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Abstract—Dynamic magnetic resonance imaging (MRI) refers
to the acquisition of a sequence of MRI images to monitor temporal
changes in tissue structure. In this paper we present a method for
the estimation of dynamic MRI sequences based on two compli-
mentary strategies: an adaptive framework for the estimation of
the MRI images themselves, and an adaptive method to tailor the
MRI system excitations for each data acquisition. We refer to this
method as thedoubly adaptive temporal update method(DATUM)
for dynamic MRI.

Analysis of the adaptive image estimate framework shows that
calculating the optimal system excitations for each new image
requires complete knowledge of the next image in the sequence.
Since this is not realizable, we introduce a linear predictor to aid
in determining appropriate excitations. Simulated examples using
real MRI data are included to illustrate that the doubly adaptive
strategy can provide estimates with lower steady state error than
previously proposed methods and also the ability to recover from
dramatic changes in the image sequence.

Index Terms—Adaptive filters, dynamic MRI, image tracking,
minimum data MR image reconstruction, SVD.

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) has rapidly be-
come the imaging modality of choice for noninvasively

acquiring high-resolution images of soft tissue. One application
of MRI is to monitor dynamic changes in tissue structure
through the acquisition of a sequence of images focused on the
same slice or region of tissue over a period of time. Clinical
applications where dynamic MRI is of interest include the
observation of the early flow of contrast agent to detect and
localize tumors [1], [2], real time monitoring of surgical inter-
ventions or thermal treatments [3], and cardiac imaging [4].
Because of fundamental limits in the MRI data acquisition rate,
there is a tradeoff in each of these cases between temporal reso-
lution, spatial resolution, volume coverage and signal-to-noise
ratio. For example, the ability to image cardiac activity in real
time comes at the expense of limited volume coverage and low
spatial resolution [5]. Thus, there is a need for optimized data
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acquisition that allows for faster image sequence reconstruction
using a limited amount of acquired data.

Traditional MRI acquisition techniques use magnetic field
gradients and radio-frequency (rf) pulses to encode the spatial
position of different particles within a tissue volume. The input
system excitations of gradient fields and rf pulses are used to scan
a volume in a sequence of slices, typically via direct sampling of
the two-dimensional spatial Fourier encoding, or-space, of the
slice. An inverse Fourier transform is then used to reconstruct
images of the tissue composition. Good reviews of this process
from a signal processing perspective are available in [6] and [7].

Thephysicaldynamics ofMR imaging constrain the image ac-
quisition time. Typically, one line in-space is sampled for each
inputexcitation.Forastatic imageslice,onecan improve thespa-
tial resolution by increasing both the number of sampled-space
lines and the bandwidth of-space they cover. However, when
the composition of the slice changes over time, only the most re-
cently acquired data accurately reflects the present composition
of the slice and the oldest acquired data may not be reliable. Thus
the challenge of improving temporal resolution of an image se-
quence is not directly analogous to increasing spatial resolution.

One approach to improve the spatial and temporal resolution
of an acquired image sequence is to acquire a multiple number
of sampled -space lines per input excitation. However, such
multiline techniques typically require enhanced hardware to im-
plement and suffer more from image distortion and artifact. For
example, echo-planar imaging (EPI) samples a cyclic raster line
through -space, but requires quickly switching a strong mag-
netic gradient field [8, p. 152]. Alternatively,parallel imaging
methods such as SMASH [9] use a phased array of receiver coils
to rapidly sample different segments of-space concurrently.
Such methods represent ahardwaresolution to the problem.

We consider in this paper a complementarysoftwareap-
proach. Under the assumption that one line of-space is
acquired with each input excitation, the required image ac-
quisition time is proportional to the number of lines sampled
in -space, or equivalently, the number of excitations used.
It follows that the dynamic sequence acquisition time can be
reduced—and the temporal resolution improved—by reducing
the number of input excitations employed. The underlying
images are then estimated using a minimal amount of acquired
data. The challenge is to identify and acquire “enough” useful
data to accurately estimate the sequence images while at
the same time limiting the amount of acquired data. As we
demonstrate in this paper, this translates to the identification of
an appropriate acquisition subspace tailored to minimize the
image sequence tracking error.
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Previous MRI sequence estimation methods using minimal
data acquisition follow one of two general system excitation ap-
proaches. The first defines a set of static excitations, using no in-
formation about the underlying image. Here, the physical MRI
acquisition process suggests using a truncated Fourier basis set.
Such techniques include the Fourier keyhole (FK) method [10],
RIGR [11], and the multiple region MRI method [12]. Prede-
fined non-Fourier excitations have also been proposed, such as
the wavelet techniques in [13] and [14]. The second approach
is to generate a static excitation set based on some known in-
formation about the image obtained from a previously acquired
data set. For example, a full image scan may be obtained just
before the introduction of contrast agent or prior to surgical in-
tervention. Information from this full image can then be used
to design excitation sequences to efficiently acquire subsequent
image data in the dynamic sequence. One such method is to
construct excitation sequences using information from the sin-
gular value decomposition (SVD) of a given reference image
[15]. Such methods can be considered complementary to the
hardware techniques mentioned earlier. For example, combined
SVD and EPI methods have been demonstrated [16] as well as
multiline SVD acquisition techniques [17].

To estimate the image sequence, each of the acquisition
methods cited above uses a given set of system excitations,
recorded output data, and an image reconstruction model.
Utilizing a set of static input excitations, they are adaptive in
the sense that each new image estimate is constructed from
some prior knowledge plus an update term utilizing the most
recently recorded output data. However, due to the dynamic
nature of MRI sequences, a static excitation set—either Fourier
or non-Fourier based—may not be best over an entire sequence.
A variety of input selection methods been proposed [12],
[18], [19], but here we seek to adaptively determine the input
excitation sequences as well, making the problem of dynamic
MR image sequence estimationdoubly adaptive.

The challenge is that only the current input excitation and
output measurements are available for determination of both the
image estimate and the next set of system inputs. Furthermore,
much like the classic “Which came first, the chicken or the egg”
paradox, the resulting quality of each half of the doubly adaptive
system depends directly on the other.

This paper presents our doubly adaptive temporal update
method (DATUM) as a solution to this problem. The DATUM
solution builds upon the linear system model given by Panych
et al. in [20], which we briefly review in Section II. This
system model is applicable to both Fourier and non-Fourier
encoding techniques. However, realization of the advantages
provided by non-Fourier encoding—and the DATUM method
in particular—brings with it a number of research questions
that are detailed in Section VI, but lie beyond the scope of this
paper. In Section III, we develop a general image estimation
framework where we follow a traditional adaptive filtering
approach, minimizing a measure of the difference between
the measured system response and the expected output data.
Analysis of this framework, presented in Section III-C, shows
that the FK and SVD methods previously proposed are in fact
specific cases of this adaptive framework.

Section III-D presents an analysis of the estimate error for the
adaptive framework developed in Section III-C. This analysis

reveals that the identification of the theoretically optimal input
excitation sequence requires complete knowledge of the next
image in the sequence, regardless of the image reconstruction
method. Because this information is not available in a clinical
setting, Section IV presents a realizable method to bypass this
limitation. Specifically, we propose using a linear predictor in
tandem with, but distinct from, the image sequence estimation.
This enables the use of a predicted estimate of the next image
in the sequence to tailor an appropriate set of system excitation
inputs.

A comparison between the DATUM methods presented in
this paper and the minimal data imaging methods developed pre-
viously is given in Section V. The examples show simulations of
a dynamic MRI sequence acquisition, utilizing real MRI data,
for the FK, SVD, RIGR, and the DATUM methods. As illus-
trated in Section V, the DATUM methods produce a sequence
estimate with lower steady state error than previous methods,
and is applicable for estimating dynamic MRI sequences that
exhibit bulk motion changes.

II. L INEAR SYSTEM MODEL FORMRI

The DATUM methods presented in this paper build on the
linear system model developed by Panychet al. [20]. The fol-
lowing section presents a brief review of this MRI acquisition
model. Ingeneral, theMRIsystemmappingfrominputexcitation
to sampled output data is nonlinear. However, if the acquisition
uses rf encoding with a low flip angle excitation, the MRI system
input–output mapping may be approximated to the first order and
the MR imaging process can be described by a linear response
model [20].

In this paper, we refer to each rf excitation as an input and
each measured rf signal as a system output. The time samples
of an rf excitation are denoted with an input vector. Similarly,
the vector represents time samples of the measured rf signal
envelope. If we represent the-space encoding of a given image
slice with the matrix , then the MRI data acquisition process
may be modeled with a matrix–vector product, .

Typically, one collects such scans together to form the ma-
trix equation , where is a data matrix of size
that characterizes the system response,is an matrix
constructed from the input vectors ,
and is an matrix constructed from the output vectors,

. The line-by-line acquisition of the
-space data for a given image slice would be represented by

equal to an identity matrix of size . For minimal data ac-
quisitions, the goal is to set and still provide high-quality
estimates of .

If one includes additive noise, , then a more general ac-
quisition model can be written as . If the noise
is independent and identically distributed, then it can be shown
(e.g., [21]) that with orthogonal inputs vectors, the least-squares
estimate of the system response matrix is where
denotes the pseudo-inverse of. This result is identical to the
noise-free case we develop below. Thus, in this paper we impose
the constraint of orthogonal input vectors, and proceed below
using the noise-free acquisition model.

For dynamic sequences, varies in time. For the analysis
that follows below, we assume that the data matrixchanges
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smoothly and that any change occurs much more slowly than
the time to acquire scans. Specifically, if represents the
change in the image data duringscans, then we assume that

.
For convenience, here we choose to transform the measured

-space domain output data to the spatial domain by defining
the unitary Fourier transform matrix [22, Ch. 5]:

, . This allows one to
transform the sampled-space data matrix to the spatial do-
main via . To view the image, one typically dis-
plays the magnitude of this matrix, . The motivation for this
transformation choice, as opposed to the standard 2D Fourier
transform , is that the -space excitation and output
vectors can be transformed to the spatial domain in an identical
way, via and .

For the remainder of this paper, we choose to work entirely
in the spatial image domain. The linear model we use is

(1)

where the subscript refers to the image frame number in the
acquired dynamic sequence, is the image at time ,

is a block of input rf excitations of size , and is
a block of measured output data of size . Here, refers
to the number of scans used for each image acquisition and is
typically less than .

A number of MRI modalities can be represented by this
model. For the wavelet and SVD methods the input vectors are
static over the sequence, i.e., , and are chosen from
either a pre-selected wavelet basis [13] or from thedominant
right singular vectors of a reference image matrix [15],
[23]. The image estimates are constructed via

(2)

For the FK method [10], the static input rf excitation matrix,
, captures the lower spatial frequency components of

-space. The acquired data then replaces a portion of the-space
data in the current estimate. This can be represented analytically
as

(3)

where is again a reference image data matrix andis the
identity matrix of size . If is chosen as the dominant
right singular vectors of instead, then (3) represents the key-
hole variant of the SVD method described in [24].

The key advantage of these methods is that one can easily
generate an estimate of the image slice at time using a lim-
ited amount of new data. That is, useful image representations
are available even if one uses excitation and reconstruc-
tion vectors. We note that both the FK and SVD methods assume
the input vector set is formed from orthonormal columns, i.e.,

where is the identity matrix. We will constrain all
input excitation matrices in this same manner throughout
this paper.

Considering the two image sequence estimate methods pre-
sented in this section, we pose two complementary questions.
First, what is the best way to form the image estimate? And

second, what are the best input vectors to use? We present sepa-
rate analytical approaches to these two questions in the next two
sections. Specifically, Section III describes image estimation via
cost function minimization for a given set of input vectors. Sec-
tion IV considers the design of an effective set of input vectors
based on a past history of previous image estimates. Together,
these two sections comprise our DATUM MRI sequence esti-
mator.

III. A N ADAPTIVE FRAMEWORK FORIMAGE ESTIMATION

Presented below is the analysis and solution to the first half
of the doubly adaptive problem. In this section we present an
approach to MR image estimation from a purely analytical per-
spective, drawing primarily from adaptive filter theory. Specifi-
cally, given a set of input vectors we wish to estimate the
image at time through the minimization of the cost func-
tion, . Here, as given in (1),
is the output data from the scans represented in , while

is the expected output determined via a dynamic
system estimate using the same input vectors.

In the adaptive filter literature, is often referred to as the
output error. A more direct measure of the image reconstruc-
tion is the modelestimate error, . However,

cannot be used to identify because knowledge of is
not directly available. The estimate error can be used in simula-
tions for post factum comparison of different estimate methods,
as will be demonstrated in Section III-D. We also use it in Sec-
tion IV to guide the identification of subsequent input vectors.

Because was chosen such that , i.e., is a tall-
skinny matrix, the minimization problem

(4)

is underdetermined and an infinite number of zero-error solu-
tions exist. Three solutions are presented below. Each solves the
equation with a different model for .

A. Low-Rank Solution

First, with no structural constraints on , solving
leads to the underdetermined system . One solution
is the minimum norm least squares (min-norm LS) solution

(5)

where represents the Moore–Penrose pseudo-inverse of a
matrix [25]. If the columns of are constrained to be or-
thonormal, then and (5) reduces to the
low-rank reconstructionsolution

(6)

This low-rank estimate was used by Panychet al. in the SVD
encoding method [15].

B. Incorporating a Reference Image

One could instead solve while incorporating informa-
tion from a reference image. Traditionally, this reference image
is obtained at the start of the sequence acquisition [10], [23],
[20]. To incorporate reference image information in the image
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estimate, we model the image estimate as .
Finding the min-norm LS solution for with this model
for gives

Again, with the constraint that the columns of are or-
thonormal, this leads to

(7)

If the inputs are constructed from the low-frequency compo-
nents of the Fourier basis, one can recognize (7) as thekeyhole
reconstructionmethod of Brummer and van Vaalset al. [10].
Furthermore, if , then this solution is identical to the
low-rank reconstruction in (6).

C. General Adaptive Framework

A third possibility is to solve while incorporating
information from the most recent estimate, .
This leads to

In this case, imposing the orthogonality constraint ongives
anadaptive frameworksolution

(8)

We can identify where this equation resides in the pantheon
of adaptive filter theory via the following. First, for the case of

, we can rewrite (in MATLAB-style row-major notation)
each row of the image estimate (8) as

(9)
Readers familiar with adaptive filter theory may recognize this
equation as the least mean square (LMS) adaptive algorithm
with a step size parameter of . Furthermore, since

, we can say that (9) is actually normalized LMS,
with a step size parameter of . This classifi-
cation is significant because the normalized LMS algorithm is
convergent in the mean square error if the adaptation constant

satisfies the condition [26, §9.11]. For (8), the
adaptation constant is equal to one and is thus convergent.
Finally, for the case when , we note that the estimate
update will occur only once for eachset of input samples.
This is often referred to asblock update LMS.

For the purpose of comparison with existing keyhole
methods, consider (8) for the limiting case of a static input
vector set, , formed from orthonormal columns. In
this case, the projection of the low-order reconstruction terms

onto the complementary subspace will
result in . If in

(8) we rewrite in terms of , , etc., we find

...

Notice that the cancellation effect occurs all the way back to the
initial estimate . There are no contributions from the inter-
mediate output data in the estimate of for .
Thus, with static orthogonal inputs, the adaptive framework so-
lution for is identical to the keyhole method described in
(7) if we choose . The SVD and FK methods are well
known minimal data MRI acquisition techniques, although they
are frequently described in the literature using the language of
“data replacement.” The reconstruction framework in (8) pro-
vides a common analytic framework for both methods, and po-
tentially others as well. Because the FK and SVD methods are
special cases of (8), we refer to this solution as the general adap-
tive estimate framework.

D. Analysis of Image Estimate Methods

Each of the above image reconstruction methods (6)–(8) are
identical in terms of minimizing the output error . Specif-
ically, for all three. If we assume,
temporarily, that the entire sequence is known, then one can de-
termine which is the best solution by comparing the image esti-
mate to the actual image via the estimate error measure

(10)

A summary showing the error for each of the three methods is
given in Table I.

If the sequence were completely known, then Table I could
be used to identify thetheoretically optimalinputs for a given
reconstruction method. Obviously, in a clinical setting the next
image in the sequence is not known ahead of time, and thus the
optimal input vectors implied in Table I are not directly realiz-
able. However, they do provide a theoretical bound on the esti-
mate quality for a given image reconstruction method.

Additionally, Table I implies that one can do better with dy-
namic inputs rather than static inputs asis a function of in
all cases. As shown in Section IV, the minimization ofwith
respect to provides a mechanism to determine new input
vectors.

IV. SYSTEM INPUT VECTORDETERMINATION

In this section we examine the second half of the doubly
adaptive problem. Specifically, we wish to determine new
inputs to minimize the error in the next image estimate. For
each case given in Table I, the minimization ofvia a suitable
choice of requires a subspace identification. Specifically,
the minimization of in each of these cases is analogous to
a method for the determination of the right singular vectors
of a matrix. As given in [27], the maximization problem

with the constraint will identify the
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TABLE I
IMAGE RECONSTRUCTIONMETHOD SUMMARY SHOWING THE ESTIMATE,
^A , AND THE ESTIMATE ERROR, E , FOR THE LOW-RANK, KEYHOLE,

AND ADAPTIVE FRAMEWORK METHODS

dominant right singular vector of the matrix. From a subspace
projection point of view, this is equivalent to the minimization
problem with .

Thus, from Table I, we find that to minimize the estimate error
of the image estimate, for inputs one must use 1) thedominant
right singular vectors (rSV) of the next image for the low-rank
estimate methods (6); 2) the rSV of the difference between the
next image and reference image for the keyhole method (7); and
3) the rSV of the difference between the next image and current
estimate for the adaptive framework estimate method (8).

Guided by this knowledge, the optimal new input vectors
for the adaptive framework estimator given in (8) would be the
dominant right singular vectors of . However, since

is unavailable, we propose replacing this term with the
output of a linear predictor, denoted by . Thus, we select
new inputs via solution of the optimization problem

(11)

A wide variety of image prediction methods are available,
including temporal, spatial, and dynamic model based methods.
We examine here the pixel-wise temporal predictor

(12)

where is the predictor input at time and the predictor
is defined by the scalar filter coefficients. In the exam-
ples that follow, we construct the predicted image
from a pixel-wise linear fit to previous image estimates

. With uniform sampling in time, one
can construct the closed form expression for such a predictor

(13)

from the normal equations of a linear least squares fit [28, Ch.
4, §6.3], and the knowledge that
and . The notation was chosen in (12)
to emphasize that a number of possibilities are available for the
predictor input. Two choices are examined in detail below.

It is reasonable to expect that the choice of predictor input
affects the quality of the subsequently determined input vectors.
However, the effect is nonintuitive. Consider the case of a linear

predictor built from a linear temporal extrapolation of
images. Thus, we find and from (13), and

When the predictor input is the adaptive framework estimate,
namely , we find

(14)

Since the expression on the right side of the matrix
product expression in (14) is a subspace projection, the right
singular vectors of will span the same subspace
as . Thus, choosing new input vectors from the SVD of

will give vectors spanning the same subspace at
every time . We refer to this tendency as asubspace trap,and
it is surprisingly prevalent when attempting to determine new
input vectors from previous estimates [29].

As shown below, a better choice is to use the low-rank es-
timate as input to the predictor, namely . In this
case, we find

(15)

Thus, by using as the predictor input, we find that
the difference matrix has direct contributions from two
subspace projections based on previous inputs,
and . More importantly, there is also a
contribution from thecomplimentarysubspace in the term

. Most significantly, the expression in (15)
can not be reduced such that there is a common subspace
projection from the right as in the subspace trap example of
(14). This shows that the right singular vectors of
will not necessarily be biased toward the previous inputs.
Thus, it seems reasonable to predict that using as the
predictor input should lead to high-quality estimates without
falling into a subspace trap. This conjecture is confirmed
empirically in Section V.

V. EXAMPLES

To compare our doubly adaptive temporal update method
(DATUM) utilizing a linear predictor (LP), i.e., DATUM-LP,
with a collection of low-order dynamic MRI acquisition
methods proposed previously, we simulated each method using
a dynamic MRI data sequence showing a chop-stick “needle”
inserting into a grapefruit. The data was acquired on a 1.5 Tesla
GE Signa scanner using a spin-echo sequence to acquire the
full 92 92 element -space data matrix for each of the 30
images in the sequence.

For each image in the original sequence, the grapefruit was
pulled from the scanner and the chop-stick inserted slightly far-
ther into the fruit. The fruit was then re-positioned in the scanner
and a full -space data acquisition scan was performed. One side
effect of pulling the fruit from the scanner was that the phase ori-
entation of the spins was randomized for each new image. Since
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this effect violates our dynamic model assumptions for smooth-
ness, only the magnitude component of the reconstructed image
data was used in the simulations below. Obviously, randomiza-
tion of spin phase will not be a concern in a normal scan se-
quence. Thus, we fully expect our simulation results presented
here to be reproducible in scanner experiments.

In the examples below, we compare the FK, kSVD, and
RIGR methods with the DATUM solution using both optimal
(DATUM-Opt) and linear predictor guided (DATUM-LP) input
selection methods. To briefly review:

In the FK method, the full -space data set of the first image
in the sequence is acquired,. Each additional image is recon-
structed by using only new lines of -space, typically associ-
ated with the lowest frequency components. An estimate of the

-space data matrix for the new image is constructed by com-
bining the newly acquired data for the low-frequency compo-
nents with data from the reference image for the high-frequency
components. Analytically, this can be described via (7).

The keyhole SVD method (kSVD) used for comparison
in this section uses the same estimate update equation as FK
(7). However, in this case, the input vectorsare chosen from
the dominant right singular vectors of rather than the lowest
frequency Fourier basis vectors. Note that the input vectors
do not change over the course of the sequence in either the FK
or the kSVD methods.

The RIGR method [11], [30], is an extension of the FK
method. The central concept of the method is to identify a linear
combination of reference image-space data that most accu-
rately reflects the acquired phase-encoded data for the most re-
cent image acquisition. The model parameters identified in this
first step are then used to estimate the-space data matrix of the
current image.

From [30], the RIGR estimate for lines of sampled central
region -space data may be written as

(16)

where and are the indices of the image matrix, are
the RIGR model parameters, andis an element-by-element
product (also known as the Hadamard or Schur product, [27,
Ch. 5]). This estimation step is performed on a row-by-row
basis to construct the estimate of the dynamic image. Using the
sampled -space data, , the model parameters are
determined via

(17)
where

(18)

This set of equations identifies the model parameters for each
image via a best linear fit of the reference data to the most re-
cently sampled data.

The DATUM-LP method uses the adaptive framework up-
date equation (8) to form the image estimate. New data acqui-

sition vectors are identified by first predicting the next image
in the sequence using (12) and then determining the dominant
right singular vectors of the difference matrix . For
the results shown here, the predicted image is constructed from
a linear combination of three past image estimates

where the predictor input is the low-rank estimate,
.

The theoretically optimal method (DATUM-Opt) uses the
adaptive framework update equation (8) to form the image esti-
mate. New data acquisition vectors are selected from the dom-
inant right singular vectors of the difference between

using the actual image sequence. Note that because com-
plete knowledge of each image in the sequence is required, this
technique is not realizable in a clinical setting. It is shown here
to provide a sense of the possible performance available with
the DATUM approach.

For each of these methods, the first image in the sequence
was used for the reference image. For the DATUM-LP method,
zero matrices were used at the start of the sequence at those
times where previous image estimates where unavailable, e.g.,

. For each of the examples
below, the number of input vectorsused for each low-order
data acquisition was chosen such that 99.5% of the reference
image information is captured in an SVD low-rank reconstruc-
tion. Specifically, such that ,
where are the singular values of the reference image.

A. Full Grapefruit Sequence

The first example shows the acquisition simulation results for
the entire grapefruit sequence data using input vectors.
With the original image 92 92 pixels in size, this value for
corresponds to an acquisition time of 27% of the time required
for acquiring the complete-space data set. Stated a different
way, by using input vectors almost four low-order esti-
mates could be reconstructed in the same time as one full data
image acquired via traditional Fourier encoding.

Fig. 1 compares the relative error, , for each of
the low-order methods: FK, kSVD, RIGR, DATUM-LP, and
DATUM-Opt. As can be seen in Fig. 1, the static input methods,
FK, kSVD, and RIGR, all show similar performance. Choosing
the input vectors dynamically via the DATUM-LP method pro-
vides significant improvement compared to each of these static
input methods. Furthermore, while the performance of the static
input methods steadily deteriorates over time, our doubly adap-
tive method maintains a much lower level of error as the se-
quence progresses. The relative error in the static input estimates
is proportional to the deviation of the current true image from
the reference image. In contrast, our doubly adaptive method
shows small variations around a much lower steady state error
level. Notice as well that there is still a significant difference
in the relative error between the realizable DATUM-LP method
and the theoretical bound given by the nonrealizable optimal
method, DATUM-Opt.

These observations are confirmed by visual inspection of
Figs. 2–6. In each of these figures, the estimate sequence
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Fig. 1. Relative error comparison,
pE =kA k , between the dynamic

sequence estimation methods for the full grapefruit data set example.

is given in (a) and absolute error sequence is given in (b).
These figures show each sequence with time advancing first
left-to-right, and then top-to-bottom. That is, the top left image
is associated with , the top right image is associated with

, and the bottom right image is associated with .
The results of DATUM-Opt, Fig. 2, show a high-quality se-

quence estimate with a low maximum pixel error compared
to the other methods. The most significant difference between
Fig. 2(b) and the estimate error of the static input methods, i.e.,
FK, RIGR, and kSVD, shown in Figs. 3(b), 4(b), and 5(b) re-
spectively, is that the error images of the optimal method are not
spatially correlated with the structure of the image estimate. In
contrast, the absolute error images of the static input methods
appear to be almost an outline of the high-intensity signal re-
gions of the fruit. This indicates a slight bulk motion shift of the
fruit over the course of sequence. In particular, Fig. 4 shows that
the RIGR method is unable to accurately estimate such bulk mo-
tion. This is due to the applied spatial reference envelope formed
from the intensity values of the reference image which is a key
component of the RIGR method. Notice as well that there ap-
pears to be significant blurring of the chop-stick edges in the FK
sequence, and significant artifacts at the edges of the fruit in the
kSVD estimated sequence.

Notably, these artifacts are mostly absent from the
DATUM-LP estimate, Fig. 6. Furthermore, Fig. 6(b) il-
lustrates that the linear prediction method estimate error also
has significantly less structural correlation with the image
sequence than the static input methods. Note that the scale of
the error images is comparable to the kSVD method. However
there are only a few pixels that approach the maximum error
value, notably in the error images in the first column at
and . While the results of this method approach the
high-quality available in the optimal method, Fig. 2(b), the
peak error level is higher and the structural correlation between
the error and the image is stronger.

B. Bulk Motion Simulation

To demonstrate the ability of the doubly adaptive methods to
track significant object motion in an image sequence, the ex-

(a)

(b)

Fig. 2. DATUM-Opt estimate and estimate error of a simulated grapefruit data
acquisition usingr = 25 input acquisition vectors. Each image is 92� 92
pixels in size and the time sequence moves left-to-right and top-to-bottom with
the original (shaded) reference image in the upper left corner.

ample here focuses on the region exhibiting the most change
in the previous example. The image set used in this example
utilizes a smaller field of view (FOV), 32 32 pixels in size,
centered on the upper left quadrant of the fruit. The number of
images in the sequence was reduced to 9 to allow greater visible
detail in the figures. Furthermore, to simulate bulk motion in the
phantom, the FOV was spatially shifted at frame by one
pixel in both the horizontal and vertical direction. Each of the
minimal data dynamic MRI methods discussed in the previous
example were simulated with this data set using input
vectors.

The relative error comparison, Fig. 7, shows that all of the
sequence estimation methods suffer a loss in quality at the third
estimate, corresponding to the simulated bulk motion shift of
the FOV at . However, only the doubly adaptive methods,
DATUM-LP and DATUM-Opt, are able to recover after the shift
and continue tracking. Note that their level of error after the shift
point gradually declines toward its pre-shift value. In particular,
the error in the DATUM-Opt method is on the same order as
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(a)

(b)

Fig. 3. FK estimate and estimate error sequences. Figure layout as in Fig. 2.

before the shift after only a few frames. In contrast, the static
methods never recover after the shift point.

Figs. 8 and 9 show the estimates and the absolute estimate
error for the eight estimated images of the shifted FOV
sequence. Each column shows eight frames of a particular
estimate method. Again, the DATUM-Opt method provides a
very high-quality estimate over the entire sequence. The quality
shown is the theoretical limit for the doubly adaptive method,
and clearly indicates that if one could accurately predict bulk
motion changes then high-quality estimates are available with
a very limited amount of data.

Consistent with the first example, these figures also show
significant artifacts in the static input methods: FK, kSVD,
and RIGR. As these methods were originally billed as con-
trast change estimation methods, this is not unexpected. In
contrast, Fig. 9 shows that the doubly dynamic input methods,
DATUM-Opt and DATUM-LP, contain significantly less error
that is correlated to the structure of the reference image and
the absolute error shows a decrease across the entire FOV after
the shift point. From Fig. 8, we also note that the “ringing”
artifacts present in the static input methods are notably absent
in the doubly adaptive methods.

(a)

(b)

Fig. 4. RIGR estimate and estimate error sequences. Figure layout as in Fig. 2.

C. Concluding Remarks

These examples show that adaptively tailoring the input vec-
tors for each successive image in a sequence can provide a sig-
nificant improvement in estimation of the sequence. The first
example demonstrated the applicability of the method for a rep-
resentative clinical sequence. The second example showed that
the method may even be able to reasonably estimate sequences
with significant changes, such as that introduced by a bulk mo-
tion change in the FOV. The biggest advantage of the doubly
adaptive method demonstrated in these examples is the ability
for the image estimate to recover within a few frames after a sig-
nificant change, even if it may not perform better than the static
input methods for a particular frame, as in the second example
at .

VI. DISCUSSION ANDSUMMARY

In this paper, we have presented an adaptive framework for
the estimation of dynamic MRI sequences. This framework was
shown to be a general form which could also describe analyti-
cally the previous FK and SVD acquisition methods under cer-
tain assumptions. Because the framework was developed using
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(a)

(b)

Fig. 5. kSVD estimate and estimate error sequences. Figure layout as in Fig. 2.

concepts drawn from adaptive filter theory, it also shows a re-
semblance to the LMS adaptive filter structure, and we expect it
to be applicable for any tracking or system estimation problem
where one has complete control of the inputs and the linear
system model applies.

The computational requirements of the proposed algorithm
are not significantly greater than those in the original SVD
acquisition method. As in the SVD methods, the dominant
right singular vectors of a matrix must be determined with each
new estimate. This can be computed efficiently using such
algorithms as the conjugate gradient SVD [31]. The additional
computational requirements are only four accumulates per
pixel. In fact, the only significant cost beyond that of the
original SVD method is the memory required to store the delay
chain of the predictive filter.

At first glance, it may appear that rf or spatially selective en-
coding suffers from low SNR when compared to Fourier acqui-
sition methods because only a portion of the spins in the FOV
are excited as opposed to the entire FOV. However, the increased
image information acquisition rate provided by spatially selec-
tive encoding methods can quickly overcome this difficulty. For
example, in the case of wavelet excitations, is was shown in

(a)

(b)

Fig. 6. DATUM-LP estimate and estimate error sequences. Figure layout as in
Fig. 2.

Fig. 7. Relative error comparison,
pE =kA k , between dynamic MRI

sequence estimation methods for the limited FOV with bulk motion example.

[32] that the relative estimation error of an image is potentially
much lower given a limited number of wavelet acquisition vec-
tors than a comparable limited amount of Fourier acquired data.
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Fig. 8. Comparison of image estimates for shifting FOV sequence. Each
column contains eight sequential image estimates produced by the method
listed at the top of the column.

Fig. 9. Estimate error comparison for shifting FOV sequence. Layout as in
Fig. 8.

So while the received rf signal from say 16 non-Fourier based
input vectors in a spatially selective encoding MR protocol may
suffer from lower SNR per encode, if the non-Fourier inputs
are chosen carefully the reconstructed image will typically have
much lower estimate error than the dominant 16 Fourier ac-
quired vectors of the same FOV.

Finally, we are currently working to address a number of re-
maining issues before this method can be used in a practical set-
ting. For one, we have assumed here that the input vectors can
be chosen arbitrarily and with equal time between each input.
Depending on the imaging protocol used, it may in fact be ad-
vantageous to instead use a constrained input vector set such as
the pseudo-SVD-style vectors proposed in [33].

In addition, the linear system model in (1) assumes that the
system has no memory between successive inputs, i.e., the spins
completely relax before each input excitation. This is the worst
case scenario for a direct SNR comparison between Fourier
and non-Fourier encoding. However, at the other extreme, for
modalities where there is no relaxation, e.g., hyper-polarized
gas imaging, it can be shown [34] that all orthogonal input bases
have equivalent SNR response. Practical MR imaging in fact
lies somewhere between these two extremes of “complete re-
laxation” and “no relaxation” of the bulk magnetization.

In our analysis of the adaptive framework estimate error, we
showed that having complete knowledge of the next image in
the sequence will provide an optimal set of data acquisition vec-
tors. Because such knowledge is not available in practice, we
proposed using the output of a linear predictor to determine ap-
propriate data acquisition vectors. Examples of simulated se-
quence acquisitions using real MRI data were given showing
that such a strategy provides significant improvement compared
to other well known minimum data image sequence acquisition
techniques. Moreover, the difference in performance between
the realizable methods and the theoretically optimal method in-
dicates that room for improvement still exists. Improving the
performance of the realizable methods via alternative linear pre-
dictors is a focus of current research.
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