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Abstract

In many applications, it is necessary to track an unknown number of tar-

gets with a remote sensor. Several applications for which radar is used to

sense the environment include anti-aircraft warfare, tracking of space debris,

and missile defense. If wideband radar is used, one can receive multiple re-

turns from scatterers on a single object in one pulse. In the particular problem

considered, it is necessary to track multiple scatterers on an unknown number

of objects, whose motion includes a nonlinear rotational velocity component,

with a generic wideband radar model. The measurements used are scatterer

range and range-rate (in analogy to Doppler) and are nonlinear functions of

the scatterer position and velocity, parameters in the state-space model. The

tracker design uses an Extended Kalman Filter to model the nonlinear dy-

namics and measurement models and a multi-pronged association scheme to

determine the scene and track its evolution over time.
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Chapter 1

Introduction

Multiple target trackers (MTT) are often used in many applications in-

cluding air defense, ground target tracking, and missile defense [1]. In this

situation, there are multiple objects in the scene providing multiple returns

to the sensor. A variety of sensors, including IR, sonar, ground-based radar,

and airbourne radar, can be used in these applications [2, 3, 4]. MTT have

two portions: an association algorithm to assign new measurements to current

information and a filter to track the objects [1, 2, 4].

The filter component models the object dynamics and the measurements

in terms of those dynamics [3]. Since we may have some idea of the objects’

motion, but this motion can not be known exactly, a small amount of noise

is added to the model. This added noise is called process noise [1]. A sec-

ond type of noise is added to the measurements. Since an actual sensor is

making the measurements, there will be some error in the measurements, and

this additional measurement noise in the model compensates for this occur-

rence [4]. The modeled object dynamics consist of the state and the function

that propagates this state into the future, the state transition function. The

measurement function maps the state to the measurements.
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If both the state transition function and the measurement function are

linear functions of the state, we can use a linear filter. The optimal linear

filter, for additive Gaussian noise, is the Kalman filter [1, 5]. If either the

measurement function or the state transition function, or both, are nonlinear,

then a nonlinear filter must be used [1, 5]. Several types of nonlinear filtering

techniques exist [5]. The easiest to use are suboptimal, but the optimal filters

are difficult to use and computationally complex. However, the challenge of

tracking objects with nonlinear dynamics and with nonlinear relationships to

the measurements still exist, and this problem must be tackled.

Extended Kalman Filters (EKF) are often used to handle these nonlinear

problems. Some examples in which EKFs have been used to track nonlinear

object motion are: accelerating targets [6], satellite trajectory estimation [7],

turning civilian aircraft [8], and road target tracking [9]. Another common

type of nonlinear filter is the particle filter [5]. There is a large difference in

computational complexity between these two types of filters. The particle filter

carries with it a much higher computional burden than the EKF. While particle

filters have sometimes been favored when dealing with nonlinear problems [10,

11], the EKF can provide comparable, if not better, results, especially when

computational complexity is taken into account [12, 13, 14]. Other types of

nonlinear filtering techniques exist, such as the Gaussian Sum Filter or the

Unscented Kalman Filter(UKF). However, these filters do not provide the

same ease of use as the EKF, and, in the case of the UKF, may again demand

a greater computational complexity [5].

The second component of a MTT is the data association algorithm [4]. The

association portion of the tracker determines how new information is mapped

to current and old information [2]. Association algorithms consist of a cost

function and an assignment method. The cost function is the equation which
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determines how likely particular assignments are, and the assignment method

determines which assignments are allowed. Standard cost function are gener-

ally related to distance or a similar metric. Three types of assignment methods

are common. These are nearest neighbor, global nearest neighbor, and joint

probabilistic data association. The best assignment method to use depends

on the particular application [4, 15]. Nearest neighbor is good to use when

there is a high probability of missed detections. Global nearest neighbor is

good to use when there is a low probability of both missed detections and

false alarms. Joint probabilistic data association is good to use when both the

probability of false alarms and missed detections are high. The applications

of these assignment methods is done using an optimal assignment algorithm.

Several different techniques to do this are the Munkres Algorithm, the JVC al-

gorithm, and the Auction algorithm. The easiest to implement is the Munkres

algorithm [3].

1.1 Contributions

In this work, we use an EKF to estimate the dynamics of objects with a

nonlinear rotational velocity component. We use a generic radar model for our

measurements. The measurements used are range and range-rate and will be

nonlinear functions of the filter state.

Since our measurements are range and range-rate and we want to find

states in a Cartesian frame, we have an unobservable problem [3]. Much of

the work that exists when dealing with range and range-rate measurements

also includes a measurement of angle, which makes the problem observable [16,

17, 18, 19]. Another interesting part of our problem is the dynamics of our

targets. Existing work tends to model rotational object motion as a maneuver
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[8, 20, 21]. Existing work also tends to treat objects as point targets which will

only give one return [7, 8, 9, 20]. Although we use a generic sensor model for

our measurements, we use a generic wideband sensor model. If the radar has

a high range resolution resulting from large bandwidth, it is called a wideband

radar. In this case, one can receive multiple returns from a single object in

one pulse. The parts of the object which generate these returns are called

scatterers.

This work makes three contributions. First, it deals with modeling the

nonlinear rotational component as an explicit part of the object dynamics.

This is different from the previous considerations which treat targets with

rotational motion as undergoing a maneuver and not as a constant portion of

the object’s dynamics. Second, we consider an unobservable problem in order

to see how well things can be done in this case. The third major contribution

is that it deals with measurements from a wideband sensor.

1.2 Outline of the Thesis

This thesis is organized the following way. Chapter 2 focuses on the tech-

nical background in designing a tracker. The three components are the state

space model, the filter used, and the association scheme. Different options are

discussed for each component. The next chapter describes the design of the

tracker: the state space model used, the details of the filter equations, and the

association algorithm used. The experiments are discussed in Chapter 4. We

ran experiments on the filter and the association algorithm separately. Then

we put these together for our tracker and repeated the experiments. This

chapter shows our results. Chapter 5 wraps up the thesis with our conclusions

and suggestions for future work.
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Chapter 2

Filtering and Association

Techniques

A multiple target tracker needs to be designed to track objects over time.

While the details of a tracker design depend on its particular application,

each generally consists of two major components: an association scheme and

a filtering method, along with an appropriate dynamic, or state space, model

of the target.

2.1 State Space Models

The modeling of nonlinear and/or maneuvering object dynamics is by no

means novel. State space models are dependant on type, coordinate system,

and reference frame. Three types of nonlinear state space models are contin-

uous time, discrete time, and continuous-discrete time [22]. The continuous

time model is

ẋ(t) = f(t,x(t)) + G(t,x(t))w(t)

z(t) = h(x(t), t) + v(t)
(2.1)
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where the former equation is the state dynamic model, ẋ(t) is the vector of

state space derivatives with respect to time; f(t,x(t)) is the nonlinear func-

tion that maps the current state, x(t), and current time, t, to its derivatives;

w(t) is the process noise vector as a function of time; and G(t,x(t)) is the

matrix which maps the process noise into each component of the state vector

derivatives. Then the components of the measurement equation are: z(t) is

the current measurement; h(x(t)) is the nonlinear function that maps the cur-

rent state and time to the current measurement; and v(t) is the measurement

noise.

The discrete time model is

x(k + 1) = f(k,x(k)) + G(k)w(k)

z(k) = h(k,x(k)) + v(k)
(2.2)

where x(k+1) is the state at time k+1; the nonlinear function which maps the

current state, x(k), is fk(k,x(k)); the process noise is w(k); and the matrix

which maps the process noise to the next state is G(k). The measurement

noise at state k is v(k), and the nonlinear function that maps the current

state to the current measurement, z(k), is h(k,x(k)).

The third formulation, the continuous-discrete time formulation, is:

ẋ(t) = f(t,x(t)) + G(t,x(t))w(t)

z(k) = h(k,x(k)) + v(k)
(2.3)

where the continuous time quantities are defined as in the continuous time

formulation and the discrete time quantities are defined as in the discrete time

formulation. This model is especially helpful when taking measurements of the

object at discrete sample times and the continuous time motion of the object
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is known. In each of these set of equations, the control input, u(k), has been

left out since it will not be applicable in this particular case.

In our applications, while our targets are spinning throughout all measure-

ment times and do not undergo a manuever, considering the work that has

been done for targets undergoing a circular manuevering is a good place to

start. An extensive survey of point target manuevering models is given in

[20]. The two most applicable models are the coordinated turn and the circu-

lar manuever. The coordinated turn model descibes the position and velocity

of the object during its circular turn in Cartesian coordinates. The circu-

lar manuever model places its polar coordinate system at the center of the

manuever. Since we wish to model our states in Cartesian coordinates, but

also need to include a rotational motion component that is body-centric, both

of these models are relevent to designing the state space model we develop for

our problem in Chapter 3.1.

The coordinated turn model uses a Cartesian coordinate system in the

sensor reference frame. This continuous time model gives [20]:

ẋ(t) = v(t) cos(φ(t)) (2.4)

ẏ(t) = v(t) sin(φ(t)) (2.5)

v̇(t) = at(t) (2.6)

φ̇(t) =
an(t)

v(t)
(2.7)

(2.8)

where ẋ(t) is the derivative of the state position in x with respect to time,

ẏ(t) is the derivative of the state position in y with respect to time, v(t) is the

velocity vector, φ is the heading angle, at is the tangential acceleration and an
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is the normal acceleration. For circular, constant-speed motion, an 6= 0 and

at = 0.

The circular manuever is best modeled from the center of the manuever

[20]. This discrete time model is maneuver centered and assumes the center

of the maneuver is known. This allows one to calculate r, the radius of the

maneuver, from the measurement, along with φ, the current angle of the object

in the maneuver circle, and φ̇ which maps the linear velocity and the rotational

velocity together. This gives, for a sample time T , [21]:

r(k + 1) = r(k) (2.9)

φ(k + 1) = φ(k) + φ̇(k)T (2.10)

φ̇(k + 1) = φ̇(k). (2.11)

Measurements are generally given in the sensor coordinate frame of range,

azimuth, elevation, and range-rate [23]. When such sensor coordinates are used

for the measurements and measurement noise, but the target state is not, this

is known as tracking in mixed coordinates [23]. Since our measurements, range

and range-rate, are fixed to be in the sensor coordinate system, but our state

will not be, we will be tracking in mixed coordinates.

2.2 Filtering Options

Several types of filters exist for nonlinear object tracking. Two common

types are the Extended Kalman Filter (EKF) and the particle filter. However,

these two types differ greatly in computational burden with the particle fil-

ter being of a much greater complexity. While particle filters are sometimes

favored when dealing with nonlinear problems [10, 11], the EKF can provide
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comparable, if not better, results, especially when computational complexity

is taken into account[12, 13, 14]. Since it is desired that we have a real-time

tracker, the EKF was the filter model chosen. In order to properly describe

the EKF, its linear basis, the Kalman Filter(KF), must first be described.

2.2.1 Kalman Filter

The Kalman Filter is an optimal filter for linear problems. It can take

on two forms: a continuous time form, and a discrete time form. Since the

measurements or observations to be used, range and range-rate, are discrete,

our description will focus on the discrete time model.

Based on the state space model, we have a state vector x(k) which denotes

the state of the object at time t = kT where k is the sample number and T is

the time between samples. The linear function which links x(k + 1) to x(k) is

F(k), to the system input u(k) is G(k) and which links z(k + 1) to x(k + 1)

is H(k + 1). When dealing with real systems, some system noise, v(k), is

present along with some measurement noise, w(k). Both the system noise,

also called process noise, and the measurement noise are modeled as Gaussian

distributions with zero mean and a chosen standard deviation. From [1], the

true state evolution can then be defined as follows:

x(k + 1) = F(k)x(k) + G(k)u(k) + v(k) (2.12)

z(k + 1) = H(k + 1)x(k + 1) + w(k + 1). (2.13)

With this linear dynamic system model, the discrete-time KF filter estimation

equations can be developed and are given in [1]. The prediction portion of the

KF, state prediction, state covariance prediction, and measurement prediction,
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is given as, respectively,

x̂(k + 1|k) = F(k)x̂(k|k) + G(k)u(k) (2.14)

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k) (2.15)

ẑ(k + 1|k) = H(k + 1)x̂(k + 1|k), (2.16)

where x̂ and ẑ denote the estimates of the state and the measurement, re-

spectively. The matrix Q maps the estimate of process noise into the state

prediction covariance. The notation k +1|k means the state at k +1 given the

data through time k. The measurement residual can then be calculated as

ν(k + 1) = z(k + 1)− ẑ(k + 1|k). (2.17)

From the measurement residual, one can develop the residual covariance,

S(k + 1) = R(k + 1) + H(k + 1)P(k + 1|k)H(k + 1)T (2.18)

where the matrix R maps the estimate of measurement noise into the residual

covariance, and the filter gain is

W(k + 1) = P(k + 1|k)H(k + 1)S(k + 1)−1. (2.19)

We can now determine the updated state and covariance estimates. The up-

dated state estimate is

x̂(k + 1|k + 1) = x̂(k + 1|k) + W(k + 1)ν(k + 1), (2.20)
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and the updated state covariance is

P(k + 1|k + 1) = P(k + 1|k)−W(k + 1)S(k + 1)W(k + 1)−1. (2.21)

2.2.2 Extended Kalman Filter

From this discrete time linear formation of the KF, the discrete time non-

linear formation of the EKF is based. The development given here is based on

[1]. For the state space model for the EKF, the linear equations F(k) and G(k)

are replaced by one nonlinear function f(k,x(k), u(k)) and H(k) is replaced

by h(k + 1,x(k + 1), u(k + 1)),

x(k + 1) = f [k,x(k), u(k)] (2.22)

z(k + 1) = h[k + 1,x(k + 1)]. (2.23)

To create the state transition matrix, F(k), necessary to calculating the

state prediction covariance, one calculates the Jacobian of f [k,x(k), u(k)],F(k).

Analogously, the Jacobian of h[k + 1,x(k + 1)], H(k + 1), models the mea-

surement matrix used to calculate the residual covariance and filter gain. The

filter state and measurement prediction equations then become

x̂(k + 1|k) = f [k, x̂(k),u(k)] (2.24)

ẑ(k + 1|k) = h[k + 1, x̂(k + 1|k)], (2.25)

and the state covariance prediction is

P(k + 1|k) = F(k)P(k|k)F(k)T + Q(k), (2.26)

12



where

Fk(k) =
∂f [k,x(k),u(k)]

∂x

∣∣∣∣∣
x=x̂(k|k)

. (2.27)

Then, analogously, the residual covariance is calculated as

S(k + 1) = R(k + 1) + H(k + 1)P(k + 1|k)H(k + 1)T (2.28)

and

H(k) =
∂h[k + 1,x(k + 1|k)]

∂x

∣∣∣∣∣
x=x̂(k+1|k)

. (2.29)

The rest of the filter equations remain the same with Hk+1(k + 1) again re-

placing H(k + 1) in the filter gain equation.

2.3 Association Techniques

Association techniques have several main parts. First and foremost is the

cost function or the metric upon which to base assignment. The cost function

is the equation which measures how likely new information is to belong to old

information. In this case, old information is a filter track or a set of previously

linked together measurements, and new information is the set of measurements

at the next measurement time. For the remainder of this discussion, the set

of old information will be referred to as a set of tracks and the set of new

information is the set of measurements. Next is the type of assignment that

is allowed. If new measurements can be assigned to more than one track,

then this type of assignment is called Nearest Neighbor (NN) assignment [4,

15]. If new measurements can be assigned to only one track, then this type

of assignment is called global nearest neighbor (GNN) assignment [4, 15]. If a

weighted sum of the measurements, based on their probability of occurrence, is
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assigned to each track, then this type of assignment is called joint probabilistic

data association (JPDA) [4, 15]. The third part decides how assignments are

maintained across time. In this work, we restrict ourselves to the basic multiple

target tracker (MTT) single time assignment. Another type of assignment over

time is multiple hypothesis tracking (MHT). The details of MHT are presented

in [2, 24].

Two common, and straightforward to implement, metrics are distance and

statistical distance [2, 4]. Statistical distance can be defined as a weighted

difference between two vectors. For a vector x, x = [x1 x2]
T , and a vector y,

y = [y1 y2]
T , where x and y are both zero mean with a common covariance,

R, we can define

dstatistical = (x− y)TR−1(x− y). (2.30)

The statistical distance, or its square root, may also be referred to as the

Mahalanobis distance [25, 26]. Now that potential cost functions have been

discussed, we need to consider the types of assignment possible. The discussion

on assignment type ignores the possibilities of false alarms or missed detections

and also the topic of track maintenance [24, 27, 28].

2.3.1 Nearest Neighbor

The nearest neighbor (NN) assignment allows a new measurement to be

assigned to more than one track. It is generally used with either a distance

or statistical distance cost function, hence the name nearest neighbor. For

a set of tracks, ti, for i = 1 . . . N , each has a corresponding measurement

prediction ẑi(k + 1|x̂(k)). This measurement prediction is the measurement

estimate at the next measurement time, k + 1, based on the data and state

estimates though time k. There is also a set of measurements at time k + 1,
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zj(k + 1), for j = 1 . . . N . Since we are assuming there are no false alarms or

missed detections, there will be N measurements at each measurement time.

We can define an N ×N matrix A called the cost matrix. The elements of the

cost matrix, aij, are created by applying the cost function to the measurement

prediction corresponding to track ti, ẑi(k + 1|x̂(k)), and the measurement

zj(k + 1). For example, if there were 5 tracks and 5 measurements, then

the row [a31 a32 a33 a34 a35] expresses the value of the cost function using

the measurement prediction for track 3, ẑ3(k + 1|x̂(k)) and each of the 5

measurements. Since we are using distance or statistical distance as the cost

function, for each row in the cost matrix we want to minimize the distance

between the current track and the new measurements. In other words, we

want to pick the element in the row with the smallest value to determine

which measurement to assign to the current track. Since assignment is done

by comparing each track to all measurements individually, one measurement

may be assigned to more than one track. More detail on the probability density

functions behind NN assignment can be found in [29].

2.3.2 Global Nearest Neighbor

The global nearest neighbor (GNN) assignment allows each new measure-

ment to be assigned to only one existing track. As with the nearest neighbor

assignment, it is generally used with a cost function based on relative distance.

Again, for a set of tracks, ti for i = 1 . . . N , where each has a corresponding

measurement prediction, ẑi(k + 1|x̂(k)), and a set of measurements, zj(k + 1)

for j = 1 . . . N , we wish to find the N ×N cost matrix, A, where the elements

of A, aij, are the values of the cost function evaluated using the measurement

prediction ẑi(k + 1|x̂(k)) and measurement zj(k + 1). Since only one mea-
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surement can be assigned to each track, the cost matrix assignments need to

be minimized over the entire set of assignments, instead of just for each row.

This can be expressed by the equation [30]:

S =
n∑

i=1

aipi
(2.31)

where the elements of pi are unique. For example [30], if the cost matrix is

A =


7 5 11.2

5 4 1

9.3 3 2

 (2.32)

and only one measurement can be assigned to one track, then there are 6 possi-

ble permutations, pi: {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}.

The first set indicates that measurement 1, z1(k + 1), is assigned to measure-

ment prediction 1, ẑ1(k + 1|x̂(k)), measurement 2, z2(k + 1), is assigned to

measurement prediction 2, ẑ2(k + 1|x̂(k)), and measurement 3, z3(k + 1), is a

assigned to measurement prediction 3, ẑ3(k +1|x̂(k)). These six permutations

give, respectively, values of their sum, S: {13.0, 11.0 12.0 15.0 19.2 24.5}.

Therefore, the solution to mimimize the sum is permutation 2, (1, 3, 2), giving

a sum of 11.0. The GNN algorithm is generally considered superior to the NN

algorithm [4, 31].

2.3.3 Joint Probabilistic Data Association

The joint probabilistic data association (JPDA) algorithm allows each track

to be assigned to a weighted sum of the new measurements. It can also be

used with a cost function based on relative distance. For a set of tracks,

ti for i = 1 . . . N , where each has a corresponding measurement prediction,
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ẑi(k + 1|x̂(k)), and a set of measurements, zj(k + 1) for j = 1 . . . N , we can

define an N × N matrix A of all the possible aij assignments. We can then

define a matrix B with elements bij

bij =
aij∑N

j=1 aij

. (2.33)

The B matrix is a matrix of probabilities that express how likely each track is

to be assigned to each of the measurements. Using the weights in B, we can

assign to each track a measurement, znewi(k + 1), which is a weighted sum

of the measurements, zj(k + 1),

znewi(k + 1) =
N∑

j=1

bij · zj(k + 1) (2.34)

and the measurement znewi(k +1) is assigned to track ti. In other words, the

JPDA algorithm updates each track by combining all available measurements

weighted by their probability of association [15].
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Chapter 3

Model, Filter, and Association

Scheme Development

Now that we have outlined the technical background, we can focus on this

particular application. To begin this work, the scene used first needs to be

detailed. Although the problem of tracking an unknown number of targets with

wideband radar generally arises for three-dimensional space or air surveillance,

a two-dimensional frame was used herein. This is not a wholly unsubstantiated

simplification if consideration is given to the type of measurements used. When

using both range and Doppler measurements, a two-dimensional frame, relative

to one chosen object in the scene, is often used. While relative measurements

were not used in this work, the extension could be made.

Now that basic environment has been described, we need to describe the

targets used and the type of motion they will undergo. The targets used

are squares with each corner of the box representing a scatterer that gives a

measurement return. The observed scene will have two of these squares, and

therefore eight measurements for each measurement time. The sensor is placed

at the origin in Cartesian coordinates. It is assumed that no measurements
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Figure 3.1: The figure above illustrates both the body-centered frame and the
object in the Cartesian frame.

are missed for any time and there are no false alarms. The targets will have

both translational velocity and rotational velocity but no acceleration. While

space targets do have an acceleration term due to gravity, this motion compo-

nent can generally only be observed over long measurement times, and so the

simplification is not without justification.

3.1 State Space Model

The approach taken combines the ideas behind the coordinated turn and

the circular maneuver. The nonlinear rotational component is viewed as being

in a body-centered reference frame analogous to the maneuver-centered frame.

The states used are r, the body moment arm, ω, the turn rate in radians

per second, and φ, the initial angle of the scatterer on the body. Figure 3.1

illustrates this frame.

Then, similar to the coordinated turn model, the linear translational com-

ponent can be mapped into x and y components. However, if we break v(t)

into its x and y components prior to this mapping, we can remove the nonlinear
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portion of the equation.

ẋ(t) = vx (3.1)

ẏ(t) = vy. (3.2)

This then becomes a basic linear state space. So now we have a linear model

for the object as a whole and a nonlinear model for spinning motion of the

scatterers. Previous models have used two filters to separate this motion [32,

33], but we want to have one filter. If we add these two models together, we will

have modeled both the linear and nonlinear portions of the dynamics. Since we

are using a two-dimensional frame with targets represented as squares whose

corners are scatterers, we can define the target dynamics with the following

equations. If (x0, y0) is the target’s centroid location, (x1, y1) is the specific

scatterer location, and (vx, vy) is the target translational motion in the x and

y directions, respectively, then

x0(t) = x0(0) + vx(t)t (3.3)

y0(t) = y0(0) + vy(t)t (3.4)

x1(t) = x0(t) + r cos(ωt + φ) (3.5)

y1(t) = y0(t) + r sin(ωt + φ) (3.6)

where (x0(0), y0(0)) is the target’s initial centroid location. Then the contin-

uous time state is

x = [x0 y0 vx vy ω x1 y1 r φ]T (3.7)
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with

dx

dt
= [vx vy 0 0 0 (vx − r sin(ωt + φ)) (vy + r cos(ωt + φ)) 0 0]T . (3.8)

Since we can determine the dynamics exactly, but our measurements are

discrete, it is best to use a continuous-discrete nonlinear model. We now need

to consider the measurement portion on the state space model. Then, for R

equal to the range from the radar to the scatterer:

R(k + 1, x̂(t + T |t)) =
√

x2
1 + y2

1, (3.9)

and RR equal to the range-rate of each scatterer relative to the radar:

RR(k + 1, x̂(t + T |t)) = (x2
1 + y2

1)
−1/2(x1

dx1

dt
+ y1

dy1

dt
) (3.10)

dx1

dt
= vx − ωr sin(ωt + φ) (3.11)

dy1

dt
= vy + ωr cos(ωt + φ), (3.12)

the measurement function is:

h(k + 1, x̂(t + T |t)) = [R(k + 1, x̂(t + T |t)) RR(k + 1, x̂(t + T |t))]. (3.13)

Since we are trying to determine the x and y components from range and

range-rate without angle, we have an unobservable problem. We can see this

from the following figures. Figure 3.2 shows two circles. The first is at Range 1

and the second is at Range 2. As one can see, there are multiple combinations

of x and y which could give either Range 1 or Range 2. Without knowing

angle, there is no way of knowing how the range maps into the x and y compo-

nents. From this figure, one can also see that the difference between Range 1
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Figure 3.2: The figure above illustrates range and range-rate measurements in
a Cartesian coordinate system.

and Range 2 is δR. The range-rate is δR. If, as in this case, δR is positive,

then the range is increasing and the circle is expanding. If the range-rate

were negative, then the range would be decreasing, the circle contracting, and

Range 2 would be a smaller circle than Range 1. This could be seen quanti-

tatively by considering the Fisher Information Matrix. For more information

on this topic please see [3]. Now that the dynamics of the target and the

measurements in terms of those dynamics have been defined, we can consider

the filter model.

3.2 EKF Details

Since we are using a continuous-discrete state space model, it will be best to

model this same time component in our filter. In this case, the state prediction

equation becomes

dx̂

dt
= f [t, x̂(t)] (3.14)

and

f1 (t, x̂(t)) = vx (3.15)
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f2 (t, x̂(t)) = vy (3.16)

f6 (t, x̂(t)) = vx − ωr sin(ωt + φ) (3.17)

f7 (t, x̂(t)) = vy + ωr cos(ωt + φ) (3.18)

and

f3 (t, x̂(t)) = f4 (t, x̂(t)) = f5 (t, x̂(t)) = f8 (t, x̂(t)) = f9 (t, x̂(t)) = 0.

(3.19)

The continuous-discrete version of the EKF is derived and discussed in [1, 3,

22], and the final relevant filter equations will be paraphrased here. Given

that the above state prediction equation is an ordinary differential equation,

we can use a numerical method such as the Runge-Kutta Method to solve for

x̂(t + δt) when t = kT and δt = T for k equal to an integer and T equal to

the sample time.

To find the Jacobian Fk(t, x̂(t)), again with t = kT , we must take partial

derivatives of each function in f [t, x̂(t)] listed in Equations 3.12 and 3.13. This

gives

Ft (t, x̂(t)) =



0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 ∂f6

∂ω
0 0 ∂f6

∂r
∂f6

∂φ

0 0 0 1 ∂f7

∂ω
0 0 ∂f7

∂r
∂f7

∂φ

0 0 0 0 0 0 0 0 0



(3.20)
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where

∂f6

∂ω
= −r sin(ωt + φ)− tωr cos(ωt + φ) (3.21)

∂f6

∂r
= −ω sin(ωt + φ) (3.22)

∂f6

∂φ
= −ωr cos(ωt + φ) (3.23)

∂f7

∂ω
= r cos(ωt + φ)− tωr sin(ωt + φ) (3.24)

∂f7

∂r
= ω cos(ωt + φ) (3.25)

∂f7

∂φ
= −ωr sin(ωt + φ). (3.26)

We then propagate this linear approximation forward to t = (k + 1) · T , and,

in doing so, effectively discretize it, by finding the matrix exponential,

Fk(k, x̂(k)) = exp(Ft(t, x̂(t)) · T ). (3.27)

Now that we have linearized and discretized the state prediction covariance,

we should consider the linearization of the measurement function h(k+1, x̂(t+

T |t)). As stated previously, this is done by finding the Jacobian Hk+1(k +

1, x̂(t + T |t)), just as we found Ft(t, x̂(t)), where

h(k + 1, x̂(t + T |t)) = [R(k + 1, x̂(t + T |t)) RR(k + 1, x̂(t + T |t))] (3.28)

with

h1(k + 1, x̂(t + T |t)) = R(k + 1, x̂(t + T |t)) (3.29)

h2(k + 1, x̂(t + T |t)) = RR(k + 1, x̂(t + T |t)). (3.30)
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This gives:

H(k + 1, x̂(t + T |t)) =

 0 0 0 0 0 ∂h1

∂x1

∂h1

∂y1
0 0

0 0 ∂h2

∂vx

∂h2

vy

∂h2

∂ω
∂h2

∂x1

∂h2

∂y1

∂h2

∂r
∂h2

∂φ

 (3.31)

where

∂h1

∂x1

= x1(x
2
1 + y2

1)
−1/2 (3.32)

∂h1

∂y1

= y1(x
2
1 + y2

1)
−1/2 (3.33)

∂h2

∂vx

= x1(x
2
1 + y2

1)
−1/2 (3.34)

∂h2

∂vy

= y1(x
2
1 + y2

1)
−1/2 (3.35)

and

∂h2

∂ω
= (x2

1 + y2
1)

−1/2·

[−x1r sin(ωt + φ)− x1ωrt cos(ωt + φ) + y1r cos(ωt + φ)− y1ωrt sin(ωt + φ)]

(3.36)

∂h2

∂x1
= x1(x

2
1 + y2

1)
−3/2 · [−x1vx + x1ωr sin(ωt + φ)− y1vy−

y1ωr cos(ωt + φ) +
[
(x2

1 + y2
1)

−1/2(vx − ωr sin(ωt + φ))
] (3.37)

∂h2

∂y1
= y1(x

2
1 + y2

1)
−3/2 · [−x1vx + x1ωr sin(ωt + φ)− y1vy−

y1ωr cos(ωt + φ) +
[
(x2

1 + y2
1)

−1/2(vy + ωr cos(ωt + φ))
] (3.38)

∂h2

∂r
= (x2

1 + y2
1)

−1/2 · [−x1ω sin(ωt + φ) + y1ω cos(ωt + φ)] (3.39)

∂h2

∂φ
= (x2

1 + y2
1)

−1/2 · [−x1ω cos(ωt + φ)− y1ω sin(ωt + φ)] (3.40)
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3.2.1 Initialization

Now that the filter equations have been outlined, we need to consider its

initialization. The first thing to note is that we will collect filter data for a

specified length of time. We assume that this time length is of long enough

duration to capture one period of the object’s spinning motion. The details of

object determination and scatterer-to-scatterer assignment are covered in the

next section. The linear velocity calculation is similar to that outlined in [34].

The linear velocity is approximated by:

vx =
x0(t)− x0(t− T )

T
(3.41)

vy =
y0(t)− y0(t− T )

T
(3.42)

and the rotational velocity, ω, by:

F1 = fft(RR1) (3.43)

F2 = fft(RR2) (3.44)

F3 = fft(RR3) (3.45)

F4 = fft(RR4) (3.46)

and then ω1, ω2, ω3, and ω4 are equal to the frequencies producing the largest

peaks in F1, F2, F3, and F4 for RR1, RR2, RR3, and RR4 equal to the set of

range-rate values corresponding to scatterers 1,2,3, and 4, respectively. The

value used for ω will be the mean of ω1, ω2, ω3, and ω4.

This leaves x0, y0, x1, y1, r, and φ still to be calculated. Since we know the

range for each of the four scatterers for all collected times, and which object

they belong to, then we can determine the range of the center for all collected
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times, R as the mean of R1, R2, R3, R4.

R =
1

4

4∑
i=1

Ri (3.47)

By assuming that we know the radar line of sight angle, θ(t), just prior to

starting the filter, we can determine x0 and y0 along with x1 and y1. This

assumption is equivalent to starting the wideband tracker from a previously

known position obtained from a narrowband or search radar and will give us

a good estimate of the Cartesian position to start the filter on [35].

x0(t) = R(t) cos(θ(t)) (3.48)

y0(t) = R(t) sin(θ(t)) (3.49)

Since both the time between samples, T , and the relative difference between

the radar line of sight to the center and to each of the scatterers will be small,

we can also find

x0(t− T ) = R(t− T ) cos(θ(t)) (3.50)

y0(t− T ) = R(t− T ) sin(θ(t)) (3.51)

x1(t) = R1(t) cos(θ(t)) (3.52)

y1(t) = R1(t) sin(θ(t)), (3.53)

and the calculations for scatterers 2, 3, and 4 are similar. We can see this

easily from Figure 3.3. Since the angle to the center of the object is θ, given

the small size of the object, this same angle can also be used to map the ranges

for the four scatterers into its x and y components, x1 and y1. Then the two
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Figure 3.3: The figure above illustrates how x0, y0, x1, and y1 are initialized.

remaining state parameters, r and φ, can easily be determined as

r =
1

4

4∑
i=1

max |Ri −R| (3.54)

errori = (R1 −R)− r cos(ωt + φi) (3.55)

for φi = 0 to 2π in steps of 0.1

φ = min(errori). (3.56)

3.3 Association Method Employed

The association scheme was broken up into two parts. The first part deals

with association in the filter initialization step, scatterer-to-scatterer assign-

ment, and the second part handles the measurment-to-track association occur-

ring during a filter run. For our association algorithm, we assume that there

are no missed detections and no false alarms. The reader is directed to [27]
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for a discussion on how to handle false alarms and [28] for a discussion on

handling missed detections.

3.3.1 Initial Association

As stated, the initialization portion of the tracker collects data for a spec-

ified length of time before beginning the filter. We assume the collection time

observes at least one period of the object’s rotation. We also assume that the

objects are separated in range for the duration of this data collection. With

this set of measurements, the first task involves determining the objects in the

scene. This determination uses a binning or clustering algorithm with defined

thresholds to find objects. While a better algorithm might be found by basing

the object determination on the rigid body characteristics of the objects, this

algorithm would be complex and time intensive and unlikely to be substan-

tially better than a clustering algorithm with our assumptions. The steps of

the clustering algorithm, similar to methods for establishing groups in group

tracking [35], are as follows:

1. Define a range threshold value, TR, and a range-rate threshold value,

Trate.

2. Sort the N measurements zi by ascending range order so that z1 has the

smallest range value, z1(1), and zN the largest, zN(1).

3. Take z1 as belonging to Object 1, and test the next closest measurement

z2 to see if the range difference, δR12, is less than or equal to the range

threshold: δR12 ≤ TR. If yes, then assign this new measurement as

belonging to Object 1 also. If no, then start a new object, Object 2,

with z2.
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4. Now check to see if z3 also belongs to Object 1. For this we need to

find δR23. This illustrates the general comparison term we are using,

δRi,i+1 = zi+1(1)− zi(1), for threshold comparison.

5. Since the objects are arranged in range order, once δRi,i+1 exceeds the

threshold we can declare a new object without considering i + 2 . . . N .

6. Repeat Step 3 for the general case until all scatterers have been assigned

to an object.

7. Check that the differences in range-rate, δRRj,j+1, for all scatterers j =

1 . . . M − 1 on an object satisfy δRRj,j+1 ≤ Trate.

The final step of checking to make sure the grouped scatterers are within

the range-rate bound, Trate, should help to separate objects that are at the

same range, if their range-rates are sufficiently separated. However, in the

context of our problem, it is unlikely that this range-rate thresholding would be

able to aid in distinquishing between scatterers on different objects, and so we

included the assumption that the objects are separated in range. Furthermore,

since the clustering algorithm will be repeated at each time, it is essential that

the objects do not cross in range between measurement times or the algorithm

would need to be expanded to deal with this possibility.

Now at each time we have a set of objects and the scatterers assigned to

each object. We assume that the objects maintain range order for the data

collection time, so we have effectively associated objects to one another for the

entire initialization time. However, within each object we are unsure of which

measurements go with each scatterer. In other words, we now need to perform

a scatterer-to-scatterer assignment for each object.
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To do this scatterer-to-scatterer assignment, we will consider the distance

between each current scatterer’s measurement vector and the measurement

vector at the next time. This is not a strict distance function since the mea-

surement vector is in [units units/sec]. Now that we have the cost function

defined, we need to consider the assignment methods that could be used. Since

we know based on our assumptions that each scatterer will produce a measure-

ment at the next time, the GNN method will be the best to use, and the NN

and JPDA algorithms would not be as useful. Since we are using a distance

measure, and we want to assign the current scatterers to closest scatterers in

range and range-rate space at the next time, we wish to minimize our total

cost. The Munkres algorithm is an optimal assignment algorithm for cost ma-

trix minimization and can aid with this problem [2, 30]. Instead of having to

try every permutation of pi, as in Section 2.3.2, that will minimize the total

cost, the Munkres algorithm provides a calculation method [2, 30].

3.3.2 Measurement-to-Track Association

The measurement-to-track assignment is the last portion of the assignment

scheme that needs to be discussed. Since we know the noise variance in the

measurements we can use the statistical or Mahalanobis distance as the cost

function to construct the cost matrix. This equation was given in Section 2.3

as Equation 2.23. Again, we can use the GNN type of assignment using the

Munkres algorithm to implement it.
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Chapter 4

Experiments

We choose to perform several experiments in order to look at the two

aspects of our tracker: the filter and the association technique. The filter

experiments consist of two filter runs with one object and two different noise

levels. This will show how robust the filter is to noise. We will use the

initialization method outlined in Section 3.2.1 and perfect scatterer-to-track

association while the filter is running.

4.1 Filter Experiments

To determine how the filter performs we will look at the filter runs for one

object with two different levels of noise on the measurements. We assume the

noise is Gaussian distributed with zero mean in both the range and range-

rate components. For both noise cases, 5 sec worth of data was collected for

initialization.
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4.1.1 Low Noise Case

The measurement noise, in both range and range-rate, was assumed to be

Gaussian distributed with zero mean. For the low noise case, σR = 0.005 units

and σRR = 0.0025 units/sec. If the object was exo-atmospheric and approxi-

mately 100km away from the sensor, this percent error would map to σR ≈ 12m

and σRR ≈ 6m/s. The object parameters were

x0(0) = 30 units (4.1)

y0(0) = 30 units (4.2)

vx = −1 unit/sec (4.3)

vy = −1 unit/sec (4.4)

ω = π rad/sec (4.5)

r = 2 units. (4.6)

With this object defined, we can see the reason why the FFT of the range-

rate was used to find an estimate of ω in the initialization of the filter. The FFT

of the range for Scatterer 1, the Scatterer located at φ = 45 degrees, is shown

in Figure 4.1. The FFT of the range-rate for Scatterer 1 is shown in Figure 4.2.

As one can see, the FFT of the range-rate shows the rotational component more

clearly than the FFT of the range. We could have also used the difference in

range between Scatterer 1 and the center of the object. The initial covariance

matrix, Pinit, the process noise matrix, Q, and the measurement noise matrix,

R, assumed uncorrelated errors and so their diagonal values were

diag(Pinit) = [5 5 10 10 π 10 10 3 π/4] (4.7)

diag(Q) = [1 1 0.01 0.01 0.001 1 1 0.05 0.1] (4.8)
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Figure 4.1: Magnitude of the FFT of Scatterer 1’s range measurements.

diag(R) = 1 · 10−4[0.25 0.0625]. (4.9)

The sample time, T , was 0.05 sec corresponding to a sampling rate of

20 Hz. Figure 4.3 shows the range of the object over time, and Figure 4.4 below

shows the range and range-rate measurements for all four scatterers. As all four

scatterers have generally identical results, we will concentrate on the results

for Scatterer 1, which is the scatterer at φ = π/4. To get a brief understanding

of how the filter performs, we can compare the true scatterer movement in the

xy-coordinate frame to the filter’s estimate of this motion. This is shown in

Figure 4.5. One can see qualitatively that the filter is performing rather well.

Now we can look at how well the filter estimates each state. The results are

shown in Figures 4.6 - 4.14.

34



Figure 4.2: Magnitude of the FFT of Scatterer 1’s range-rate measurements.

Figure 4.3: Range vs. time for Object 1, low noise case.
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Figure 4.4: Range and range-rate measurements for all times for Object 1 for
the low noise case.

Figure 4.5: This figure shows how the filter’s motion estimate for Scatterer 1
compares with truth for Scatterer 1 for the low noise case.
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Figure 4.6: This figure shows the filter’s estimate of x0, truth, and ± one
standard deviation for the low noise case.

Figure 4.7: This figure shows the filter’s estimate of y0, truth, and ± one
standard deviation for the low noise case.

37



Figure 4.8: This figure shows the filter’s estimate of vx, truth, and ± one
standard deviation for the low noise case.

Figure 4.9: This figure shows the filter’s estimate of vy, truth, and ± one
standard deviation for the low noise case.
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Figure 4.10: This figure shows the filter’s estimate of ω, truth, and ± one
standard deviation for the low noise case.

Figure 4.11: This figure shows the filter’s estimate of x1, truth, and ± one
standard deviation for the low noise case.
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Figure 4.12: This figure shows the filter’s estimate of y1, truth, and ± one
standard deviation for the low noise case.

Figure 4.13: This figure shows the filter’s estimate of r, truth, and ± one
standard deviation for the low noise case.
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Figure 4.14: This figure shows the filter’s estimate of φ, truth, and ± one
standard deviation for the low noise case.

4.1.2 High Noise Case

Now for the high noise case. Again we will use Object 1 as described in

Equations 4.1-4.6 with a sample rate of 20 Hz. In this high noise case, the

measurement noise was again Gaussian with zero mean, and the standard de-

viations of these distributions, in range and range-rate, are σR = 0.1 units and

σRR = 0.05 units/sec. If the object was exo-atmospheric and approximately

100km away from the sensor, this percent error would map to σR ≈ 240 m and

σRR ≈ 120 m/s. The initial covariance, Pinit, and the process noise matrix,

Q, are the same as in Equation 4.2. The new measurement covariance matrix,

R, is diag(R) = [0.0225 0.0056]. The measurements for all four scatterers are

shown in Figure 4.16, but as with the low noise case, we will concentrate on

only Scatterer 1. The range over time for all four scatterers is shown in Figure

4.15. As one can see in comparing Figures 4.3 and 4.17, the filter’s ability

to correctly estimate the scatterer motion degrades with increasing noise as

would be expected. Figures 4.18-26 show the filter results for each one of the

states.
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Figure 4.15: Range measurements vs. time for all four scatterers for the high
noise case.

Figure 4.16: Range and range-rate measurements for all four scatterers for the
high noise case.
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Figure 4.17: Filter estimate compared to truth for Scatterer 1’s motion for the
high noise case.

Figure 4.18: This figure shows the filter’s estimate of x0, truth, and ± one
standard deviation for the high noise case.
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Figure 4.19: This figure shows the filter’s estimate of y0, truth, and ± one
standard deviation for the high noise case.

Figure 4.20: This figure shows the filter’s estimate of vx, truth, and ± one
standard deviation for the high noise case.
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Figure 4.21: This figure shows the filter’s estimate of vy, truth, and ± one
standard deviation for the high noise case.

Figure 4.22: This figure shows the filter’s estimate of ω, truth, and ± one
standard deviation for the high noise case.
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Figure 4.23: This figure shows the filter’s estimate of x1, truth, and ± one
standard deviation for the high noise case.

Figure 4.24: This figure shows the filter’s estimate of y1, truth, and ± one
standard deviation for the high noise case.
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Figure 4.25: This figure shows the filter’s estimate of r, truth, and ± one
standard deviation for the high noise case.

Figure 4.26: This figure shows the filter’s estimate of φ, truth, and ± one
standard deviation for the high noise case.
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We can see from the standard deviations of the covariance results that x0

and y0 are unobservable since the covariance is not converging as measurements

are added. While the covariances of x1 and y1 appear to be converging, this is

likely due to the fact that the objects, and therefore the targets (the scatterers),

are moving towards the sensor. These two states are also unobservable. From

the shape of the covariance of φ, it appears that this state is also unobservable.

4.2 Association Technique Experiments

4.2.1 Binning Algorithm

The results of this clustering algorithm are shown in Figure 4.28. The test

case used had two objects in the scene with Object 1 defined in Equations

4.1-4.6 in Section 4.1.1 and Object 2 defined as

x0(0) = 75 units (4.10)

y0(0) = 50 units (4.11)

vx = −2 units/sec (4.12)

vy = −1 units/sec (4.13)

ω = 2π rad/sec (4.14)

r =
√

2 units. (4.15)

The high noise case from Section 4.1.2 was used to noise up the measure-

ments. The scene to use for initialization is shown in Figure 4.27. A sample

rate of 20 Hz was again used, and 5 sec worth of data was collected for ini-

tialization.

48



Figure 4.27: This figure shows the scene used to illustrate the binning algo-
rithm.

Figure 4.28: This figure shows the binning results for the initialization portion
of the association algorithm for the high noise case.
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4.2.2 Scatterer-to-Scatterer Assignment

The next portion of the assignment algorithm to be considered is the

scatterer-to-scatterer assignment. For Object 1 as defined in Equations 4.1-

4.6, Table 4.1 shows the percent of correct results for this assignment. The

high percentages along the diagonal show that the distance cost function with

the GNN assignment via the Munkres algorithm is working well.

4.2.3 Measurement-to-Track Assignment

As with the scatterer-to-scatterer association, to evaluate the measurement-

to-track algorithm, we need to look at the percentage of assignments between

scatterers. Table 4.2 shows these results for the high noise case for Object 1

defined as in Equations 4.1-4.6 and Object 2 defined as in Equations 4.10-4.15.

These results have been organized so that correct assignments are made along

the diagonal. As we can see from the high percentages along the diagonal, the

use of statistical distance as the cost function with the GNN assignment via

the Munkres algorithm is working well.

4.3 Tracker Experiments

Now that we have seen how the filter and the association method work

separately, we need to see how well they work together. Based on the fact that

both seem to be working well separately, it is likely that using them together,

as a tracker, we will get good results. As with the filter performance results,

we will only look at the results for Scatterer 1 on Object 1 and Scatterer 1 on

Object 2.
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Label M1 M2 M3 M4 M5 M6 M7 M8
S1 100 0 0 0 0 0 0 0
S2 0 100 0 0 0 0 0 0
S3 0 0 100 0 0 0 0 0
S4 0 0 0 100 0 0 0 0
S5 0 0 0 0 100 0 0 0
S6 0 0 0 0 0 100 0 0
S7 0 0 0 0 0 0 100 0
S8 0 0 0 0 0 0 0 100

Table 4.1: Table of Scatterer-to-Scatterer Assignment Percentages for High
Noise Case

Label M1 M2 M3 M4 M5 M6 M7 M8
T1 99.8 0 0 0.1996 0 0 0 0
T2 0.1996 99.8 0 0 0 0 0 0
T3 0 0.1996 99.6 0.1996 0 0 0 0
T4 0 0 0.3992 99.6 0 0 0 0
T5 0 0 0 0 99.6 0 0.1996 0.1996
T6 0 0 0 0 0.3992 99.6 0 0
T7 0 0 0 0 0 0.3992 99.4 0.1996
T8 0 0 0 0 0 0 0.3992 99.6

Table 4.2: Table of Measurement-to-Track Assignment Percentages for High
Noise Case

51



Figure 4.29: Range measurements vs. time for all four scatterers for both
objects.

4.3.1 Low Noise Case

We first consider the low noise case. Object 1 and Object 2 are the same

as defined in Equations 4.1-4.6 and 4.10-4.15, and the low noise case is the

same as in Section 4.1.1. The range over time and the measurements for all

times are shown in Figures 4.29 and 4.30, respectively. Again, to get a quick

feel for how the filter is performing, we can look at the true scene and the

tracker’s estimate of the scene together. We can see from the quick view that

the tracker is performing well for Object 1. It seems to capture the dynamics

of Object 2 well, but there is an offset from the actual location. To get a

more complete picture, we can look at the tracker performance for each state

individually. We will consider each state for both Objects in turn.

For Object 1, the tracker starts off well for the center location in the x-

coordinate, x0. The estimate then departs from truth by a slight bias, and

this bias is held close to constant for most of the remaining tracking time.

As expected, since x0 is an unobservable state from range and range-rate
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Figure 4.30: Range and range-rate measurements for all four scatterers for
both objects for the low noise case.

measurements, the covariance is diverging for most of the run. As the estimate

improves slightly, the covariance contracts slightly, but then begins to diverge

again. For Object 2, the tracker has an almost immediate bias in its estimate of

x0 and the covariance is either diverging or remaining constant at a large value

for this tracker run. The results for y0 for Objects 1 and 2 are fairly similar. In

both cases, the diverging covariance improves slightly as the estimates improve,

although the estimate for Object 2 starts off poor and improves, and the

estimate for Object 1 starts out close to truth, starts to move away, and then

is able to regain an estimate at almost truth. The next results are those for the

linear velocity components: vx and vy. The tracker estimate for vx for Object

1 has trouble initially, but quickly begins to approach the true value. The

covariance begins to converge as the estimate improves. The tracker estimate

for vx for Object 2 also has trouble initially but quickly converges to truth.

The covariance has more trouble converging but begins to as the estimate gets

close to truth. The covariance for vy for both Objects 1 and 2 looks similar: as
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the measurement time increases, the covariance converges. This convergence

coincides with an improved estimate in vy for both objects. The results for

ω are also very similar for both objects. Initially the estimate is off, but as

the number of measurements increases, the estimate converges to truth. The

covariances are initially large but converge quickly. The estimates for x1 are

very different for the two objects. For Object 1, the estimate of x1 initially

follows truth well, moves away slightly, and then begins to follow truth again.

The covariance is initially small and then diverges. The covariance begins to

decrease as the object approaches the sensor at the origin. In fact, at the end

of the measurement times, when the covariances decrease to almost zero, this

is because the center of the object is almost exactly at the origin. One can

see this by checking the final locations of x0 and y0 for Object 1. The results

for y1 for Object 1 are similar. For Object 2, the estimate of x1 is off by an

almost constant bias amount and the covariance diverges. The results for y1

for Object 2 are similar. The estimate of r is very similar for both Objects 1

and 2, although the covariances are different. The covariance of r for Object 1

is fairly settled until the object reaches the origin, the location of the sensor.

Then the covariance begins to diverge. For Object 2, the covariance settles

quickly and maintains this performance. The final state to consider is φ. The

tracker results are very similar for both objects. The tracker estimate quickly

converges to a value at a small off-set from truth and the covariance diverges.

4.3.2 High Noise Case

Since things look promising for the low noise case, we need to see how

things look for the high noise case. Object 1 and Object 2 are the same as

defined in Equations 4.1-4.6 and 4.3, and the high noise case is the same as
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Figure 4.31: Tracker estimate compared to truth for Scatterer 1’s motion for
both objects.

Figure 4.32: This figure shows the tracker’s estimate for Object 1 of x0, truth,
and ± one standard deviation for the low noise case.
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Figure 4.33: This figure shows the tracker’s estimate for Object 2 of x0, truth,
and ± one standard deviation for the low noise case.

Figure 4.34: This figure shows the tracker’s estimate for Object 1 of y0, truth,
and ± one standard deviation for the low noise case.
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Figure 4.35: This figure shows the tracker’s estimate for Object 2 of y0, truth,
and ± one standard deviation for the low noise case.

Figure 4.36: This figure shows the tracker’s estimate for Object 1 of vx, truth,
and ± one standard deviation for the low noise case.
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Figure 4.37: This figure shows the tracker’s estimate for Object 2 of vx, truth,
and ± one standard deviation for the low noise case.

Figure 4.38: This figure shows the tracker’s estimate for Object 1 of vy, truth,
and ± one standard deviation for the low noise case.
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Figure 4.39: This figure shows the tracker’s estimate for Object 2 of vy, truth,
and ± one standard deviation for the low noise case.

Figure 4.40: This figure shows the tracker’s estimate for Object 1 of ω, truth,
and ± one standard deviation for the low noise case.
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Figure 4.41: This figure shows the tracker’s estimate for Object 2 of ω, truth,
and ± one standard deviation for the low noise case.

Figure 4.42: This figure shows the tracker’s estimate for Object 1 of x1, truth,
and ± one standard deviation for the low noise case.
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Figure 4.43: This figure shows the tracker’s estimate for Object 2 of x1, truth,
and ± one standard deviation for the low noise case.

Figure 4.44: This figure shows the tracker’s estimate for Object 1 of y1, truth,
and ± one standard deviation for the low noise case.
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Figure 4.45: This figure shows the tracker’s estimate for Object 2 of y1, truth,
and ± one standard deviation for the low noise case.

Figure 4.46: This figure shows the tracker’s estimate for Object 1 of r, truth,
and ± one standard deviation for the high noise case.
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Figure 4.47: This figure shows the tracker’s estimate for Object 2 of r, truth,
and ± one standard deviation for the low noise case.

Figure 4.48: This figure shows the tracker’s estimate for Object 1 of φ, truth,
and ± one standard deviation for the low noise case.
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Figure 4.49: This figure shows the tracker’s estimate for Object 2 of φ, truth,
and ± one standard deviation for the low noise case.

in Section 4.1.2. The range over time and the measurements for all times are

shown in Figures 4.50 and 4.51, respectively. Again, to get a quick feel for

how the filter is performing, we can look at the true scene and the tracker’s

estimate of the scene together. We can see that the tracker starts out well for

both objects. Then the performance begins to degrade for both objects. As

more measurements are added, the tracker is able to recover and begins to get

more accurate estimates. We can see this most obviously for Object 2. Now

we can look at the actual states to get a feel for what is happening.

For Object 1, the estimate of x0 starts out well, diverges slightly, and then

begins to converge to truth and the covariance diverges. For Object 2, the

estimate of x0 starts out at an off-set, gets closer to truth, and then begins

to diverge slightly. The covariance for x0 for Object 2 diverges. The estimate

for y0 for Object 1 starts off well, diverges a bit, and then converges back to

truth. The covariance diverges. For Object 2, the estimate of y0 starts off

poor but then converges to truth while the covariance diverges. The estimate
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Figure 4.50: Range measurements vs. time for all four scatterers for both
Objects 1 and 2.

Figure 4.51: Range and range-rate measurements for all four scatterers for
both objects for the high noise case.
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of vx converges quickly to truth and the covariance also converges for Object

1. For Object 2, the estimate of vx converges to truth and the covariance also

converges. The results for vy for Objects 1 and 2 are similar: the estimates and

the covariance converge. The estimate of ω for Object 1 converges as does the

covariance. For Object 2, the estimate and covariance of ω also converge. The

next state to consider is x1 for Objects 1 and 2. For Object 1, the estimate

starts out well, but begins to diverge away from truth. As the number of mea-

surements increases, the estimate seems to slightly improve. The covariance

initially diverges but begins to converge as the object approaches the sensor.

Once the object is almost on top of the sensor, the covariance converges to

almost zero. The results for y1 for Object 1 are similar. For Object 2, the

estimate initially starts off at an off-set but begins to converge to truth. When

this happens, the covariance, which was initially diverging, begins to converge.

As the estimate then begins to diverge again, the covariance again begins to

diverge. The results for y1 for Object 2 are similar. For Object 1, the tracker

estimate of r converges to truth. The covariance initially converges, but as

the object gets closer to the sensor, the covariance for this state diverges. For

Object 2, the tracker estimate of r converges and the covariance also settles.

The results for φ are similar for Objects 1 and 2. In both cases, the tracker

estimate for φ converges to a value at an off-set from truth. This off-set is

larger than the off-set in the low noise case. And in both cases, the covariance

diverges.

66



Figure 4.52: Tracker estimate compared to truth for Scatterer 1’s motion for
Objects 1 and 2.

Figure 4.53: This figure shows the tracker’s estimate for Object 1 of x0, truth,
and ± one standard deviation for the high noise case.
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Figure 4.54: This figure shows the tracker’s estimate for Object 2 of x0, truth,
and ± one standard deviation for the high noise case.

Figure 4.55: This figure shows the tracker’s estimate for Object 1 of y0, truth,
and ± one standard deviation for the high noise case.
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Figure 4.56: This figure shows the tracker’s estimate for Object 2 of y0, truth,
and ± one standard deviation for the high noise case.

Figure 4.57: This figure shows the tracker’s estimate for Object 1 of vx, truth,
and ± one standard deviation for the high noise case.
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Figure 4.58: This figure shows the tracker’s estimate for Object 2 of vx, truth,
and ± one standard deviation for the high noise case.

Figure 4.59: This figure shows the tracker’s estimate for Object 1 of vy, truth,
and ± one standard deviation for the high noise case.
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Figure 4.60: This figure shows the tracker’s estimate for Object 2 of vy, truth,
and ± one standard deviation for the high noise case.

Figure 4.61: This figure shows the tracker’s estimate for Object 1 of ω, truth,
and ± one standard deviation for the high noise case.
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Figure 4.62: This figure shows the tracker’s estimate for Object 2 of ω, truth,
and ± one standard deviation for the high noise case.

Figure 4.63: This figure shows the tracker’s estimate for Object 1 of x1, truth,
and ± one standard deviation for the high noise case.
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Figure 4.64: This figure shows the tracker’s estimate for Object 2 of x1, truth,
and ± one standard deviation for the high noise case.

Figure 4.65: This figure shows the tracker’s estimate for Object 1 of y1, truth,
and ± one standard deviation for the high noise case.
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Figure 4.66: This figure shows the tracker’s estimate for Object 2 of y1, truth,
and ± one standard deviation for the high noise case.

Figure 4.67: This figure shows the tracker’s estimate for Object 1 of r, truth,
and ± one standard deviation for the high noise case.
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Figure 4.68: This figure shows the tracker’s estimate for Object 2 of r, truth,
and ± one standard deviation for the high noise case.

Figure 4.69: This figure shows the tracker’s estimate for Object 1 of φ, truth,
and ± one standard deviation for the high noise case.
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Figure 4.70: This figure shows the tracker’s estimate for Object 2 of φ, truth,
and ± one standard deviation for the high noise case.
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Chapter 5

Conclusions and Future Work

This work set out to build a multiple target tracker when the measurements

are range and range-rate. The sensor, although modeled to be generic, is

providing wideband returns of the objects. This means there will be multiple

returns corresponding to one object. These returns are coming from scatterers

located at various places on the object. The objects’ motion includes both

a linear and nonlinear component. Since the measurements are range and

range-rate, the relationship between the measurements and the filter state is

nonlinear. To handle the nonlinearity in both the objects’ motion and in the

measurements, we used an EKF. To deal with the association problem, we

used two distance-based cost functions with the GNN method of assignment

and the Munkres algorithm. Since we want Cartesian states from range and

range-rate measurements, we have an unobservable problem so the covariance

values will overestimate the error in the tracker states. The tracker will be

able to track the objects as long as the initial state is close to truth.

The experiments section in Chapter 4 showed how the filter, association

method, and tracker all perform. The filter runs were considered for one partic-

ular object scene at two different noise cases. The filter used the initialization
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portion of the association algorithm, the binning algorithm and scatterer-to-

scatterer assignment, but assumed perfect association for the measurement-to-

track assignment. The filter experiments were performed for two noise cases: a

low noise case and a high noise case. The results for the low noise case are very

close to truth. The accuracy in the estimate decreases as the noise increases

to the high noise case. The three parts of the association algorithm were con-

sidered for the high noise case since this would be the more challenging of the

two cases. The binning algorithm results, scatterer-to-scatterer assignment,

and measurement-to-track assignment all show excellent performance for the

high noise case.

When we put the filter and association scheme together to create the

tracker, we again considered both the high and low test cases. Based on the

filter’s performance for both the high and low noise cases, and the association

algorithm’s performance for the high noise case, we expect the tracker results

for the low noise case to perform well and the results from the high noise case

to be adequate. This was indeed the result obtained. The tracker performed

well for the low noise case, but performance decreased in accuracy for the high

noise case. Comparing the filter and association results for the high noise case,

it appears that the filter is the limiting component of the tracker.

5.1 Future Work

While the tracker performance looks good so far, there are many more

tests that need to be done. These tests could look at other noise levels and

test cases. First of all, only two runs were performed. To truly understand

the capabilites and limitation of the filter, Monte Carlo runs would need to

be performed. These runs could consider several different parameters of the
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object dynamics and/or number or type of objects considered and also the

noise level. It would be interesting to find the noise level which renders the

tracker results useless.

We could also consider future work in the state space model. In this work,

we assumed that the object was spinning in the plane of the reference frame.

However, this assumption is likely to not always hold. An interesting extension

would be to consider this case and include another angle to account for the

projection on the plane of the reference frame. This extension would lead

to the introduction of more nonlinearities. Since our filter was built in 2D,

another interesting extension would be to look at a model for the filter in 3D.

This model could included both a spinning and precessing component.

In this work, we only considered the results from one sensor. It would be

interesting to see how, or if, things improve if multiple sensors were used. This

could lead to an improved estimate of the objects’ dynamics and location. If

the number of radars used was increased to three, the angle from the objects

to each sensor would be able to be determined, to some degree of accurracy,

and the unobervability of the problem would disappear.

Another place for future work would be to investigate any possible im-

provements from using a different filter or association technique. We could

consider either the UKF or the particle filter. Both filters will increase the

computational complexity, but it would be interesting to see if this leads to

an increase in tracker accurracy. A new association technique could look at

using the estimate of the centroid position as the criteria for assignment to an

object and then JPDA algorithm could be used to update each scatterer. This

is likely to improve the estimate of the centroid position and object velocity,

but decrease the ability to tell the exact object location of the scatterer. A

challenge to the current association algorithm would be to include false alarms
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and missed detections. Since it is unlikely to get perfect detection all the time,

this extension would be quite useful.

A final situation that could be considered for future work is when objects

cross in range. To handle this problem, we could expand the MTT to be an

MHT or build an algorithm to determine these crossings and coast through

this situation.

80



Bibliography

[1] Bar-Shalom, Y., Li, X. R., and Kirubarajan, T.

Estimation with Applications to Tracking and Navigation. New York:

John Wiley and Sons, Inc, 2001.

[2] Blackman, S. Multiple-Target Tracking with Radar Applications. USA:

Artech House, 1986.

[3] Jazwinski, A. Stochastic Processes and Filtering Theory.

New York: Academic Press, 1970. Vol. 64 of

Mathematics in Science and Engineering. Ed. Richard Bellman.

[4] Blackman, S. and Popoli, R. Design and Analysis of Modern Tracking Systems.

Boston: Artech House, 1999.

[5] Ristic, B., Arulampalam, S., and Gordon, N.

Beyond the Kalman Filter: Particle Filters for Tracking Applications.

Boston: Artech House, 2004.

[6] Bugallo, M., Xu, S., and Djuric, P. ”‘Performance Comparison

of EKF and particle filtering methods for maneuvering targets.”’

Digital Signal Processing. 17, (2007):774-786.

[7] Erwin, R., Santillo, M., and Bernstein, D. ”‘Space-

craft Trajectory Estimation Using a Sampled-Data Ex-

81



tended Kalman Filter with Range-Only Measurements”’.

Proceedings of the 45th IEEE Conference on Decision and Control.

(Dec. 2006):3144-3149.

[8] Gustafsson, G. and Isaksson, A. ”‘Best Choice of Co-

ordinate System for Tracking Coordinated Turns”’.

Proceedings of the 35th Conference on Decision and Control. (Dec.

1996):3145-3150.

[9] Yang, C., Bakich, M., and Blasch, E. ”‘Nonlinear Constrained Tracking of

Targets on Roads”’. 7th International Conference on Information Fusion.

(2005):235-242.

[10] Cui, N., Hong, L., and Layne, J. ”‘A comparison of nonlinear fil-

tering approaches with an application to ground target tracking”’.

Signal Processing. 85, (2005):1469-1492.

[11] Zhao, Z., Chen, H., Chen, G., Kwan, C., and Li,X.

”‘Comparison of Several Ballistic Target Tracking Filters”’.

Proceedings of the 2006 American Control Conference. (June 2006):

2197-2202.

[12] Farina, A., Ristic, B., and Benvevuti, D. ”‘Tracking a Bal-

listic Target: Comparison of Several Nonlinear Filters”’.

IEEE Transactions on Aerospace and Electronic Systems. 38, (July

2002): 854-867.

[13] Ristic, B. and Arulampalam, M.S. ”‘Tracking a manoeuvring tar-

get using angle-only measurements: algorithms and performance”’.

Signal Processing. 83, (2003):1223-1238.

82



[14] Mallick, M. and Arulampalam, S. ”‘Comparison of Nonlinear Filter-

ing Algorithms in Ground Moving Target Indicator (GMTI) Track-

ing”’. Signal and Data Processing of Small Targets. (2003). Ed. Oliver E.

Drummond. Proceedings of SPIE. 5204, (2003): 630-647.

[15] Bar-Shalom, Y., Kirubarajan, T., and Lin, X. ”‘Probabilistic Data Asso-

ciation Techniques for Target Tracking with Applications to Sonar, Radar,

and EO Sensors”’. IEEE Aerospace and Electronic Systems Magazine.

28, (August 2005): 37-56.

[16] Bar-Shalom, Y. ”‘Negative Correlation and Op-

timal Tracking with Doppler Measurements”’.

IEEE Transactions on Aerospace and Electronic Systems. 37, (July

2001): 1117-1120.

[17] Pulford, G. and Evans, R. ”‘A Multipath Data

Association Tracker for Over-the-Horizon Radar”’.

IEEE Transactions on Aerospace and Electronic Systems. 34, (Oct.

1998): 1165-1183.

[18] Hilands, T. and Thomopoulos, S. ”‘Detection and

Range/Doppler Estimation for Colocated Sensors”’.

IEEE Transactions on Aerospace and Electronic Systems. 33, (July

1997): 825-834.

[19] Petsios, M., Alivizatos, E., and Uzunoglu, N. ”‘Manoeuvering target

tracking using multiple bistatic range and range-rate measurements”’.

Signal Processing. 87, (2007):665-686.

[20] Li, X. and Jilkov, V. ”‘Survey of Maneuver-

ing Target Tracking. Part I: Dynamic Models”’.

83



IEEE Transactions on Aerospace and Electronic Systems. 39, (Oct.

2003):1333-1364.

[21] Roecker, J. and McGillem, C. ”‘Target

Tracking in Maneuver-Centered Coordinates”’.

IEEE Transactions on Aerospace and Electronic Systems. 25, (Nov.

1989): 836-843.

[22] Li, X. and Jilkov, V. ”‘A Survey of Maneuvering Target

Tracking: Approximation Techniques for Nonlinear Filtering”’.

Proceedings of 2004 SPIE Conference on Signal and Data Processing of Small Targets.

(April 2004): 537-550.

[23] Li, X. and Jilkov, V. ”‘A Survey of Maneuver-

ing Target Tracking - Part III: Measurement Models”’.

Proceedings of SPIE Conference on Signal and Data Processing of Small Targets.

(July - Aug. 2001): 1-24.

[24] Blackman, S. ”‘Multiple Hypothesis Tracking For Multiple Target Track-

ing”’. IEEE Aerospace and Electronic Systems Magazine, Part 2: Tutorials.

19, (Jan. 2004): 5-18.

[25] Raju, G.V.S. and Wang, H. ”‘Sensor Data Fusion Using Mahalanobis Dis-

tance and Single Linkage Algorithm”’. IEEE International Conference.

(Oct. 1994): 2605-2610.

[26] Chen, J., Leung, H., Lo, T., Litva, J., and Blanchette, M. ”‘A Mod-

ified Probabilisitic Data Association Filter in a Real Clutter Envi-

ronment”’. IEEE Transactions on Aerospace and Electronic Systems. 32,

(Jan. 1996): 300-313.

84



[27] Nahi, N. ”‘Optimal Recursive Estimation With Uncertain Observation”’.

IEEE Transactions on Information Theory. 15, (July 1969): 457-462.

[28] Farina, A., Ristic, B., and Timmoneri, L. ”‘Cramer-Rao Bound for Non-

linear Filtering With Pd < 1 and Its Application to Target Tracking”’.

IEEE Transactions on Signal Processing. 50, (Aug. 2002): 1916-1924.

[29] Li, X. ”‘The PDF of Nearest Neighbor Measurement and a

Probabilistic Nearest Neighbor Filter for Tracking in Clutter”’.

Proceedings of the 32nd Conference on Decision and Control. (Dec.

1993): 918-923.

[30] Bourgeois, F. and Lassalle, J. ”‘An Extension of the Munkres

Algorithm for the Assignment Problem to Rectangular Matrices.”’

Communications of the ACM. 14, (Dec. 1971): 802-804.

[31] Leung, H., Hu, Z., and Blanchette, M. ”‘Evaluation of Mul-

tiple Radar Target Trackers in Stressful Environments”’.

IEEE Transactions on Aerospace and Electronic Systems”. 35, (April

1999):663-674.

[32] Alouani, A.T., Xia, P., Rice, T.R., and Blair, W.D. ”‘Two-

Stage Kalman Estimate For Tracking Maneuvering Targets”’.

IEEE International Conference on Systems, Man, and Cybernetics.

2, (Oct. 1991):761-766.

[33] Algrain, M., and Saniie, J. ”‘Interlaced Kalman Filtering of 3-

D Angular Motion Based on Euler’s Nonlinear Equations”’.

IEEE Transactions on Aerospace and Electronic Systems. 30, (Jan.

1994):175-185.

85



[34] Yang, C., Qu, J., Mao, S., and Li, S.

”‘A Initialization Method for Group Tracking”’.

Proceedings of the IEEE National Aerospace and Electronics Conference.

1, (May 1995):303-308.

[35] Shyu, H., Lin, Y., Yang, J., and Jinchi, H. ”‘The Group

Tracking of Targets on Sea Surface by 2-D Search Radar”’.

IEEE International Radar Conference. (1995):329-333.

86


