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Dynamic MRI Sequence Estimation
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Abstract—Dynamic magnetic resonance imaging (MRI) refers acquisition that allows for faster image sequence reconstruction
to the acquisition of a sequence of MRIimages to monitor temporal ysing a limited amount of acquired data.

changes in tissue structure. In this paper we present a method for 1o §iional MRI acquisition techniques use magnetic field
the estimation of dynamic MRI sequences based on two compli-

mentary strategies: an adaptive framework for the estimation of gradients and radio-frequency (rf) pulses to encode the spatial
the MRI images themselves, and an adaptive method to tailor the POsition of different particles within a tissue volume. The input
MRI system excitations for each data acquisition. We refer to this system excitations of gradientfields and rf pulses are used to scan
method as thedoubly adaptive temporal update meth¢DATUM) 3 yolume in a sequence of slices, typically via direct sampling of
for dynamic MRI. the two-dimensional spatial Fourier encodingkespace, of the

Analysis of the adaptive image estimate framework shows that . . . .
calculating the optimal system excitations for each new image slice. An inverse Fourier transform is then used to reconstruct

requires complete knowledge of the next image in the sequence.images of the tissue composition. Good reviews of this process
Since this is not realizable, we introduce a linear predictor to aid from a signal processing perspective are available in [6] and [7].

in determining appropriate excitations. Simulated examples using  The physical dynamics of MR imaging constrain the image ac-

real MRI data are included to illustrate that the doubly adaptive P . - .
strategy can provide estimates with lower steady state error than quisition time. Typically, one line ik-space is sampled for each

previously proposed methods and also the ability to recover from input excitation. For a staticimage slice, one canimprove the spa-

dramatic changes in the image sequence. tial resolution by increasing both the number of samplepace
Index Terms—Adaptive filters, dynamic MRI, image tracking, ~lines and the bandwidth df-space they cover. However, when
minimum data MR image reconstruction, SVD. the composition of the slice changes over time, only the most re-

cently acquired data accurately reflects the present composition
ofthe slice and the oldest acquired data may not be reliable. Thus
the challenge of improving temporal resolution of an image se-
AGNETIC resonance imaging (MRI) has rapidly bequence is not directly analogous to increasing spatial resolution.
come the imaging modality of choice for noninvasively One approach to improve the spatial and temporal resolution
acquiring high-resolution images of soft tissue. One applicati@fian acquired image sequence is to acquire a multiple number
of MRI is to monitor dynamic changes in tissue structuref sampledk-space lines per input excitation. However, such
through the acquisition of a sequence of images focused on theltilinetechniques typically require enhanced hardware to im-
same slice or region of tissue over a period of time. Clinicplement and suffer more from image distortion and artifact. For
applications where dynamic MRI is of interest include thexample, echo-planarimaging (EPI) samples a cyclic raster line
observation of the early flow of contrast agent to detect amlroughk-space, but requires quickly switching a strong mag-
localize tumors [1], [2], real time monitoring of surgical internetic gradient field [8, p. 152]. Alternativelparallel imaging
ventions or thermal treatments [3], and cardiac imaging [4hethods such as SMASH [9] use a phased array of receiver coils
Because of fundamental limits in the MRI data acquisition rate rapidly sample different segments bfspace concurrently.
there is a tradeoff in each of these cases between temporal réageh methods represenhardwaresolution to the problem.
lution, spatial resolution, volume coverage and signal-to-noiseWe consider in this paper a complementagftware ap-
ratio. For example, the ability to image cardiac activity in reglroach. Under the assumption that one line ke§pace is
time comes at the expense of limited volume coverage and lawquired with each input excitation, the required image ac-
spatial resolution [5]. Thus, there is a need for optimized dadaisition time is proportional to the number of lines sampled
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Previous MRI sequence estimation methods using mininraveals that the identification of the theoretically optimal input
data acquisition follow one of two general system excitation apxcitation sequence requires complete knowledge of the next
proaches. The first defines a set of static excitations, using noimage in the sequence, regardless of the image reconstruction
formation about the underlying image. Here, the physical MRhethod. Because this information is not available in a clinical
acquisition process suggests using a truncated Fourier basisssting, Section IV presents a realizable method to bypass this
Such techniques include the Fourier keyhole (FK) method [10nitation. Specifically, we propose using a linear predictor in
RIGR [11], and the multiple region MRI method [12]. Predetandem with, but distinct from, the image sequence estimation.
fined non-Fourier excitations have also been proposed, suchlas enables the use of a predicted estimate of the next image
the wavelet techniques in [13] and [14]. The second approaichthe sequence to tailor an appropriate set of system excitation
is to generate a static excitation set based on some knownimputs.
formation about the image obtained from a previously acquiredA comparison between the DATUM methods presented in
data set. For example, a full image scan may be obtained jtids paper and the minimal data imaging methods developed pre-
before the introduction of contrast agent or prior to surgical ivously is given in Section V. The examples show simulations of
tervention. Information from this full image can then be usea dynamic MRI sequence acquisition, utilizing real MRI data,
to design excitation sequences to efficiently acquire subsequimtthe FK, SVD, RIGR, and the DATUM methods. As illus-
image data in the dynamic sequence. One such method idrtged in Section V, the DATUM methods produce a sequence
construct excitation sequences using information from the siestimate with lower steady state error than previous methods,
gular value decomposition (SVD) of a given reference imagand is applicable for estimating dynamic MRI sequences that
[15]. Such methods can be considered complementary to ghéibit bulk motion changes.
hardware techniques mentioned earlier. For example, combined
SVD_ gnd EPI methpds have befan demonstrated [16] as well as II. LINEAR SYSTEM MODEL FORMRI
multiline SVD acquisition techniques [17].

To estimate the image sequence, each of the acquisitionln€ DATUM methods presented in this paper build on the
methods cited above uses a given set of system excitatiofiggar system model developed by Panyttal. [20]. The fol-
recorded output data, and an image reconstruction modeWwing section presents a brief review of this MRI acquisition
Utilizing a set of static input excitations, they are adaptive ifodel.Ingeneral, the MRIsystem mapping frominputexcitation
the sense that each new image estimate is constructed fiiérgampled output data is nonlinear. However, if the acquisition
some prior knowledge plus an update term utilizing the mosgses rf encoding with a low flip angle excitation, the MRI system
recently recorded output data. However, due to the dynaniigut—output mapping may be approximated to the firstorder and
nature of MRI sequences, a static excitation set—either Fouribe MR imaging process can be described by a linear response
or non-Fourier based—may not be best over an entire sequemaedel [20].

A variety of input selection methods been proposed [12], In this paper, we refer to each rf excitation as an input and
[18], [19], but here we seek to adaptively determine the inpatich measured rf signal as a system output. The time samples
excitation sequences as well, making the problem of dynantitan rf excitation are denoted with an input vectprSimilarly,

MR image sequence estimatidoubly adaptive the vectory; represents time samples of the measured rf signal

The challenge is that only the current input excitation arghvelope. If we represent ttkespace encoding of a given image
output measurements are available for determination of both #iee with the matrixk, then the MRI data acquisition process
image estimate and the next set of system inputs. Furthermargy be modeled with a matrix—vector produgt,= Rx;.
much like the classic “Which came first, the chicken or the egg” Typically, one collects: such scans together to form the ma-
paradox, the resulting quality of each half of the doubly adaptitx equationy = RX, whereR is a data matrix of sizéf x N
system depends directly on the other. that characterizes the system resporigas an N x » matrix

This paper presents our doubly adaptive temporal upda@nstructed from the input vectos = [x; x2 - X,
method (DATUM) as a solution to this problem. The DATUMandY is anM x r matrix constructed from the output vectors,
solution builds upon the linear system model given by Panygh= [y1 y2 - - ¥.]. The line-by-line acquisition of the
et al. in [20], which we briefly review in Section II. This k-space data for a given image slice would be representéd by
system model is applicable to both Fourier and non-Fouriegual to an identity matrix of siz& x /N. For minimal data ac-
encoding techniques. However, realization of the advantagpssitions, the goal is to set« N and still provide high-quality
provided by non-Fourier encoding—and the DATUM methodstimates ofR..
in particular—brings with it a number of research questions If one includes additive noisey’, then a more general ac-
that are detailed in Section VI, but lie beyond the scope of thiglisition model can be written @8 = RX + V. If the noise
paper. In Section Ill, we develop a general image estimatigsmindependent and identically distributed, then it can be shown
framework where we follow a traditional adaptive filteringle.g., [21]) that with orthogonal inputs vectors, the least-squares
approach, minimizing a measure of the difference betweeatimate of the system response matrikis= yxt wherex
the measured system response and the expected output ditaotes the pseudo-inversedf This result is identical to the
Analysis of this framework, presented in Section IlI-C, showsoise-free case we develop below. Thus, in this paper we impose
that the FK and SVD methods previously proposed are in fdbie constraint of orthogonal input vectors, and proceed below
specific cases of this adaptive framework. using the noise-free acquisition model.

Section IlI-D presents an analysis of the estimate error for theFor dynamic sequence® varies in time. For the analysis
adaptive framework developed in Section IlI-C. This analystbat follows below, we assume that the data maRixhanges
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smoothly and that any change occurs much more slowly theacond, what are the best input vectors to use? We present sepa-

the time to acquire scans. Specifically, iAR represents the rate analytical approaches to these two questions in the next two

change in the image data duringscans, then we assume thasections. Specifically, Section Il describes image estimation via

IAR|F < ||R]|%. cost function minimization for a given set of input vectors. Sec-
For convenience, here we choose to transform the measutied 1V considers the design of an effective set of input vectors

k-space domain output data to the spatial domain by definibgsed on a past history of previous image estimates. Together,

the N x N unitary Fourier transform matrix [22, Ch. 5,y = these two sections comprise our DATUM MRI sequence esti-

{(N)=Y/2¢=27kn/NY 0 < K, n < N — 1. This allows one to mator.

transform the sampleklspace data matriR to the spatial do-

main viaA = FIRFy. To view the image, one typically dis-  1ll. AN ADAPTIVE FRAMEWORK FORIMAGE ESTIMATION

plays the magthd.e of this matrijed|. The motivation for this . Presented below is the analysis and solution to the first half

transformation choice, as opposed to the standard 2D Fouré?

the doubly adaptive problem. In this section we present an
transform F; R Fy, is that thek-space excitation and output y P P P

vectors can be transformed to the spatial domain in an idem@glproach to MR image estimation from a purely analytical per-
; ective, drawing primarily from adaptive filter theory. Specifi-
way, viaX = Flx andY = FA Y. ap y p y. Sp

For the remander of thi - we ch t0 work entir ?ally, given a set of input vectotX,, we wish to estimate the
__rorthe remainder ot thiS paper, we choose to work € ei|¥1age at timen through the minimization of the cost func-
in the spatial image domain. The linear model we use is

tion, 7, = ||Y; — Y, |3 Here, as given in (1)}, = A,X,,
Y — A X 1) is the output data from the scans represented iki,,, while
" e Y, = A, X, is the expected output determined via a dynamic

where the subscript refers to the image frame number in théYstem estimatel,, using the same input vectors.
acquired dynamic sequencs, is theM x N image at timen, In the adaptive filter literaturey,, is often referred to as the
X,, is a block of input rf excitations of siz& x r, andY;, is output error A more direct measure of the image reconstruc-
a block of measured output data of sizé x . Here, refers tion is the modeestimate erroré,, = || A, — A, ||%. However,
to the number of scans used for each image acquisition andiscannot be used to identif,, because knowledge of,, is
typically less thanV. not directly available. The estimate error can be used in simula-
A number of MRI modalities can be represented by thitons for post factum comparison of different estimate methods,
model. For the wavelet and SVD methods the input vectors 4*a will be demonstrated in Section 11I-D. We also use it in Sec-
static over the sequence, i.&,, = X, and are chosen from tion 1V to guide the identification of subsequent input vectors.
either a pre-selected wavelet basis [13] or fromitiiominant ~ Because- was chosen such that < N, i.e., X,, is a tall-
right singular vectors of a reference image matdy [15], SKinny matrix, the minimization problem
[23]. The image estimates are constructed via
min J,, = min ‘
A, =V, X" = A, xXH. ) An A
is underdetermined and an infinite number of zero-error solu-
For the FK method [10], the static input rf excitation matrixtions exist. Three solutions are presented below. Each solves the
X, = X, captures the lower spatial frequency components efjuation7,, = 0 with a different model ford,,.
k-space. The acquired datathen replaces a portion éfipace
data in the current estimate. This can be represented analytic&lyLow-Rank Solution

“ 2

F

as First, with no structural constraints ofy,, solving 7, = 0
R - H leads to the underdetermined systdmX,, = Y,,. One solution
Ap = A X XT + AO(I - XX ) 3 is the minimum norm least squares (min-norm LS) solution

where Aq is again a reference image data matrix dnid the A, = Y, X" (X,LX,':’)T (5)

identity matrix of sizeN x N. If X is chosen as the dominant

right singular vectors afl, instead, then (3) represents the ke))i"her_eBT represents the Moore-Penrose pseudo-inverse of a
hole variant of the SVD method described in [24]. matrix B [25]. If the columns ofX,, are constrained to be or-

The key advantage of these methods is that one can ealgnormal, thenX7 (X, X7 )_T = X/ and (5) reduces to the
generate an estimat, of the image slice at time using a lim- [0W-rank reconstructiorsolution
ited amount of new data. That is, useful image representations Ay =Y, X/ = A, X, X7 (6)
are available even if one uses< N excitation and reconstruc-
tion vectors. We note that both the FK and SVD methods assurfiis low-rank estimate was used by Pangthal. in the SVD
the input vector seX is formed from orthonormal columns, i.e.,encoding method [15].
X" X = I wherel is the identity matrix. We will constrain all
input excitation matricesy,, in this same manner throughoutB'
this paper. One could instead solv&, = 0 while incorporating informa-
Considering the two image sequence estimate methods gien from a reference image. Traditionally, this reference image
sented in this section, we pose two complementary questioissobtained at the start of the sequence acquisition [10], [23],
First, what is the best way to form the image estimate? Aij&0]. To incorporate reference image information in the image

Incorporating a Reference Image
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estimate, we model the image estimatex%ls = A+ A,. (B)we rewrite/ln_]L in terms ofAn_Q, An_g, etc., we find
Finding the min-norm LS solution faf,, = 0 with this model A —v.XH LA, (I _ XXH)

for A, gives -
=Y X 4 [V s X + Ao (1= XX |(1 - X X7)

Yy — (Ao + An)X, =0 A
(do+&n) =Y, XH 4 A, (I - XXH)

Ay = (Y, — AX,)XH (X, XH)",

Again, with the constraint that the columns af, are or- A =Y, XH 1 A, (I— XXH).
thonormal, this leads to
. Notice that the cancellation effect occurs all the way back to the
Ay =Ag+ Y, X — 40X, X initial estimateA,. There are no contributions from the inter-
=Yanf + Ao(f — Xanf) ) 7) mediate output datd, in the estimate ofi,, for0 < k < n.
Thus, with static orthogonal inputs, the adaptive framework so-
If the inputsX,, are constructed from the low-frequency compdution for A,, is identical to the keyhole method described in
nents of the Fourier basis, one can recognize (7) akeyieole (7) if we choosedy = Ay. The SVD and FK methods are well
reconstructionmethod of Brummer and van Vaads al. [10]. known minimal data MRI acquisition techniques, although they

Furthermore, ifA; = 0, then this solution is identical to theare frequently described in the literature using the language of

low-rank reconstruction in (6). “data replacement.” The reconstruction framework in (8) pro-
vides a common analytic framework for both methods, and po-
C. General Adaptive Framework tentially others as well. Because the FK and SVD methods are

special cases of (8), we refer to this solution as the general adap-

A third possibility is to solv = 0 while incorporating * .
P y &r . 1corp 9 tive estimate framework.

information from the most recent estimatg, = A,,_1 + A,,.

This leads to D. Analysis of Image Estimate Methods

Y, — ( A, g+ An) X, =0 Each of the above image reconstruction methods (6)—(8) are
identical in terms of minimizing the output errgf,. Specif-
A, = (Yn - An,an)X,f’ (XnX,f’)T. ically, 7, = ||Y, — Y,.||% = 0 for all three. If we assume,
temporarily, that the entire sequence is known, then one can de-
In this case, imposing the orthogonality constraintongives termine which is the best solution by comparing the image esti-
anadaptive frameworlsolution matefln to the actual imagél,, via the estimate error measure

N N N 2
A, =Y, XH 4 A, (1 - X, X7 ®) En = HAn A

We can identify where this equation resides in the panthefrsummary showing the error for each of the three methods is

of adaptive filter theory via the following. First, for the case ofiven in Table .
r = 1, we can rewrite (in MATLAB-style row-major notation) If the sequence were completely known, then Table | could
each rowm of the image estimate (8) as be used to identify théheoretically optimainputs for a given

reconstruction method. Obviously, in a clinical setting the next
fln(m, )= fln_1(m, )+ [Yn(m) _ fln_1(m, :)Xn} x4 imqge in the sequence is not I_<n0wn ahead of time, and thu_s the
) optimal input vectors implied in Table | are not directly realiz-
%ble. However, they do provide a theoretical bound on the esti-
ﬁr}ﬁ\te guality for a given image reconstruction method.

(10)

Readers familiar with adaptive filter theory may recognize th
equation as the least mean square (LMS) adaptive algorit > C .
quat qu ( ) plive a'gorl Additionally, Table | implies that one can do better with dy-

with a step size parameter of = 1. Furthermore, since T g . . i
XHX, = I, we can say that (9) is actually normalized Lmshamicinputs rather than static inputs€ads a function ofX,, in

with a step size parameter pf= i/||X,.||» = 1. This classifi- all cases. As shown in Section IV, the minimizationfgfwith

cation is significant because the normalized LMS algorithm [gspect taX,, provides a mechanism to determine new input

convergent in the mean square error if the adaptation const4h tors.
i satisfies the conditiod < & < 2 [26, 89.11]. For (8), the
adaptation constant is equal to one and is thus convergent.
Finally, for the case when > 1, we note that the estimate In this section we examine the second half of the doubly
update will occur only once for eachset of input samples. adaptive problem. Specifically, we wish to determine new
This is often referred to aslock update LMS inputs to minimize the error in the next image estimate. For
For the purpose of comparison with existing keyholeach case given in Table I, the minimizatiorégfvia a suitable
methods, consider (8) for the limiting case of a static inpwhoice of X,, requires a subspace identification. Specifically,
vector setX,, = X Vn, formed from orthonormal columns. Inthe minimization of¢,, in each of these cases is analogous to
this case, the projection of the low-order reconstruction terrmsmethod for the determination of the right singular vectors
Y, XH onto the complementary subspage — X X) will of a matrix. As given in [27], the maximization problem
resultin,; X7 (I - XX") = A, XX"(I-XX")=0.1fin max, ||Az||> with the constraini|z||> = 1 will identify the

IV. SYSTEM INPUT VECTOR DETERMINATION
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TABLE | predictor built from a linear temporal extrapolation/of= 2

IMAGE RECONSTRUCTIONMETHOD’SUMMARY SHOWING THE ESTIMATE, images. Thus, we findo —9 andcl — —1 from (13)’ and
A,,, AND THE ESTIMATE ERROR ¢&,,, FOR THE LOW-RANK, KEYHOLE,
An-l—l = 2An - An—l-

AND ADAPTIVE FRAMEWORK METHODS

Met%ﬁﬁmate / Estimate Error When trle predictor input is the adaptive framework estimate,
Low-rank namelyA, = Y, X! + A, 1(I — X, X/), we find
A\n = YnXT{{ ~ N N N N N N
En = || A — XnXT{I)H%—\ (An-l—l - An) = (2An - An—l) - An = An - An—l
Keyhole A H
A, = Yo XH 4 Ag(I - X, XH) = (An - An—l) XX (14)
En = I(An — A)I = X XE)|3 . o _— _
Adaptive Framework Since the expressioX,, X, on the right side of the matrix
Ay =Y XE + A, (I - X, XH) product expression in (14) is a subspace projection, the right
En = 1(An — An))T — X, XE)|[2 singular vectors ofA,,+1 — A, ) will span the same subspace

as X,. Thus, choosing new input vectors from the SVD of
) , i , (A,+1 — Ap) will give vectors spanning the same subspace at
dom'”"’.‘”t nght smfgu_lar veﬁtor of thg mlatmk Frc;]m a ;qbgpaQe every timen. We refer to this tendency assabspace trapand
projection point of view, this is equivalent to the minimization jq surprisingly prevalent when attempting to determine new

: H i —
problemumin,, [[A(L — xa™)|> with [[]2 = 1. _ input vectors from previous estimates [29].
Thus, from Table |, we find that to minimize the estimate error ¢ <hown below. a better choice is to use the low-rank es-

qfthe i.mage estimate, for inputs one mL_Jst use 1)ttieminant imate as input to the predictor, namely, = Y, X7 In this

right singular vectors (rSV) of the next image for the IOW'ranEase we find

estimate methods (6); 2) the rSV of the difference between the

next image and reference image for the keyhole method (7); and (An+1 — An) = zyan — Yn—le_l — An

3) the rSV of the difference between the nextimage and current  wH . H

estimate for the adaptive framework estimate method (8). - An{‘"}‘n — A1 X1 Xy
Guided by this knowledge, the optimal new input vectors — A (I - XX (15)

for the adaptive framework estimator given in (8) would be th‘Fhus by usingY, X¥ as the predictor input, we find that

minant right singular v r nt1—A4,). However, sin . . : S
?40 _at 9 t_s gular vectors Gl .’) OWEVET, since the difference matrix has direct contributions from two
n+1 IS Unavailable, we propose replacing this term with thseubs ace oroiections based on brevious. in X, X
output of a linear predictor, denoted by, ;. Thus, we select P Proj P PULs X X,

a - H H H
new inputsX,,,; via solution of the optimization problem and A,_,.X,_1.X,_,. More importantly, there is also a
contribution from thecomplimentarysubspace in the term

(An—l—l _ fln) (I— Xpp1 X2 ) H2 . (11) An_1(I — X, XH). Most significantly, the expression in (15)
’ F can not be reduced such that there is a common subspace
A wide variety of image prediction methods are availabl@rojection from the right as in the subspace trap example of
including temporal, spatial, and dynamic model based metho§4)- This shows that the right singular vectorg af, ;1 — A,,)

min
Xog1

We examine here the pixel-wise temporal predictor will not necessarily be biased toward the previous inptifs
- Thus_, it seems reasonable to pr_edlct thgt ué@_g’ff as the

i _ Z A (12) predictor input should lead to high-quality estimates without

il « Cilln—i falling into a subspace trap. This conjecture is confirmed

5 empirically in Section V.
where A,, is the predictor input at time and the predictor
is defined by the scalar filter coefficients. In the exam- V. EXAMPLES
ples that follow, we construct the predicted imagkwrl

from a pixel-wise linear fit tok previous image estlmates(DATUM) utilizing a linear predictor (LP), i.e., DATUM-LP,

A, An_1, ..., Ap_i. With uniform sampling in time, one ‘" . ’ i
. .. with a collection of low-order dynamic MRI acquisition
can construct the closed form expression for such a predictor . 4 .
methods proposed previously, we simulated each method using

To compare our doubly adaptive temporal update method

. iy 6 . a dynamic MRI data sequence showing a chop-stick “needle”
Ap1 = Z [E -1 m} An_; (13) inserting into a grapefruit. The data was acquired on a 1.5 Tesla
=0 GE Signa scanner using a spin-echo sequence to acquire the

from the normal equations of a linear least squares fit [28, Clull 92 x 92 elementk-space data matrix for each of the 30
4, 86.3], and the knowledge th@f;é I?=t(t—1)(2t—1)/6 images in the sequence.
andE?;él =1t(t—1)/2. The notationd,, was chosen in (12) For each image in the original sequence, the grapefruit was
to emphasize that a number of possibilities are available for thelled from the scanner and the chop-stick inserted slightly far-
predictor input. Two choices are examined in detail below. therinto the fruit. The fruit was then re-positioned in the scanner
Itis reasonable to expect that the choice of predictor imbut and a fullk-space data acquisition scan was performed. One side
affects the quality of the subsequently determined input vectoedfect of pulling the fruit from the scanner was that the phase ori-
However, the effect is nonintuitive. Consider the case of a lineantation of the spins was randomized for each new image. Since
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this effect violates our dynamic model assumptions for smootsition vectors are identified by first predicting the next image
ness, only the magnitude component of the reconstructed imagéhe sequence using (12) and then determining the dominant
data was used in the simulations below. Obviously, randomizéght singular vectors of the difference mat(i;inﬂ — An). For
tion of spin phase will not be a concern in a normal scan stae results shown here, the predicted image is constructed from
quence. Thus, we fully expect our simulation results presentadinear combination of three past image estimates
here to be reproducible in scanner experiments. . 5 y y

In the examples below, we compare the FK, kSVD, and Apy1 = [4An + A, — 2An_2}/3
RIGR methods with the DATUM solution using both optimal
(DATUM-Opt) and linear predictor guided (DATUM-LP) inputwhere the predictor input is the low-rank estimate,
selection methods. To briefly review: A, =Y, xM1.

e Inthe FK method, the fult-space data set of the firstimage ® The theoretically optimal method (DATUM-Opt) uses the
in the sequence is acquiredly. Each additional image is recon-adaptive framework update equation (8) to form the image esti-
structed by using only new lines ofk-space, typically associ- mate. New data acquisition vectors are selected from the dom-
ated with the lowest frequency components. An estimate of tif@nt right singular vectors of the difference betwéel 1 —
k-space data matrix for the new image is constructed by comr) using the actual image sequence. Note that because com-
bining the newly acquired data for the low-frequency compdplete knowledge of each image in the sequence is required, this
nents with data from the reference image for the high-frequenigghnique is not realizable in a clinical setting. It is shown here
components. Analytically, this can be described via (7). to provide a sense of the possible performance available with

e The keyhole SVD method (kSVD) used for comparisofhe DATUM approach.
in this section uses the same estimate update equation as FKor each of these methods, the first image in the sequence
(7). However, in this case, the input vectdfsare chosen from was used for the reference image. For the DATUM-LP method,
the dominant right singular vectors df, rather than the lowest zero matrices were used at the start of the sequence at those
frequency Fourier basis vectors. Note that the input vectorstimes where previous image estimates where unavailable, e.g.,
do not change over the course of the sequence in either the BK = (4/3)Ao + (1/3)0 — (2/3)0. For each of the examples
or the kSVD methods. below, the number of input vectorsused for each low-order

e The RIGR method [11], [30], is an extension of the Filata acquisition was chosen such that 99.5% of the reference
method. The central concept of the method is to identify a linelage information is captured in an SVD low- rank reconstruc-
combination of reference imagespace data that most accudion. Specifically; = t such tha"_, o2/ 3" | 07 = 0.995,
rately reflects the acquired phase-encoded data for the mostwbere{o; } are the singular values of the reference imaige
cent image acquisition. The model parameters identified in this
first step are then used to estimate khgpace data matrix of the A. Full Grapefruit Sequence

current image. The first example shows the acquisition simulation results for
From [30], the RIGR estimate forlines of sampled central the entire grapefruit sequence data using 25 input vectors.
regionk-space data may be written as With the original image 9% 92 pixels in size, this value for
r/2—1 corresponds to an acquisition time of 27% of the time required

An(% v) = | Ao(u, v)| 0 Z chJQﬂ'jAku (16) for acquiriqg the complete-space data set. Stated a differe_nt
way, by usingr = 25 input vectors almost four low-order esti-
mates could be reconstructed in the same time as one full data
where« and v are the indices of the image matrix; are image acquired via traditional Fourier encoding.
the RIGR model parameters, ands an element-by-element  Fig. 1 compares the relative errqrs,, /|| A, ||, for each of
product (also known as the Hadamard or Schur product, [2Fe low-order methods: FK, kSVD, RIGR, DATUM-LP, and
Ch. 5]). This estimation step is performed on a row-by-ro@ATUM-Opt. As can be seen in Fig. 1, the static input methods,
basis to construct the estimate of the dynamic image. Using &, kSVD, and RIGR, all show similar performance. Choosing
sampledk-space datad,,(u, v), the model parameters are the input vectors dynamically via the DATUM-LP method pro-
determined via vides significant improvement compared to each of these static
r/2-1 input methods. Furthermore, while the performance of the static
dy(m, v) = Z cjcio(m—j, v), —r/2 <m < r/2—1 inputmethods steadily deteriorates over time, our doubly adap-
j=—r/2 tive method maintains a much lower level of error as the se-
(17) quence progresses. The relative error in the static input estimates
where is proportional to the deviation of the current true image from
00 the reference image. In contrast, our doubly adaptive method
—j,v) = /

j=—r/2

~

do(m | Ag(u, v)|e™?2(m=Daku gy (18)  shows small variations around a much lower steady state error
> level. Notice as well that there is still a significant difference
This set of equations identifies the model parameters for ednhthe relative error between the realizable DATUM-LP method
image via a best linear fit of the reference data to the most @d the theoretical bound given by the nonrealizable optimal
cently sampled data. method, DATUM-Opt.

e The DATUM-LP method uses the adaptive framework up- These observations are confirmed by visual inspection of

date equation (8) to form the image estimate. New data acgligs. 2—-6. In each of these figures, the estimate sequence
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Fig. 1. Relative error comparison/&,./||A.| =, between the dynamic @)
sequence estimation methods for the full grapefruit data set example.

Relative Error

Absslule Emor for DATUM=00l Eslimale Sequencs [r=25]

is given in (a) and absolute error sequence is given in (O
These figures show each sequence with time advancing fi
left-to-right, and then top-to-bottom. That is, the top left imag
is associated with = 0, the top right image is associated with
n = 5, and the bottom right image is associated with 29.
The results of DATUM-Opt, Fig. 2, show a high-quality se-
guence estimate with a low maximum pixel error compare
to the other methods. The most significant difference betwet
Fig. 2(b) and the estimate error of the static input methods, i.¢
FK, RIGR, and kSVD, shown in Figs. 3(b), 4(b), and 5(b) re
spectively, is that the error images of the optimal method are n
spatially correlated with the structure of the image estimate. i
contrast, the absolute error images of the static input methg
appear to be almost an outline of the high-intensity signal r ||
gions of the fruit. This indicates a slight bulk motion shift of the (b)
fruit over the course of sequence. In particular, Fig. 4 shows that _ , _ _
the RIGR method is unable to accurately estimate such bulk ngég_ 2. _DATU_M-Qp_t eésilmate and estimate error of a simulated grapefruit data
uisition using- = 25 input acquisition vectors. Each image is 9292
tion. This is due to the applied spatial reference envelope formggkls in size and the time sequence moves left-to-right and top-to-bottom with
from the intensity values of the reference image which is a k&g original (shaded) reference image in the upper left corner.
component of the RIGR method. Notice as well that there ap-

pears to be significant blurring of the chop-stick edges in the Féﬁnple here focuses on the region exhibiting the most change
sequence, and significant artifacts at the edges of the fruit in theie previous example. The image set used in this example
kSVD estimated sequence. utilizes a smaller field of view (FOV), 3% 32 pixels in size,
Notably, these artifacts are mostly absent from th&ntered on the upper left quadrant of the fruit. The number of
DATUM-LP estimate, Fig. 6. Furthermore, Fig. 6(b) il-images in the sequence was reduced to 9 to allow greater visible
lustrates that the linear prediction method estimate error al§gil in the figures. Furthermore, to simulate bulk motion in the
has significantly less structural correlation with the Imaggnantom, the FOV was spatially shifted at frame= 3 by one
sequence than the static input methods. Note that the scalg,@k| in both the horizontal and vertical direction. Each of the
the error images is comparable to the kSVD method. Howevginimal data dynamic MRI methods discussed in the previous
there are only a few pixels that approach the maximum ergkample were simulated with this data set using: 9 input
value, notably in the error images in the first colummat 6  \,qctors.
andn = 21. While the results of this method approach the The rejative error comparison, Fig. 7, shows that all of the
high-quality available in the optimal method, Fig. 2(b), th@equence estimation methods suffer a loss in quality at the third
peak error level is higher and the structural correlation be“"’eégtimate, corresponding to the simulated bulk motion shift of

Lar ]

the error and the image is stronger. the FOV atn = 3. However, only the doubly adaptive methods,
) ) . DATUM-LP and DATUM-Opt, are able to recover after the shift
B. Bulk Motion Simulation and continue tracking. Note that their level of error after the shift

To demonstrate the ability of the doubly adaptive methods pwint gradually declines toward its pre-shift value. In particular,
track significant object motion in an image sequence, the eke error in the DATUM-Opt method is on the same order as
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Fig. 3. FK estimate and estimate error sequences. Figure layout as in Fig.F2g. 4. RIGR estimate and estimate error sequences. Figure layout as in Fig. 2.

before the shift after only a few frames. In contrast, the stai@ Concluding Remarks

m(:,;[ihosds8naer\1/§ rgri%(())\\//\?rtr?: E;rsft?riastre]gt apr?(ljnihe absolute esti at‘é’hese examples show that adaptively tailoring the input vec-
gs. . . . . r's for each successive image in a sequence can provide a sig-
error for the eight estimated images of the shifted FOV.. . ; N .
. . _nificant improvement in estimation of the sequence. The first
sequence. Each column shows eight frames of a particular. L
k . . example demonstrated the applicability of the method for a rep-
estimate method. Again, the DATUM-Opt method provides & . o
;&sentatlve clinical sequence. The second example showed that

very high-quality esti[‘nate. over the entire sequence. The qualj e method may even be able to reasonably estimate sequences
shown is the theoretical limit for the doubly adaptive metho jith significant changes, such as that introduced by a bulk mo-
and clearly indicates that if one could accurately predict buw n change in the FOV' The biggest advantage of the doubly
motion changes then high-quality estimates are available WI{ﬁaptive method demoﬁstrated in these examples is the ability

a very limited amount of data. d . . - .
. . ) ) for the image estimate to recover within a few frames after a sig-
Consistent with the first example, these figures also shaw. e ;
sianificant artifacts in the static input methods: FK I(S\/Dmﬂcantchange, even if it may not perform better than the static
9 put me N input methods for a particular frame, as in the second example
and RIGR. As these methods were originally billed as cony 3
trast change estimation methods, this is not unexpected.aln o

contrast, Fig. 9 shows that the doubly dynamic input methods,
DATUM-Opt and DATUM-LP, contain significantly less error
that is correlated to the structure of the reference image andn this paper, we have presented an adaptive framework for
the absolute error shows a decrease across the entire FOV dfterestimation of dynamic MRI sequences. This framework was
the shift point. From Fig. 8, we also note that the “ringingshown to be a general form which could also describe analyti-
artifacts present in the static input methods are notably abseally the previous FK and SVD acquisition methods under cer-
in the doubly adaptive methods. tain assumptions. Because the framework was developed using

VI. DISCUSSION AND SUMMARY
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Fig.5. kSVD estimate and estimate error sequences. Figure layout asin Figzig. 6. DATUM-LP estimate and estimate error sequences. Figure layout as in
Fig. 2.

concepts drawn from adaptive filter theory, it also shows a re-
semblance to the LMS adaptive filter structure, and we expec 0.25 !
to be applicable for any tracking or system estimation proble :
where one has complete control of the inputs and the line
system model applies.

The computational requirements of the proposed algorith,_
are not significantly greater than those in the original SVIL% 0.15
acquisition method. As in the SVD methods, the dominaig
right singular vectors of a matrix must be determined with eac‘_g
new estimate. This can be computed efficiently using su&®
algorithms as the conjugate gradient SVD [31]. The addition
computational requirements are only four accumulates g
pixel. In fact, the only significant cost beyond that of the
original SVD method is the memory required to store the del¢
chain of the predictive filter.

At first glance, it may appear that rf or spatially selective en-
coding suffers from low SNR when compared to Fourier acquiig. 7. Relative error comparison/,, /||A.||», between dynamic MRI
sition methods because only a portion of the spins in the FG%auence estimation methods for the limited FOV with bulk motion example.
are excited as opposed to the entire FOV. However, the increased
image information acquisition rate provided by spatially sele¢32] that the relative estimation error of an image is potentially
tive encoding methods can quickly overcome this difficulty. Fanuch lower given a limited number of wavelet acquisition vec-
example, in the case of wavelet excitations, is was showntars than a comparable limited amount of Fourier acquired data.

Grapefruit Estimation Error Comparison (r=9)

o2k SN

0 : : : : : :
1 2 3 4 5 6 7 8
frame number (n)
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Finally, we are currently working to address a number of re-
maining issues before this method can be used in a practical set-
ting. For one, we have assumed here that the input vectors can
be chosen arbitrarily and with equal time between each input.
Depending on the imaging protocol used, it may in fact be ad-
vantageous to instead use a constrained input vector set such as
the pseudo-SVD-style vectors proposed in [33].

In addition, the linear system model in (1) assumes that the
system has no memory between successive inputs, i.e., the spins
completely relax before each input excitation. This is the worst
case scenario for a direct SNR comparison between Fourier
and non-Fourier encoding. However, at the other extreme, for
modalities where there is no relaxation, e.g., hyper-polarized
gas imaging, it can be shown [34] that all orthogonal input bases
have equivalent SNR response. Practical MR imaging in fact
lies somewhere between these two extremes of “complete re-
laxation” and “no relaxation” of the bulk magnetization.

In our analysis of the adaptive framework estimate error, we
showed that having complete knowledge of the next image in
the sequence will provide an optimal set of data acquisition vec-
tors. Because such knowledge is not available in practice, we
proposed using the output of a linear predictor to determine ap-
propriate data acquisition vectors. Examples of simulated se-

Fig. 8. Comparison of image estimates for shifting FOV sequence. Ea8MENCe acquisitions Usmg rea_-l MR' da.ta were given showing
column contains eight sequential image estimates produced by the mettlodt such a strategy provides significant improvement compared

listed at the top of the column.
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Fig. 9. Estimate error comparison for shifting FOV sequence. Layout as in [9]

Fig. 8.

to other well known minimum data image sequence acquisition
techniques. Moreover, the difference in performance between
the realizable methods and the theoretically optimal method in-
dicates that room for improvement still exists. Improving the
performance of the realizable methods via alternative linear pre-
dictors is a focus of current research.
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