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Abstract

In this paper, we present an adaptive two-pass rank order based filter to remove im-
pulse noise in highly corrupted images. When noise ratio is high, rank order based filter,
median filter for example, usually cannot produce satisfactory results. Better results can
be obtained by applying the filter twice, which we call two-pass filter. To further improve
the performance, we develop an adaptive two-pass rank order based filter. Between the
passes of filtering, an adaptive process is used to detect irregularities in spatial distribution
of the estimated impulse noise. The adaptive process then selectively replaces some pixels
changed by the first pass of filtering by their original observed pixel values. These pixels are
then kept unchanged during the second filtering. In combination, the adaptive process and
the second filter eliminate more impulse noise and restore some pixels that are mistakenly
altered by the first filtering. As a final result, the reconstructed image maintains a higher
degree of fidelity and has a smaller amount of noise. The idea of adaptive two-pass pro-
cessing can be applied on many rank order based filters, such as center weighted median
filter, adaptive center weighted median filter, lower-upper-middle (LUM) filter, and soft-
decision rank-order-mean (SD-ROM) filter. Results from computer simulations are used to

demonstrate the performance of the algorithm.
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I. INTRODUCTION

In image processing, median filter is usually used to remove impulse noise [1]. Compared
with convolutional filters, the median filter is more robust such that a single very unrepre-
sentative pixel in the filter window will not affect the median value significantly. On the
other hand, since the median must actually be one of the pixels in the filter window, the
median filter does not create new pixel values when the filter crosses an edge. For this reason
the median filter is better at preserving sharp discontinuities than spatial average filter [2].
One problem of the median filter is that it may alter pixels undisturbed by the noise [2, 3]
and causes edge jitter [4,5] and streaking [6]. Modifications of the median filter have been
proposed to overcome these shortcomings. Basically the task is to decide when to apply
the median filter and when to keep pixels unchanged [7]. Among those are center weighted
median filters [8-11] which gives the current pixel a large weight and the ultimate output is
chosen between the median and the current pixel value, detail-preserving median filters [12],
and rank-ordered mean filter [13] which excludes the current pixel itself from the median
filter, progressive switching median filter (PSM) [14], soft decision based filter [7,15] and
predication-based filter [16]. A different kind of weighted median filter has been proposed
by Yin et al. [17] where a nonnegative integer weight is assigned to each position in the filter
window. Recently, impulse noise removal based on fuzzy logic has been attracting research
effort [18]. In general, these methods can be classified to two categories. The first cate-
gory is adaptive window methods, which adaptively choose the window used to filter each
pixel [4,19]. The second category is non-adaptive window methods, such as those presented
in [20,21]. All the above mentioned filters belong to rank order based filter.

In this paper, we propose a method that improve the performance of the median filter and
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other rank order based filter by analyzing the spatial distribution of the estimated impulse
noise. The impulse noise is estimated by subtracting the rank order based filter output from
the observation. Using an underlying rank order based filter, be it standard median filter,
center weighted median filter, or SD-ROM filter, our method looks for irregularities in the
spatial distribution of the estimated impulse noise over a subset of the image. The subset
can be a column or a row. Once an irregularity is detected, some pixels changed by the first
filtering are replaced by their original pixel values and kept unchanged during the second
pass of the filter. Irregularities are detected adaptively in the framework of hypothesis test,
by scanning the image in a specific direction. Our method aims to achieve two objectives.
First, the algorithm uses two-pass rank order based filter to remove more impulse noise
when noise ratio is high. Second, by exploiting spatial distribution of the estimated impulse
noise the algorithm corrects some errors made by the first filtering. By doing so, improved
results are obtained in terms of better visual appreciation and higher peak signal-to-noise
ratio (PSNR).

In this paper, we describe our method in detail based on standard median filter. As we
will show later on, it is straight-forward to generalize our method to other rank order based
filters because the method is independent of the underlying rank order based filter. The
paper is organized as follows. Section II discusses impulse noise models and the standard
median filter. Then it presents the algorithm based on standard median filter. Section III
demonstrates the performance of our algorithm using examples. We also extend the idea of
adaptive two-pass filtering to other popular rank order based filters and show that improved

results are obtained in each case. Finally, conclusions are given in Section IV.
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II. ALGORITHM

In this section, at first we briefly describe impulse noise model and the standard median
filter. Then we introduce an adaptive two-pass median filtering process. And it will be
made clear that the key part of our method is independent of the underlying impulse noise
detection scheme and therefore our method can be generalized to other rank order based

filters in a straight-forward manner.

A. Noise model

At first, we define noise ratio as

. . Number of pixels of impulse noise
Noise ratio =

(%)- (1)

Total number of pixels in the image

Impulse noise can be described by their probability distributions in space and amplitude,
which are assumed to be independent from each other. Denoting an M x N matrix U as

the impulse noise, mathematically we can write

U = Upos ® Usnp (2)

where matrix Upgpg, a matrix of size M x N, represents the positions of the impulse noise,
U sump, a matrix of size M x N, represents the amplitudes of the impulse noise at each pixel
position, and ® denotes the point-by-point multiplication. For the noise model, we assume

that the impulse noise satisfies a binary distribution at each pixel Uppg(m,n)

Prob{Upps(m,n) =1} = g¢q

Prob{Upps(m,n) =0} = 1—¢q, m=1,....M,;n=1,...,N (3)

where 0 < ¢ < 1. The binary distribution indicates that at position [m,n], the probability

that there is an impulse noise is ¢ and probability is 1 — ¢ that there is no impulse noise.
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Intuitively, ¢ equals the noise ratio. The amplitude of impulse noise may have a Gaussian

distribution, a uniform distribution or a fixed-value.

B. Standard median filter and types of error

Consider an image S and an observation X of size M x N
X=8S+U (4)

where U is the impulse noise. In the above model, noise is additive to the signal. In
simulation, clipping at pixel value 255 is applied to keep the simulated corrupted pixel value
within the range from 0 to 255, for an 8-bit monochrome image. Median filter is applied

over a window surrounding the current pixel X(m,n) such that

Y(m,n) = MFX(m,n), W)

= median{X(m —k,n—1),(k,}) e W}, m=1,... M,n=1,...,N (5)

where W is a predetermined window. Usually, W is chosen to be 3x 3, 5 x 5, or 7x 7 [2]. In
detecting and removing impulse noise, median filter makes error. First type of error occurs
when there is noise but the median filter does not detect it, it is called Type I error. Type
I error is also called a miss in other literature [22]. The second type of errors happens when
the median filter detects an impulse noise when there is actually no noise, it is called Type

II error or a false alarm. For example, assuming a signal is given by

15 1
S=115 1 (6)
151

and there is no noise, at position [2,2], the 3 x 3 median filter will generate the result

1 51
Y=([111 (7)
1 51
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which is Type II error. Besides the above two types of errors, median filter also makes a
third type of error, which we call over-correcting and label it Type III error. This type of
error happens when there is impulse noise of low amplitude and the median filter removes
the impulse noise and replaces it with the median value of in the filter window. When the
median value is not as close to the true pixel value as the noisy pixel is, an over-correcting
error occurs. Using the above signal for example and assuming there is a low amplitude

impulse noise such as
0 00

U=1{0 2 0 (8)
00 0

then the observation will be
1 51

X=117 1. (9)
15 1

To find the correct value at position (2,2), the 3 x 3 median filter will generate a result of

1 51
Y=1(111 (10)

1 51
instead of the original signal. In this case, the output is incorrect, what’s more, the output
of median filter has a larger error than the original noisy observation. Therefore, it is

beneficial to adaptively choose when to keep median filter output and when to keep the

original pixel value.

C. Adaptive two-pass median filter to detect impulse noise

To improve the performance of the median filter, we introduce an adaptive two-pass
median filter (ATPMF). The idea of adaptive two-pass median filter is to use first median

filter to clean up the image and obtain an estimation of the spatial distribution and
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amplitude of the impulse noise. Using the estimated impulse noise, an adaptive process is
carried out to selectively replace some pixels by the original pixel values of X. These pixels are
kept unchanged in the second median filtering, which is used to remove the remaining noise.

To facilitate discussion, we introduce two operators. The first operator €2 takes a vec-
tor or matrix input and marks nonzero elements of the input by one and assigns zeros to

other elements,

(z) = { 1, if x #0, (11)
0, ifx=0.
For example
10 3 1 01
Q1o 5 2/ |=101 1]. (12)
3 00 100
The second operator I" operates on a vector u = [uy, . .., uy]T, where T denotes the transpose,

and returns the positions of the first k£ smallest elements of u
Vi1 = L(w, k), k=1,...,N. (13)
For example, if u =[2,1,4,3,6,5,7]" then
I'(u,3) =[2,1,4]". (14)

We now describe the three steps of our algorithm, see Fig. 1. Step 1 is the standard
median filtering, (5). Matrix E;, which we call error index matrix (EIM), records pixel
positions of Y different from X. Pixels at these positions are supposedly contaminated by
impulse noise. Step 2 analyzes Y and E; to determine which pixels are most-likely over-
corrected by the first median filter. The over-corrected pixels shall be replaced by their
original pixel values and kept unchanged in the third step. Step 2 also generates the second
error index matrix Es, it determines which pixels shall stay unchanged in step 3. Step 3

carries out the second pass of filtering wherever Ey(m,n) = 0.
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Step 1. For each pixel X(m,n), applying median filter
Y (m,n) = MF(X(m,n), Wr) (15)
and generates an error index matrix
E,=QX-Y).
Step 2. Adaptively replace some original pixels of Y by original pixels of X
Y = U(Y,Ey) (17)

E,=Q(Y -Y) (18)

where W represents the adaptive processor shown in Fig. 2.
Step 3. For each pixel Y (m,n)

Z(m,n) = { M}'(Y(m, n), Ws), if Eo(m,n)

0
X(m,n), if Eo(m,n) =1

1l

Fig. 1. Steps of adaptive method.

Details of step 2 is given in Fig. 2. Here the notation X(:, n) stands for the n-th column
of X, the same for Y (:,n). In step 2-a, predetermined parameter a controls the threshold of
detecting a column over-corrected and b controls how many pixels will be replaced by their
original values. Step 2-b and 2-c loops over sub-images to remedy over-correction. In step
3, Es forces the median filter to avoid pixels that are purposely recovered in step 2. In step
1 and 3, Wi and W5 may be different. In Fig. 2 we apply the ATPMF by column. It can be

easily modified to proceed by row. In step 2, first, columnwise noise ratio is estimated by

)\(n) — Zm:l El(m? n) ’

ooy N. (22)

Second we can compute the mean p and standard deviation o), of A(n). For an impulse noise
satisfying binary distribution, by De Moivre-Laplace theorem [23], as M goes large, A(n) will
approximate a Gaussian distribution N(uy, o)) where py = Mp and oy = Mp(1 —p). It is
noted that step 2 is independent of the filter used in step 1. Step 2 is carried out

based on the estimated impulse noise. Therefore, we can replace the standard median
September 11, 2003—11: 08 am DRAFT
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2-a Choose parameter n = ao) where a > 0 and b > 0
2b FORn=1:N_,
o A(n) = Zm=B100)
o« IF (A(n) — pr) >
— Let
e=X(:,n)—Y(,n) (20)
— Let K =round(A(n) — py + boy)
—v=I(e K)
- X f =1,....M
Y(m,n) = (m,n) orme‘v,m ey
Y (m,n) otherwise.
« ENDIF
2-c ENDFOR

Fig. 2. Adaptive processor ¥ to detect impulse noise.

filter in step 1 by other rank order based filter, as we will show in next section.

Fig. 3(a)—(c) show a true image, a noisy observation X, and the restored image by the
3 x 3 median filter. The impulse noise has a Gaussian distribution in amplitude and a noise
ratio of 25%. Fig. 3(d) shows the result obtained by ATPMF. It is seen that the ATPMF
produces a cleaner image than the standard median filter.

Fig. 4(a) plots A(n) using the normplot command of the MATLAB, assuming the impulse
noise is known a priori. It is seen that the curve matches a Gaussian distribution very well.
Fig. 4(b) plots A(n) of the example shown in Fig. 3. It is seen that the estimated number
of noisy pixels per column is close to a Gaussian distribution. Therefore when A(n) differs
too much from pu,, it is believed that some pixels of column n are over-corrected by the first
median filter and should be replaced by the original pixels. Using p) and o), at each column

we make a one-side parameter test

Ho : A(n) ~ N(u,03)

Hi : A(n) ~ N(uy+ A,03) (23)
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(c) (d)

Fig. 3. Standard median filter to remove impulse noise, (a) original image, (b) noisy observation, (c) restored
image by the 3 x 3 median filter, (d) restored image by the ATPMF. Noise ratio is 25%. Impulse noise has
a Gaussian distribution with mean 30 and standard deviation of 5.
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Fig. 4. (a) True columnwise distribution of noisy pixels, (b) estimated columnwise distribution of noisy
pixels by the 3 x 3 median filter. A straight line of '+’ represents a Gaussian distribution.

or equivalently (after subtracting p, from the observation)

Ho : A(n) ~ N(0,03)

Hi : An)~ N(4,03) (24)

where A > 0 and is unknown, to detect columns containing unlikely large number of impulse
noise. The null hypothesis indicates that the number of pixels containing impulse noise
at n-th column is reasonably small and most of those pixels altered by the median filter
truly contains impulse noise. The alternative hypothesis represents the case that there is
a excessively large number of pixels altered by the median filter and therefore it is likely
some of these pixels do not contain impulse noise and are mistakenly changed by median
filtering. Although A is unknown, knowing that A > 0 allows us to find a uniformly most

powerful (UMP) test [24] using the Neyman-Pearson criterion. The Neyman-Pearson test is
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to decide #; if [22]

1 _(A=4)?
p(A\sHy)  Vawon eXp[ 203 }

= > (25)
ANH 1 2
p(A; Ho) \/%UA exp [ 507 ]

where 7 is a preset threshold. Taking the logarithm of and simplifying (25) we have

A2
A)\>a§1n77+7. (26)
Since A > 0, we then have
2
X A !
—1 —=1. 2
A > ] nn+ 5 =11 (27)

The probability of false-alarm is

Prs=Q (i) (28)

2p
where 7' can be decided by pre-selecting the Prs and @ is the complementary cumulative
distribution function of a standard Gaussian probability density function. Then solving the
following equation gives n’

n' = 0\Q " (Pra) (29)

which is independent of A. After finding 1’ from (29), the probability of detection is given by

PD:Q<77/_A>. (30)

D)

The above test is UMP in the sense that for a fixed Pry4, it yields the highest Pp among all
the tests [24]. As expected, increasing n (or 7') reduces both Pry and Pp, and vice versa.

In Section III we investigate the effect of different 1 on the performance of the ATPMF.

D. Choice of a and b in step-2

In step-2, @ and b can be chosen based on how tight the Gaussian distribution in colum-
nwise noise ratio shall be. In other words, we can choose how much deviation is acceptable

between the A(n) and ) before we declare there is over-correction in column n. For example,
September 11, 2003—11: 08 am DRAFT



ADAPTIVE TWO-PASS RANK ORDER BASED FILTER TO REMOVE IMPULSE NOISE 13

we can choose a = 1 so that if a columnwise noise ratio deviates from the mean value by one
standard deviation, we will consider that column being over-corrected by the first filtering.

Similarly we can set b = 1 to correct that many pixels in the column.

E. Different implementations

In the above algorithm, the adaptive process is carried out column by column. On the
other hand, the adaptive process can be implemented by rows. Fig. 5 shows the restored
images of “Lena” by the 5 x 5 median filter and by an ATPMF implemented in columns
and in rows. For the adaptive two-pass filter, we set a = 1 and b = 1. Comparing the two
images of ATPMF, we see there is little difference between them, yet they both are much

better than the standard median filter output.

F. Computational issue

Because of the increased steps of computation, the computational time of applying adap-
tive two-pass filtering is longer than one-pass filtering. The most time-consuming part of our
method is to run the underlying rank order based filter. The adaptive part of our method,

i.e., step 2 in Fig. 1, takes much less time to complete.

III. EXAMPLES

In this section we use some examples to demonstrate the performance of our algorithm
and generalize the idea of our method to other rank order based filters such as center weighted
median filter, adaptive weighted median filter, lower-upper-middle (LUM) filter, and SD-
ROM filter. Quantitatively, we use PSNR to compare the restored images with and without

using the adaptive process. For a final output image Z, PSNR is defined as

PSNR = 10log;o » _ > @, n)2i5; RO (dB).

m=1 n=1
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Fig. 5. Different implementation, (a) noisy observation of “Lena”, noise ratio is 35%, (b) restored image
by a standard 5 x 5 filter, PSNR = 20.8517 (dB), (c) restored image by ATPMF implemented in columns,
PSNR = 22.8672 (dB), (d) restored image by ATPMF implemented in rows, PSNR = 22.7692 (dB).
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PSNR

0.15 0.2 0.25 0.3 0.35 0.4 0.45
Noise ratio

20 :

Fig. 6. PSNR of “Lena”. Dash line, 3 x 3 median filter; dash-dot line, two-pass 3 x 3 median filter; solid
line, ATPMF. For the ATPMF, the underlying median filter window is 3 x 3 anda=1,b=1.

A. Detect impulse noise based on median filter

Fig. 6 compares PSNR of the standard median filter, the two-pass median filter and the
ATPMF to process image “Lena”. It is seen that at high noise ratios, the ATPMF results
have much higher PSNR than those of the standard median filter. It is interesting to observe
that by simple two-pass median filtering, results become modestly better. By introducing
the adaptive process between two median filters, much improved PSNR are obtained at all
noise ratios, especially at high noise ratio, above 30%. In the ATPMF a and b are set to
1. For the second example, we use the “boat” image. Fig. 7 shows the original image, a
noisy observation at ratio noise of 30%, restored images by the 3 x 3 median filter and the
ATPMF. Fig. 8 shows the result of processing the “boat” image contaminated by impulse

noise with a uniform distribution in amplitude.
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Fig. 7. Median filter to remove impulse noise, (a) original image, (b) noisy observation, noise ratio is 30%,
(c) restored image by the 3 x 3 median filter, PSNR = 24.3833 (dB), (d) restored image by the ATPMF,
PSNR = 25.8376 (dB). Adaptive process is implemented in columns with a =1, b= 1.
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Fig. 8. Restored “boat” image by, (a) the 3 x 3 median filter, PSNR = 25.0612 (dB), (b) an ATPMF
implemented in rows, a = 1, b = 1, PSNR = 27.7221 (dB). Noise ratio is 20%. Noise has a uniform
distribution between 0 and 80.

B. Effect of n on the ATPMF performance

In the above section we showed that by modeling the detection problem as a one side
parameter hypothesis testing, we can find a UMP test based on Neyman-Pearson criterion.
Here we investigate the effect of 7 on the performance of the ATPMF. Fig. 9 plots the PSNR
of the “Lena” image restored by a two pass median filter and the ATPMF for different 7.

As 7 increases, PSNR increases at first and then decreases.

C. Generalization to other rank order based filters

In recent years, many algorithms have been proposed to reduce impulse noise. Some of
them are center weighted median filter [10,11,17], adaptive center weighted median filter [13],
lower-upper-middle filter [25], and soft-decision rank-order-mean (SD-ROM) filter [15]. In

this section, we apply our algorithm to these filters and show that improved results are
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Fig. 9. PSNR of “Lena” for different 7, dash line, standard median filter; dash-dot line, two-pass median
filter; solid line, ATPMF. Note that standard median filter is not affect by the choice of 7, therefore its plot
is a straight-line. Noise ratio is 25% and noise has a Gaussian distribution.

obtained in each case, respectively.

Table I shows the results of removing impulse noise with a random amplitude satisfying
a Gaussian distribution. In the table, the second row shows the PSNR of using standard
3 x 3 median filter (MF), center weighted median filter (CWMF) with a filter window of 3 x 3
and a center weight of 5, adaptive center weighted median filter (ACWMF), LUM filter of
(5,5,13) [25], and SD-ROM. The third row shows the result by applying our algorithm based
on the corresponding filter. For all the examples, we set a = 1 and b = 1 in the adaptive
process. It is seen that our algorithm improves the result of each filter, respectively. As
expected, the better the performance of the underlying rank order based filter produces, the
better result the adaptive two-pass filter produces.

Table II shows the results of processing an impulse noise with a uniform distribution
between 0 and 120. Table IIT shows the results of processing an impulse noise with fixed-
value of 100. From both tables we can see that our algorithm improves the performance of

the underlying rank order based filters.
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TABLE 1

IMAGE OF “LENA”, NOISE RATIO IS 30%, GAUSSIAN DISTRIBUTION IN AMPLITUDE.

MF | CWMF | ACWMF | LUM | SD-ROM

PSNR (dB) (regular) || 20.9160 | 22.8093 | 23.2441 | 20.9670 | 26.2251

PSNR (dB) (adaptive) || 24.6247 | 25.7156 | 26.4832 | 25.2088 | 28.5644
TABLE II

19

IMAGE OF “LENA”, NOISE RATIO IS 30%, UNIFORM DISTRIBUTION IN AMPLITUDE BETWEEN 0 AND 120.

MF CWMF | ACWMF | LUM | SD-ROM
PSNR (dB) (regular) 26.5685 | 28.0796 | 28.6759 | 26.9210 | 27.7217
PSNR (dB) (adaptive) || 29.6517 | 29.9542 | 30.8357 | 30.2643 | 31.4640

D. Processing salt and pepper noise

Rank order based filters are very effective in removing salt and pepper noise. In our
algorithm, the adaptive part can be easily modified to remove salt and pepper noise by
change (20) in step-2 to
(32)

Table IV shows the result of removing salt and pepper noise from the image of “Lena” using
different rank order based filters. Comparing the results of before and after using adaptive

process, we can see that there is a large improvement in the final results.

IV. CoNCLUSION

We presented an adaptive rank order based filtering process to remove impulse noise in
highly corrupted images. The adaptive filter is based on underlying filter such as standard
median filter, center weighted median filter, adaptive weighted median filter, LUM filter,
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TABLE IIT
IMAGE OF “LENA”, NOISE RATIO IS 30%, IMPULSE NOISE WITH FIXED VALUE OF 100.

20

MF CWMF | ACWMF | LUM | SD-ROM
PSNR (dB) (regular) || 21.5631 | 24.3777 | 23.0800 | 22.2382 | 29.0991
PSNR (dB) (adaptive) || 26.2769 | 27.7248 | 27.2482 | 26.3723 | 31.6330
TABLE 1V
IMAGE OF “LENA”, NOISE RATIO IS 30%, SALT & PEPPER NOISE, (GAUSSIAN DISTRIBUTION IN
AMPLITUDE.
MF CWMF | AWMF | LUM | SD-ROM
PSNR (dB) (regular) || 36.2007 | 39.5893 | 39.8517 | 37.5196 | 37.5220
PSNR (dB) (adaptive) || 41.2992 | 41.9990 | 43.3003 | 41.7177 | 42.1703

and SD-ROM filter. The adaptive process detects irregularities in the spatial distribution

of the estimated impulse noise. By analyzing the first error index matrix, the detection is

implemented in the framework of hypothesis testing. The method is able to correct some

false-alarms caused by the first filtering and remove remaining noise. We have shown that

the adaptive filter performs better than using the underlying filter alone in removing impulse

noise and reducing false-alarms. Using test images and comparing PSNR of the adaptive

filter with those of the underlying filter, we demonstrated the improved performance of our

method, especially at high noise ratios, on simulated images.
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