We make several observations regarding these models. First, these models are indeed of low dimen-
sionality. In addition to the a and p parameters, Model 1 is characterized by two k coefficients:
one for the coarsest scale scaling coefficients and one multiplying the exponential for the wavelet
coefficients. There are a total of J —jo+1 x’s for Model 2 and four  values required to characterize
Model 3. In subsequent section, we shall see that the number of regularization parameters to be
determined in the restoration algorithm is equal to the number of x’s characterizing the prior model
being used. Moreover, an appropriate on-line choice of the model parameters provides a mecha-
nism for adapting the level of regularization in an image to the underlying scale-to-scale structure
(Models 1 and 2) or to orientation-dependent structure (Model 3).

The above three models certainly do not represent an exhaustive enumeration of all possible
multiscale regularization approaches. However, as seen in Section 6, they do provide a strong

indication as to the utility of this type of modeling technique for image restoration. Finally, for



the remainder of this paper, we assume that the two parameters a and p in the above models are
known and fixed a priori. Generally, the performance of the regularizer is impacted to a greater
extent by the on-line identification of the x parameters (or as explained in subsequent sections,

quantities closely related to k) so we concentrate our effort on identifying good choices of k.

4 A Multiscale Image Restoration Algorithm
The MAP estimate of the wavelet coefficients of the original image is found by maximizing the
log-likelihood function in (2). Substituting the prior probability density developed in Section 3 into
(2), the MAP estimate of f is seen to be the minimum of the following cost function with respect
. (%)

to f (assuming for the time being that A}’ is known)

J-1 3
P A oo 0 0 7 7
JEN) = 1 - B+ AP+ D0 A IE 1 (6)
. ) J=jo 1=1
where AW = 2‘70 are weighting parameters and A = [/\EOO), /\gi), e ,ASS_)I]T. The formulation in (6)

J (
PK;

easily accommodates the Model 1-3 regularization schemes discussed in Section 3 by defining the

(1)

appropriate relationships for ’\j . For example, putting A0 - A1 and /\y) = X\p22Ui=Jo) results in

Jo

the Model 1 regularization scheme while assigning a different A; to each scale in the wavelet domain
without regarding the orientation we obtain the Model 2 regularization scheme. The cost function
J(f,X) in (6) is a strictly convex functional of f being the sum of a strictly convex function (I3
norm term) and a convex function in f (I,, 1< p < 2 norm term). Therefore, J(f,A) has a unique
minimum. At a stationary point f*, the gradient of J(f, A) must vanish. Unfortunately, the [,

norm terms appearing in (6) is not differentiable for p = 1. To alleviate this problem, we propose

the following smooth approximation to the [, norm, raised to the power p, as in [25]

Iclly ~ > (il + 8)"* - 571?) (7)

K3
where 8 > 0 is a stabilization constant and x; denotes the i-th element of the vector x. Substituting

(7) into (6) and taking the gradient of the cost function we arrive at the following equation for £

10



after a slight rearrangement

N2
. A
v dlag[ufnuﬂ)l—p/?] 1 Y

=

(ﬂTﬂ + gD*) = HTg, (9)

where f: is the i-th element of * and ), is the associated regularization parameter. The above
equation gives the first order conditions that must be satisfied by f*. An iterative algorithm can be
developed based on (9) where the solution obtained in the previous iteration is used to construct
the current one. Starting with the initial point 0 = ﬂTg, we solve the following equation for fr+1
until convergence is achieved

(131T131 + ng) fe1 = |Tg, (10)

Where D* is the diagonal matrix obtained by replacing fi* by ff in (8). The iteration is terminated

[[£++! 1%

whenever T

< 7, with 4 being a small positive constant. The fixed point (FP) iterative
algorithm given in (10) is a special case of the “half quadratic regularization” scheme introduced by
Geman [14] and the ARTUR scheme due to Barlaud et. al. [10]. Convergence of the FP iteration

(10) can be guaranteed by using the results in [10]. By adopting the notation in [10] we define the

following function

2
2 _ 3%

o(t) = (£ +8)* - B2, (11)

Then, the approximated cost function can be expressed in terms of the function ¢(¢). Furthermore,
¢(t) satisfies the conditions (a)-(i) presented in [10](page 300, equation (12)). Therefore, the FP
iteration in (10) defines a convergent sequence f* and limy_, £ = £* by the results in [10].

The role of the parameter 3 is two-fold: first it controls how close the approximation in (7) is to
the original [, norm. Using a relatively small 3 provides better restoration of edges in the image.
Second, it essentially determines the convergence speed of the algorithm. If § is relatively large, the
algorithm is very fast and the convergence speed deteriorates as 3 gets smaller. Therefore, 3 should

be set so as to achieve a compromise between the convergence speed and the edge preservation.
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Based on our experience we recommend 3 = 1 for problems involving real life images.

The iterative algorithm in (10) requires the solution of a very large linear matrix equation.
Note that the matrix appearing on the right hand side of (10) is symmetric and positive definite.
Therefore, the conjugate gradient (CG) algorithm [15] can be conveniently used to compute the
solution f¥+1 in (10) at each step. In this way, the algorithm given in (10) is doubly iterative in
that an outer iteration is used to update the solution f* and an inner iteration is used to solve
the system of equations in (10) by the CG method. The special structure of the matrices H and
DF* could be used to decrease the computational cost substantially. The first matrix, H is merely
the wavelet domain representation of our degradation operator. If the kernel is convolutional, it
has been shown by Zervakis et. al. [27] that this matrix can be diagonalized by a a special Fourier
transform matrix by invoking circulant assumption. On the other hand, the second matrix D
is diagonal in the wavelet domain. Therefore, the vector matrix multiplications required for the
implementation of the CG algorithm can be computed in an efficient way by going back and forth
between the wavelet and the Fourier transform domains. In this case, the cost of multiplying a
vector with the matrix HTH + ED* is dominated by the cost of the FFT which is O(N?log V).

We note that the iterative algorithm in (10) can be efficient even in the case where H is no
longer convolutional since the wavelet domain representation of a wide range of operators is sparse
[13]. In those cases, standard techniques for sparse matrices can be used to reduce computational

complexity.

5 Hyperparameter Selection
In this paper, we use a multi-dimensional extension of the L-curve method [16], called the
L-hypersurface method [4], to determine X in (6). In order to describe the method thoroughly,

we consider the following generalized image restoration scheme where the estimate of the original

12



image f is obtained by minimizing the following cost function

M
JIEA) = |ls — B[S+ Y AR (12)
=1
where A;, 7 =1,...,M are the regularization parameters and R; are the corresponding regular-

ization operators. The cost function in (12) represents a multiply constrained least squares problem
and includes many popular image restoration schemes as its special cases. Qur wavelet domain im-
age restoration algorithm is obtained if g, H and f are in the wavelet domainand R;, 7=1,..., M
are the operators which extract desired portions of the wavelet transform of f. For example, we can
take R; as the operator extracting the coarsest scale scaling coefficients and Ry as the operator
extracting the wavelet coefficients for a doubly constrained, Model 1-type problem.

To extend the L-curve, we first introduce the following quantities

f*(A) = argmfin J(f,X) (13)
#A) = logllg - Hf* () (14)
zj(A) = log||R;f*N)|E, j=1,...,M (15)

With the above definitions, the “L-hypersurface” [4] is defined as a subset of RM*! associated with
the map s(A): U — RMT1L A e U, U = Uj]\il[aj,bj] such that

s(A) = (21(A), ..., 2n(A), 2(A) (16)

For a single constraint, the L-hypersurface reduces to the conventional L-curve which is simply a
plot of the residual norm versus the norm of the restored image in a doubly logarithmic scale for
a set of admissible regularization parameters. In this way, the L-curve displays the compromise
between the minimization of these two quantities. It has been argued and numerically shown that
the so called “corner” of the L-curve corresponds to a point where regularization and perturbation
errors are approximately balanced [16].

Analogous to the one dimensional case, the L-hypersurface is a plot of the residual norm z()

against the constraint norms z;(X), 1 < j < M. Intuitively, the “generalized corner” of the L-
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hypersurface should correspond to a point where regularization errors and perturbation errors are
approximately balanced. By a generalized corner, we mean a point on the surface around which the
surface is maximally warped. We can quantitatively measure how much a surface is warped around
a point by computing its Gaussian curvature [4]. In Figure 2 we plot a typical L-hypersurface along
with its Gaussian curvature and the error between the original and the restored images for a range
of regularization parameters. The experiment for which the L-hypersurface was computed was the
restoration a 32 X 32 image degraded by a Gaussian blur of variance 1 pixel and corrupted by white
Gaussian at 30dB SNR. We used our wavelet domain restoration algorithm with p = 2.0 and the
norms of the scaling coefficients and the wavelet coefficients as the constraints. Figure 2(b) shows
the curvature of the L-hypersurface shown in Figure 2(a) with Ay (resp. A2) being the regularization
parameter for the scaling (resp. wavelet) coefficients. Figure 2(b)-(c) clearly indicates the usefulness
of the the Gaussian curvature plot in assessing the goodness of regularization parameters. It is
observed that the curvature is significant along an extended maxima which is very close to a region
in the error norm, ||f — £*(A)||2, plot in Figure 2(c) where the error between the actual and the
restored images is minimized. Moreover, the curvature plot indicates that, there is in fact more than
one good regularization parameter for the scaling coefficients and as long as we choose the correct
value for the regularization parameter corresponding to the wavelet coefficients the restorations
should have approximately the same quality. The error norm plot in Figure 2(c) clearly supports
this point of view.

In this paper, we use the L-hypersurface method to select the multiple regularization parameters
appearing in our image restoration scheme. For fairness, for all other image restoration schemes
with which we compare our algorithm, we use a standard L-curve method to select the regularization

parameter.
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6 Experimental Results

In this section, we illustrate the performance of our proposed multiscale image restoration
algorithm for both real and synthetic images. All computations were carried out by using the
Matlab commercial software package with double precision arithmetic. We used the routines in

Donoho’s Wavelab toolbox [8] for the computation of forward and inverse wavelet transforms. In

the first example, we used a Gaussian convolutional kernel, A(z,y) = 401% exp{—éijgj}, with
0y = 0y = 2.0 to blur the 256 x 256 Mandrill image. Zero mean white Gaussian noise was added
to set the SNR to 30dB. In Figure 3 (a)-(b) we display the original and the blurred, noisy images.

We restored the degraded Mandrill image using three regularization techniques: our proposed
multiscale regularization scheme, the Constrained Least Squares (CLS) algorithm with a 2-D Lapla-
cian regularizer [1], and the TV algorithm. The relevant regularization parameters were determined
using the L-curve or the L-hypersurface method. For the TV algorithm and our algorithm we
used # = 1.0 as the stabilization constant. This choice of 8 is motivated by the fact that even
for B << 1.0, the restored images were visually indistinguishable from the g = 1 case. For
our multiscale image restoration algorithm, we used the Daubechie’s eight tap most symmetrical
wavelets [11].

In Figure 3(c)-(f) we display the restored Mandrill images corresponding to the CLS, the TV
and the multiscale algorithm. For our multiscale image restoration method we computed two
restorations according to the Model 1 and Model 2 regularization schemes described in Section 3
with p = 1.0. For Model 1, we used a 3-level wavelet decomposition and set the exponential param-
eter to @ = 1.2. For Model 2, we used a 3-level wavelet decomposition and set the regularization
parameter corresponding to the coarsest scale scaling coefficients to 107°. The rationale behind

this choice becomes clear when we examine curvature plot for the L-hypersurface corresponding

to the Model 1 restoration. For the Model 1 case the L-hypersurface was used to determine two

15



parameters, Ay and Ay corresponding to the coarsest scale scaling coefficients and the coarsest scale
wavelet coefficients respectively. In this case, the curvature of the L-hypersurface is a 2-D function

of the regularization parameters as seen in IFigure 4(a). Also shown in Fig. 4(d) is a plot of the

root mean square error (RMSE), \/%Hf — £*(X)||3, as a function of these regularization parame-
ters. Examining these plots shows that the curvature surface has a distinct extended maxima along
which the the norm of the error is very close to being a minimum. Thus, we see that the restoration
algorithm is not overly sensitive to the scaling coefficient regularization parameter and locating the
correct regularization parameter for the wavelet coefficients is more important.

In the Model 2 restoration, we employed a 3-level wavelet decomposition and assumed that each
scale is assigned a different regularization parameter. Based on the insensitivity of the restoration
to the scaling coefficient regularization parameter seen in Fig. 4(a), we set this value to 107°.
Figure 5(a)-(c) shows the curvature of the L-hypersurface obtained for this experiment. Since in
this case the curvature is a 3-D function (one parameter for each wavelet scale), each of the 2-
D plots (2-D in regularization parameters) in Figure 5(a)-(c) is actually a slice of the curvature
hypersurface with the regularization parameter corresponding to the coarsest scale being constant.
Again, the maxima of the curvature of the L-hypersurface track well the minima of the the RMSE
surface so that we are close to the “optimal” regularization parameters.

Fig. 3 shows that both the TV algorithm and our algorithm produce restored images visually
superior to the CLS algorithm. We also observe that the images restored by our algorithm are a little
sharper than the image restored by the TV algorithm and that the texture-like regions abundant
in the Mandrill image (eg. the hairs around the mouth of the Mandrill) are better preserved by
our algorithm. The RMSE values are 23.73 for the TV algorithm, 24.11 for the CLS algorithm,
and 23.75 and 23.86 for the Model 1 and Model 2 restorations respectively. Finally, for this image

we see little difference either in terms of the error norm or in terms of visual quality between the
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Model 1 and Model 2 restorations. The primary advantage of the Model 2 approach is that we no
longer need to independently set the a parameter.

In our second example, we first blurred the original Bridge image in Figure 6(a) with a 9 x 9
uniform motion blur and added white Gaussian noise to the degraded image to set the SNR at
40dB. The blurred image obtained by this way is shown in Figure 6(b). Having established the
edge preserving utility of the TV and the proposed algorithm over the conventional CLS method,
we only display the restorations obtained by the TV and the proposed algorithm in Figure 6(c)-(d).
For our restoration, we applied the Model 1 regularization scheme with a = 1.2, p = 1.0 and a
3-level wavelet decomposition. The regularization parameters for coarsest scale scaling coefficients
as well as the coarsest scale for the wavelet coefficients were chosen by the L-hypersurface as
displayed in Figure 7(a). Although the RMSE values were similar (19.43 for the TV and 20.31 for
the multiscale algorithm), the two restored images in Figure 6(c)-(d) exhibit vastly different visual
characteristics. The TV algorithm destroys many of the small features in the image and produces
an overly homogenized restoration resembling an “oil painting” of the original scene. On the other
hand, the wavelet-based algorithm is able to reproduce finer detail thereby yielding a more visually
appealing restoration.

In our final example, we demonstrate the orientation adaptive nature of our approach. In Fig-
ure 8 (a), we display an artificial 32 X 32 image which has significant structure in the horizontal
direction, but little in the vertical and diagonal orientations. This image was blurred by a Gaus-
sian convolutional kernel with o, = 0, = 1, and zero mean white Gaussian noise was added to
the blurred image to set the SNR at 30dB. Because of the large differences between the structure
in the horizontal and vertical directions, an ideal image restoration algorithm should use differ-
ent regularization parameters for vertical, horizontal and diagonal directions. With this in mind,

in Fig. 8(c)-(d) we compare restorations obtained using our Model 1 and Model 3 regularization
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schemes respectively where the L-hypersurface was employed to determine the required regulariza-
tion parameters. For both Model 1 and Model 3 schemes we employed a 3-level wavelet decom-
position and set the scaling coefficient regularization parameter to 107°. For Model 3 restoration,
the regularization parameters obtained for the vertical and diagonal directions (in which the image
is constant) were approximately two orders of magnitude larger than the regularization parameter
obtained for the horizontal direction. Note that the regularization parameters were chosen by the
L-hypersurface method. The algorithm knows automatically that the image has more structure in
the horizontal direction than in any other direction and decreases the regularization parameters
accordingly. It is clear from this figure that the orientation adaptive algorithm produces a much
better restoration than the scale adaptive algorithm. Indeed, the error norms were 11.96 for the

Model 1 restoration and 9.17 for Model 3 restoration.

7 Conclusions

In this paper, we introduced a wavelet domain multiscale image restoration algorithm for use
in linear image restoration problems. Following the recent results in the the area of image de-
noising and coding, we developed a statistical prior model for the wavelet coefficients of images.
Our priors are able to capture spatial, scale and orientational characteristics of images accurately.
We developed a deterministic iterative optimization algorithm to solve the nonlinear optimization
problem resulting from using such priors and utilized the L-hypersurface method to choose the
multiple hyperparameters governing the structure of our priors. Comparison of our multiscale
image restoration algorithm with either the traditional image restoration algorithms or the more
recent edge-preserving image restoration algorithms shows that our algorithm can produce restora-
tions which are visually significantly better than that of the traditional techniques and at least

comparable, if not better, than that of the the edge-preserving algorithms.
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In future work we are planning to extend our results to include the following:
1. Automatically choosing how to structure the regularizer (eg. which model to choose).
2. Investigation of theoretical properties of the L. hypersurface.

3. Computationally efficient implementation of the L-hypersurface scheme.
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8 Figure and Table Captions

Figure 1 Wavelet decomposition of an image.

Figure 2 (a) L-hypersurface, (b) Gaussian curvature of the L-hypersurface in (a), (c¢) the norm of
the difference between the actual and restored images. Ay regularizes the coarsest scale scaling
coefficients and Ay is used to penalize the wavelet coefficients in a Model 1 regularization
scheme.

Figure 3 (a) Original Mandrill image. (b) Blurred image, 30dB SNR. (c) Restored by the CLS
algorithm. (d) Restored by the TV algorithm. (e) Restored by the proposed algorithm
using Model 1 regularization scheme. (f) Restored by the proposed algorithm using Model 2
regularization scheme.

Figure 4 (a) Curvature of the L-hypersurface for the proposed algorithm. (b) Curvature of the
L-curve for the CLS algorithm. (c) Curvature of the L-curve for the TV algorithm. (d)-
(f) Corresponding RMSE plots. In (a) and (d), Ay regularizes the coarsest scale scaling
coefficients and Ay is used to penalize the wavelet coefficients in a Model 1 regularization
scheme.

Figure 5 (a)-(c) Curvature of the L-hypersurface and (d)-(f) RMSE plots for the mandrill experi-
ment. Here, A\; regularizes the coarsest scale wavelet coefficients, Ay the mid scale and Az the
finest scale wavelet coefficients.

Figure 6 (a) Original Bridge image. (b) Blurred image, 40dB SNR. (c) Restored by the TV
algorithm. (d) Restored by the proposed algorithm using Model 1 regularization scheme.

Figure 7 (a) Curvature of the L-hypersurface for the proposed algorithm. (b) Curvature of the L-
curve for the TV algorithm. (c)-(d) Corresponding RMSE plots. In (a) and (c) Ay regularizes
the coarsest scale scaling coefficients and A5 is used to penalize the wavelet coefficients in a
Model 1 regularization scheme.

Figure 8 (a) Original image. (b) Blurred image, 30dB SNR. (c) Restored by the proposed algo-
rithm with Model 2 (scale adaptive) regularization. (d) Restored by the proposed algorithm
with Model 3 (orientation adaptive) regularization.
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