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Abstract

We present an efficient, wavelet domain algorithm for computing the error variances associated
with a wide class of linear inverse problems posed in a maximum a posteriori (MAP) estimation
framework. Our method is based on the permutation and subsequent partitioning of the Fisher
information matrix into a 2 X 2 block structure with the lower-right block well approximated
as diagonal and significantly larger than the upper-left block. We prove that under appropriate
conditions this diagonal approximation does in fact allow for the accurate recovery of the error
variances, and we introduce a greedy-type method based on the optimization of a diagonal
dominance criterion for determining the “best” partition. We demonstrate the speed of this
technique and its accuracy for a set of inverse problems corresponding to a variety of blurring
kernels, problem sizes, and noise conditions.
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1 Introduction

A common approach for recovering a signal given noisy, linear functionals of the original defines
the reconstruction as the solution to a least-squares problem with a quadratic regularization term
[2]. This formulation has the interpretation of solving a maximum a posteriori (MAP) estimation
problem with additive Gaussian noise and a (Gaussian prior model whose covariance structure is
determined by the form of the regularizer [2]. The statistical perspective is useful because it provides
a framework for performance analysis via the examination of error variance (EV) information.
Unfortunately, computing the variances requires the inversion of the Fisher information matrix
(FIM); a procedure whose O(N?) complexity is prohibitive for most multi-dimensional problems.

Here we present an efficient method for obtaining the EVs for a wide class of linear inverse
problems posed in the wavelet transform domain. We are concerned particularly with problems
characterized by space-varying blurs which provide primarily coarse scale information about the
unknown signal along with limited fine scale detail. Such distortions arise in applications including
ultrasonic imaging, geophysical prospecting, and non-destructive testing [4,6,7]. The work in this
paper is motivated by our previous efforts [5,6] where we observed that a wavelet formulation for
such problems leads to a partitioning of the information matrix into a 2 X 2 block structure with
the lower right block (the 22 block) well approximated as diagonal and significantly larger than the
upper left block (the 11 block). In Section 3, we show how such a partitioning in principle can be
used to extract error variances efficiently. Unfortunately as detailed in [7], constructing the partition
actually required prior knowledge of the error variances.

We demonstrate here an efficient method for determining a partition and obtaining the vari-
ances in a manner which does not require this prior knowledge. We introduce and prove that a
particular diagonal dominance criterion represents a useful means of evaluating a given partition.

A greedy-type algorithm is employed to determine an approximation to the optimal partition for a



given problem. Numerical experiments demonstrate that this method produces highly accurate EV
information for a variety of image restoration problems at a fraction of the complexity required to

directly invert the FIM.

2 Problem Formulation

We consider image restoration problems of the form

y(my,ny) = Z T(my,ny, ma,n2)g(ma,ng) + wimy,ny) <= y=Tg+w (1)
m2,n2

where g is the vector of lexicographically ordered pixels in g(m,n), the image to be recovered; T is
the matrix representing the blurring kernel, T'(mq, n1, mg, n2); and w is unit variance, zero mean,
white Gaussian noise. Transformation of (1) to a multiscale domain is achieved by defining two
orthonormal wavelet transform matrices, W, and W, and applying them to (1) as follows [5, 6]
W,y = [WyTWﬂ W,gl+ W,w=n=0vy+v (2)
In (2) eg., W, takes g into a vector, v, comprised of all the wavelet coefficients and coarsest scale
scaling coefficients in a two dimensional wavelet transform of the image.
The MAP estimate of 4 from 7 is the solution to the following set of normal equations [5]
(@Te +x?Py') 4 =0Ty (3)
where k2P is the prior covariance matrix for v, L = @70 + Pgl is the FIM, and P, the error
covariance matrix (ECM), is L™'. We model ~ using a separable, two-dimensional 1/ f-type model
where the wavelet coefficients are zero mean, uncorrelated, Gaussian random variables (hence Pyg
is diagonal) with a geometrically decreasing variance progression depending only on the scale index
with finer coefficients having smaller variances [5]. The problem considered here is the computation

of the error variances i.e. the diagonal elements of L~!, without the direct inversion of the FIM.

3 Variance Extraction
Our method for extracting the error variances is motivated by the results in [5-7] which indicated

that the error variance analysis associated with a wavelet domain form of ill-posed problems can



be used to divide 4 into two sub-vectors: 4, corresponding to those coefficients for which the data
provides significant information and 4, corresponding to those degrees of freedom for which the
data are not informative. Given this decomposition, the rows and columns of (3) are re-ordered to

obtain a permuted form of the normal equations:

fql f112 ’3’1 Vi (4)
I~11T2 I~122 ’3’2 Vo

where v = IOTR 15 and L = IILI7 is the information matrix permuted using IT. The block

matrix inversion formula [3, Sec. 0.7.3] provides the means of computing P = P07 as

- Ly, Ly Py _i1—11 L19P2o
Li, Ly —Py, LT, LT Py

where Py; = (fql — i12i2_21 ilTQ) and Pyy = f;2_21 —I~12_21 fqgf’nf;lTQi;Ql. It was observed in [7] that
fql was small and dense, j:lg was rectangular and sparse, and igg was large but well approximated
as diagonal. Thus, the error variances can be computed by (a) approximating Ly as diagonal and
trivially inverting this matrix, (b) constructing the small Py; matrix directly, and (c) calculating
only the diagonal elements of 1322. The diagonal approximation to j:22 and the small size of f’n
makes such a procedure far more efficient than computing the full inverse of L. The key difficulty
is that the initial specification of II required knowledge of the error variances. The objective of the
work here is the efficient construction of II in a way which is not based on this prior knowledge.
The goal of permuting the columns and rows of L is to find a high dimensional Lo block
which can be well approximated as diagonal. Specifically, we seek an Ly, which is maximally
diagonally dominant. A matrix A is strictly diagonally dominant [3, Sec. 6.1.9] if for all 7, [S(A)]j =
i

quantity A(A) = max; [s(A)]; / ‘ [A] ‘ so that A is strictly diagonally dominant iff A < 1.

[A];

< |1l

ii ‘ . To gauge the degree of diagonal dominance, we define the non-negative
The motivation for the use of A is as follows. Let L be a symmetric positive definite FIM

partitioned as in (5), D be diagonal with [D],; = {igg} , and set L equal to L with Ly, replaced

I



by D. Letting 6?7 (resp. %) be the ith diagonal element of L=! (resp. L") then if L remains a
symmetric positive definite FIM, we show in Appendix A that ), ‘522 —o? ‘ <A (igg) T (igg)
where T (igg) is explicitly a function of Ly, and implicitly a function of A. Ignoring T for a
moment, the error in computing the variances which arises from the diagonal approximation to Los
decreases as A increases. YT (izg) depends on igg, and hence A (igg), in a complicated manner
not particularly amenable to analysis. In Appendix A we show that if A (igg) is decreased by
lowering & in (3) for those coefficients in the 22 block, (i.e. by increasing regularization for those
coefficients for which the data are uninformative), then as xk — 0, T (igg) — 0. Thus, at least for
ill-posed problems requiring a relatively large amount of regularization, small A (igg) corresponds
to small errors in the variance computation. This is the behavior seen in the examples of Section 4
and holds even for problems with relatively little regularization.

The combinatorial nature of determining the optimal Loy knowing neither the appropriate size
nor the best collection of columns/rows for a given size prohibits an exhaustive search. Here we
employ a greedy type method to find an approximate solution to this problem. We take the best
1x 1 Lyy as that with the smallest A value. We next cycle through the remaining rows to generate
that 2 X 2 submatrix with the smallest A. The procedure is the repeated for n = 3,4,... and is
terminated when A exceeds some threshold < 1. Although we make no claim as to the optimality
of this process, it is fast, guaranteed to terminate, and in practice has very strong performance.
Finally, to further reduce the complexity, we avoid a full search at each stage. Rather, we accept

the first column which yields an acceptably small (here taken as 0.02) increase in A.

4 Examples
Here we demonstrate the performance of the algorithm described in Section 3 for a variety
of image restoration kernels and noise conditions. The signal-to-noise ratio (SNR) is determined

by appropriate choice of k£ in (3). The computational load of our algorithm is compared against



direct inversion of the information matrix using the MATLARB inv function. The complexity of each

approach is measured using the MATLAB flops facility. The accuracy is evaluated using the relative

2

error in the variance computation defined as ), ‘ o? — o? ‘ /32 ‘ o? ‘ where o7 are the exact error
variances and 7 are the error variances produced by our algorithm. In all examples, we use that
Lyo corresponding to a A value of 0.5. Finally, ®7® is sparsified by setting to zero all elements
smaller than 1522||®7@||,, with N the number of columns in ®7® [1].

We first consider the performance of our algorithm for the non-convolutional kernels of the form

2 2
T (my,n1, mg,ny) = exp [—%] exp [—%] (6)
with mq,mg,ny,n2 = 1,2,...N and o%*(m) = ([1+ Bcos(2rfm)]. This choice of T represents
convolution with separable Gaussian kernels whose widths vary sinusoidally. The degree of variation
is set by 8. Choosing 3 = 0 corresponds to simple convolution with a Gaussian blurring function.
The data obtained with larger § contain information at a variety of resolutions at different points
in space. For the experiments below, we use ( = 2 and f = 1/16.
In 1(a) the FLOP counts are displayed as a function of the problem size for three different SNRs.
At an SNR = 0 exact inversion requires about 33 times more FLOPS than our approach for a 16 X 16
image with this number increasing to 180 for the 64 x 64 case. As the SNR rises one can recover
reliably a larger number of coefficients in . Thus, the size of the L1, matrix rises and the efficiency
of our approach declines somewhat. Nonetheless, even at an SNR of 10, exact inversion still requires
well over an order of magnitude more operations than the technique described here for the 64 x 64
problem. In Fig. 1(b)-(c) it is seen that the relative error in the variances is below 107 for all cases
thereby demonstrating the accuracy of this approach.
Comparable results are displayed in Fig. 2 for 3 = 0.8. At an SNR of 0, exact inversion requires

33 time more FLOPS for the N = 16 image with this number rising to 160 for N = 64. Even at an

SNR of 10, the partitioned inversion method is over 30 times less costly than exact inversion. For



all SNRs and problem sizes the algorithm is accurate to within 0.3%.

The second type of reconstruction problem considered here is a linearized inverse electrical
conductivity problem described in [6,7]. A detailed description of the highly non-convolutional T
may be found in [4]. The length of y is 1152 and we consider performance for the discretization of
A into 16 X 16 and 32 x 32 arrays of square pixels. Finer discretization typically is unwarranted
given the frequencies of interest in this problem. The error variance results for this problem are
illustrated in Fig. 3. At an SNR of 10, our approach is almost 50 times less intensive than direct
inversion for the 32 x 32 case. In Fig. 3(b)—(c) we see that while the accuracy of our algorithm is

somewhat lower as compared to the Gaussian case the worst case relative error is still only 1.2%.

5 Conclusion

We have developed efficient methods for the computation of error variance information for a
class of linear restoration problems specified in the transform domain. The approach is based on the
permutation and partitioning of the FIM to maximize a diagonal dominance criterion. A suboptimal
greedy approach has been employed to obtain the required permutation in practice.

While the work here has concentrated exclusively on multiscale inverse problems, we note that
the use of wavelets is in fact not necessary. The only requirements are a diagonal regularization
matrix, a sparse transform domain matrix, and the property that the unknowns can in fact be
partitioned into sets for which the data do and do not provide significant information. Application
of our methods to other problems possessing these characteristics represents an interesting and

useful avenue for future effort.

A Error Due to Diagonal Approximation of L,,
Here we explore the error caused by diagonal approximation to Los. Dropping the tilde notation,

let P = L7! (resp. P = L™1) be the error covariance matrix associated with L (resp. L™1). Because



the diagonal elements of P and P correspond to error variances
E ‘0'2'2—5'2'2‘ = tr ‘P—P‘ = tr ‘Pll_f)ll‘ + tr ‘PQQ_?QQ‘ (7)

where |A| is the matrix constructed of the absolute values of the elements of A and

P11 =Ly - Ll?Lz_zlLiFQ I31—11 =Ly - LIZD_ILa (8&)
P22 = Ly — L?2L1_11L12 f)2_21 =D - L?2L1_11L12- (8b)

We first consider tr ‘ Py, — Py ‘ where

tr ‘PQQ — 1322 ‘ = ftr ‘ P22 (I — P P22 ‘ = Z Z [P22 ij P2_211322] jé (9)
< Z Z ‘ [PQQ]ji ‘ - P22 P22]j¢ (10)
S maX ‘ [P22 ij E ‘ I — P22 PQQ ‘ < OAVQQHI — P22||1
ij
where (10) follows from (9) via the triangle and Schwartz inequalities, a = ‘maX” [P22];; |, and

Py is of size Ny X Ngy. Straightforward linear algebra and (8b) allows I — P2_21P22 to be written
s (I-Ly;D71) (I- CD™ 1) where C = LT, L7 Ly,. Thus,

tr ‘ P22 — PQQ ‘ S &IVQQHI — CD_1||1||I — L22D_1||1 (11)

[La2];;

ERLEANY

= A(LQQ) QJVQQHI — CD_1||1. (12)

= aNy||I — CD7'||; max
22| Il : XZ:

which is the desired bound for the 22 block.
Next, consider tr (Pu — PH). Using the matrix inversion lemma we have P11 = Ll_ll—l— AP, AT
and Py = L1_11 + AP, AT where A = L1_11L12. Hence,

tr|Py— Py | = tr[A (P - Py) AT| <Y ‘[A]M. (Al

< ﬁz ‘ [P22 - ?22]jk ‘ < BNgg||P2g — Paa|l1 < BNga||Paa|1]|I - P2_211322||

[Pz = Paal |

< A(Lyz) BNoo|[Poz i [T - CD 71 (13)

where 3 = max;jy, ‘ [A]; [A]; |-

Finally, from (12) and (13),
tr ‘ L_1 — E_l ‘ S A(LQQ)IVQQHI L?QL L12D_1||1 [a + ﬁ”PQQH ] (14)

which completes the derivation with T (igg) = Noo||T - LLL LoD 7Y|; [ + B]|Paz1]-



Eq. (14) indicates that the error made in approximating the 22 block in L is proportional to
A (Lgz); however, T is a function of Ly through a and the 1-norms of Pyy and I — L{QLl_llngD_l.
To partially examine the behavior of T, we argue that decreasing A (Ljyz) in a natural manner
decreases this quantity as well. Assume that © is fixed and A is decreased by decreasing the value
of the k parameter in the prior model specifically for the coefficients in the 22 block. Now, it is not
hard to show that D~! “=% 0 so that with B = LLL 'Ly,

IT-BD™'|; [I-BD™'+D~' - D~ '|; < [I-D7'|; + D" - BD™'|;

I

IT= D7}y + DR |IT = Blly == [|T]}, = 1.

Hence, asymptotically, || — BD™!||; is independent of Lys. Referring to (8b), it is not difficult to
show that as x decreases Py — RQPQQQ where Py 27 is the 22 block of the appropriately permuted
form of Py. So as k — 0 both a and [|Pg2||; go to 0. Thus, we conclude that decreasing A (igg)

by varying the degree of regularization will cause T — 0.
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B Figure and Table Captions

Figure 1 Inversion results for space varying Gaussian blur with § = 0.2
Figure 2 Inversion results for space varying Gaussian blur with § = 0.8

Figure 3 Inversion results for linearized inverse scattering example
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