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Note on terminologies and symbols

In this proposal, following terms are used interchangeably or have similar meaning.

GPR data GPR signals, (GPR) traces, GPR gathers

Target Object, landmine

Trace Data vector, time-series

Listed below are the commonly used symbols appeared in this proposal, together with their various meanings

and units if available.
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Meaning

Fourier transform

inverse Fourier transform

Frequency

7))
1

Subscript denotes variables in “image space”

Imaginary unit

Wavenumber in the z-direction

Wavenumber in the y-direction

Wavenumber in the z-direction

Subscript “o” denotes variables in “object space”

Upper case bold symbols, vector or matrix in the Fourier domain
Lower case bold symbols, vector or matrix in the space or time domain
Regularization operator

Time

Velocity

Rectangular coordinates

Attenuation constant

Wavelength

Regularization parameter
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Units

cycle/sec

1/m
1/m

1/m

sec

m/sec

neper/m
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S

Meaning

Dielectric constant

Permittivity of free space

Relative permittivity

Magnetic permeability

Mean value of random variable

Magnetic permeability of free space

Angular frequency

Electric conductivity

Standard deviation

The ith singular values of singular value decomposition

Time delay
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Units
farad/m (F/m)

F/m

henry/m (H/m)

H/m

radian/sec

mho/m (U/m)

sec

F/0



Abstract

The use of ground penetrating radar (GPR) arrays for detecting and localizing buried objects has received

considerable attention in recent years in areas such as landmine and unexploded ordnance remediation,

utility line mapping, and archaeological discovery. A typical GPR array is implemented by moving a pair

of transmitter and receiver along a linear track. At every stop of the system, the transmitter emits a short

pulse of electromagnetic energy which interacts with the surrounding medium. Based on observations of

scattered fields collected by the array the objective of the problem is to determine if an object is present in

the field of view of the array and, furthermore, localize its position. In this research, we employ a statistical

signal processing method in detection and an optimized imaging method in localization.

Here we view the detection problem in the framework of a blind transient signal detection and employ

statistical method to process the GPR returns. The approach allows us to exploit two generic properties of

the signal transmission process. First, as the GPR moves close to an object, the presence of an object results

in a jump in the mean value of the observed signal relative to the previous observation. Thus, we develop

a high-dimensional analysis of variance (HANOVA) test to detect this change. Second, physical principles

dictate that as the array moves from one stop to the next, the magnitude of this jump first increases as the

array approaches the object and then decreases as the sensors move past the location of the target. This

behavior is exploited in the synthesis of a sequential probability ratio test (SPRT) designed to recursively

process the output of the HANOVA test as the GPR system moves down the track. The detection method

is on-line implementable and has a linear computational complexity.



Once an object is detected, then the next logical step is to localize it. We use an optimized frequency-

wavenumber (F-K) migration method to localize subsurface objects from the GPR array data. F-K migration

coherently processes waves collected at different positions by a GPR array. It back-propagates recorded

waves to the subsurface objects, according to the wave equation. Performance of F-K migration on GPR

measurement depends on proper modeling of GPR signals and accurate estimation of wave propagation

velocity. Because of measurement noise, random ground surface, and clutter, signal modeling and velocity

estimate are not exact, therefore F-K migration may lose its resolution and accuracy. We propose an

optimized method to improve performance of F-K migration. The optimized method searches for a better

velocity estimate in the framework of Tikhonov regularization. The Tikhonov regularization uses minimum

entropy as the constraint of the optimization process. By trying to minimize entropy of F-K migration

results, better performance is achieved in terms of resolution and accuracy.

Examples from applying the HANOVA and optimized F-K migration on real data are included to demon-

strate their performance.
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Chapter 1

Introduction

ch:introduction|

The problem of detecting and localizing buried objects has received considerably amount of research interest
in recent years. Of interest in this research is the development of statistical signal processing methods to

detect and localize buried landmines based on data collected by a ground penetrating radar (GPR) array.

1.1 Subsurface Sensing

surface sensing|

Subsurface sensing technique has found application in areas such as landmine and unexploded ordnance

remediation, utility line mapping, and archaeological discovery. Subsurface sensing techniques includes

Peters:1994 ,Witten:1994 [Uppsall:2000,Sendur:2000 . [Drewniak:2000,0zdemir:2000 = . McKnight :2000,DiMar:
GPR M1, 2], infrared imaging [[3, 4], electromagnetics/magnetics 5, 6], laser-induced acoustic imaging 17, 8],

Hibbs:2000 . . .
and nuclear quadrupole resonance [{9] and so on. Among these techniques, GPR is widely used because
it is sensitive to variations of all three electromagnetic parameters of a medium, i.e., electrical conductiv-

ity, electrical permittivity, and magnetic permeability. Therefore GPR is able to detect and locate buried
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surface sensing ,

Figure 1.1: Subsurface sensing using incomplete reflection data, the z axis is often interchangeable with the
time axis since most subsurface sensing techniques collect data in the z direction as a temporal signal.

objects of various kinds. GPR has been used in detecting and locating buried landmines and unexploded

Chan:1979 . . . . . . Daniels:1988, Daniels:1989
ordnance [TI0].” Other applications includes locating tunnels and other buried voids 1T, 12], frenches and
A . Daniels:1994 . . . i i .
contaminated fluids l§ . All these applications can be categorized as subsurface sensing using incomplete
reflection data. This is in contrast to subsurface sensing in magnetic resonance imaging (MRI) and electric
impedance tomography (EIT) where data can be collected around the subject, which can then be categorized
as subsurface sensing using complete reflection and transmission data. In subsurface sensing using incom-
plete reflection data, sensors are constrained to the (z,y) plane and task is to detect and localize objects in
the (z,y, ) space, Fig. 1.1. For the purpose of illustration, from here on, the left-hand system of coordinates
as seen in Fig. 1.1 will be used in all the ensuing discussion. This research focuses on the subsurface sensing

using incomplete reflection data.



'oblem statement |

1.2 Problem Statement

This research intends to develop statistical method to detect and localize subsurface objects from GPR
array measurement. The first goal is to develop signal processing scheme to mark buried objects in the (z,y)
plane, Fig. 1.1. Once an object has been detected, then the next step is to localize it in the vertical plane,
i.e., in depth, which is the second goal. At each stop, the GPR transmits electromagnetic wave and receives
a reflection. The reflection is usually densely sampled in time for from 10 to 20 ns and is collected into a
vector of dimensions in hundreds. This vector is called a trace or time-series in literatures of geophysics and
remote sensing Fﬁﬁw

The trace consists of measurement noise, specular reflection from ground surface, clutter, and possibly
object reflected signals. Measurement noise comes from imperfections of the GPR hardware, approximation
in analog to digital conversion, and human error. Specular reflection is the electromagnetic waves which have
bounced off of the air-ground interface. Specular reflection can be reduced by some GPR configurations such
as forward-looking GPR %%nnot be totally eliminated. Here clutter is defined as any undesirable
components in the GPR data, except noise and specular reflection. In practice, a GPR moves along a linear
track to collect a series of traces in order to find subsurface objects.

In our approach to detection, the input is a series of traces obtained sequentially as the GPR moves
downtrack. Final output is a sequentially updated test statistic. The test statistic is compared to a preset
threshold to determine if an object is present. The method is based on some simple electromagnetic principles
and relies on statistical methods to remove noise and ground reflection in order to detect the useful signal.

The method is setup in the framework of blind transient signal detection. As seen in the later part of this



proposal, reflection from a subsurface object usually displays a manifest hyperbolic curve in GPR signals.
The exact shape of this hyperbola depends on object’s type and position and other factors. For example,
a plastic mine generally displays a weaker and shorter hyperbola than a metallic mine. A deeply buried
object has a short hyperbola in the horizontal direction because its reflection can only be picked up at GPR
positions close to it. For this reason, we treat the problem as a blind signal detection. On the other hand,
a GPR array can only register object reflected signal in finite duration, both in the horizontal position and
time. In other words, object reflected signals are transient in space and time. The reason for signals being
transient in space is that GPR only collects reflected wavefield for about 20 ns, reflection from a far away
object will simply not arrive in 20 ns. The object reflected signal is transient in time because it only occupies
a few nanoseconds in a trace. The motivation is then to detect such a blind transient signal with a method
of low computational complexity, high performance, and amenability to on-line implementation. In detail,

)

the method consists of two steps, first, we process a trace in a “static way” and generate a temporary test
statistic, second, we process the temporary test statistic sequentially, as the GPR array moves, to yield a final
test statistic. Based on the final test statistic, the method is able to achieve a high probability of detection
while keeping false-alarm rate low. Specifically, the first step is an generalized high-dimensional analysis of
variance (HANOVA). HANOVA is closely related to the standard method of analysis of variance (ANOVA),
which is usually used in testing statistical significance. HANOVA is designed to improve the performance
of the ANOVA by using truncated signal. Because the object reflected signal is transient in time, a trace
is truncated from both ends such that the new trace has a higher signal-to-noise ratio (SNR). Higher SNR

increases probability of detection of the detector. While HANOVA is implemented step-by-step as the GPR

moves forward, it does not capture the change of data from one step to the next. Therefore, in the second



part, we employ a sequential probability ratio test (SPRT) to provide real-time decision. The SPRT is a
cumulative sum and able to reduce the number of false-alarms from the HANOVA. The method has a low
computational load and as a sequential method, it is on-line implementable.

Once an object is detected, the next step is to localize the object in the horizontal position and depth.
In localization, imaging methods can be used to reconstruct a representation of subsurface reflectivity. The
input is a set of traces, i.e., a 2-D image in space-time domain. The output is an image showing subsurface

L The input can be a 3-D

reflectivity in the horizontal direction and depth, i.e., in space-space domain.
matrix when GPR collects data on a two-dimensional grid in the horizontal plane. In that case, the output
can also be a 3-D matrix, which represents subsurface reflectivity in the (z,y, z) space. Ideally, the position
of the object will become a sharp, bright spot in the output. In the literature, it is usually said that the
input resides in “image space” and the output resides in “object space” ﬁﬁzﬁ%z In this paper, double
quote will always be used around the “image space” and the “object space” to avoid confusion with terms
appearing in later parts.

The method used is an optimized frequency-wavenumber (F-K) migration scheme. F-K migration is a
mapping operation from the “image space” to the “object space” based on the wave equation and wave
propagation velocity estimation. Assuming the registered wavefield satisfies the wave equation and the
velocity estimate is accurate enough, F-K migration is able to reconstruct subsurface reflectivity at any point
in space and time. Originally, F-K migration was developed to reconstruct subsurface reflectivity in seismic

bi :1983
signal processing, where it back-propagate the wavefield into the earth, up to kilometers o] T Tandmine

localization, GPR signals are obtained in a different manner than the seismic signals, still migration methods

IStrictly speaking, output is an image representing subsurface reflectivity, not a direct measure of reflectivity. This difference
will become clear in later chapters.
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Figure 1.2: Migration as a mapping operation.
have been successfully applied on GPR signals. More details will be given in Chapter 2. Nevertheless, F-
K migration has the disadvantages of low resolution and large sidelobes in the presence of measurement
noise, random ground surface, and clutter in GPR data. To circumvent this problem, an optimization
method is proposed to increase resolution and reduce sidelobes in F-K migration result. The optimization
is implemented in the framework of Tikhonov regularization. The regularization minimizes entropy of F-K

migration output and better results are obtained in terms of enhancing mainlobe and suppressing sidelobes.

1.3 Proposal Organization

The proposal is organized as follows. Chapter 2 reviews current GPR signal processing methods in detection
and localization. Chapter 4 presents the detection method, a combination of HANOVA and SPRT. Chapter 6

describes the localization method and its optimization. Proposed future work is given in Chapter 7.



Chapter 2

Literature Review

terature review|

In this chapter, I will briefly discuss GPR, analysis of variance, sequential probability ratio test, seismic
migration and frequency-wavenumber migration, and Tikhonov regularization method in solving an opti-

mization problem.

2.1 A Brief Survey of GPR

sec:survey GPR|

GPR can be defined as a radar whose goal is to detect and identify structures underground Fﬁﬁ%been
in use for about 20 years in contrast to the more than 50 year history of conventional radar Fﬁﬁ%ple
diagram of a GPR is given in Fig. 2.1(a). It consists of a transmitting antenna (transmitter) and a receiving
antenna (receiver). The transmitter radiates a pulse into the ground and the receiver collects the echo for a

certain time period, usually 10 to 20 ns. The transmitted pulse may be any transient signal, sine wave, steps,

Peters:1994
and Gaussian wave are all possible waveforms. Pulse widths are usually in the order of a few nanoseconds [I].



Compared with conventional radar, GPR has a much broader bandwidth, from a few megahertz to a few
gigahertz. GPR operates at high frequency so that it can provide images of high resolution of subsurface
reflectivity. At such high frequencies, electromagnetic waves are extremely vulnerable to interference. This
interference can be reduced by averaging a number of GPR returns obtained as a function of time without
moving the GPR }Bﬁt]eg":[‘ll%most critical part of a GPR is the transmitting and receiving antenna. The
antenna are usually in the form of dipoles, which are heavily loaded to reduce as much as possible the
antenna ringing. Usually the transmitter and receiver are separated, i.e., the GPR is a bistatic radar. For
typical GPR, the receiver takes the forms of a sampling system. The sampling system constructs the received
signal from discrete samples of successive periods of the reflected waveform. “The sampling system makes
it possible to use an amplifier with time- (or range-) dependent gain controlled by a computer prior to the
sampler in order to minimize sampling noise” Fﬁ%&(b) shows a typical received GPR signal.

Field operation of a GPR system is very simple. Commonly, a vehicle mounted GPR system (VMGPR)
surveys an interested area step by step along a linear track. A VMGPR may consists of a single GPR or an
array of GPR. At each step, the VMGPR operates in the following sequence: 1) the transmitter radiates a
pulse into the ground and turns off, 2) the receiver turns on to collect reflected signal, 3) the receiver turns
off after a short time, usually 10 to 20 ns. The data that is recorded by one receiver at one step is called
a trace (or a time-series). Denote the direction of VM GPR movement as z, then the VMGPR will collect
reflection in the (z,t) plane. If the VMGPR is a GPR array, a three-dimensional image of the subsurface will
be generated in the (z,y,t) space. Depending on the task to perform, the step size of the VMGPR can vary
from a few meters to a fractions of meters. Fig. 2.1 (c) and (d) shows a GPR array and its received signals.

At positions close to the object, the array registers stronger reflections at small time-delays. At farther away



Transmitter Receiver

2000
1500

10001

g
8

Air

Amplitude

o

Ground

_s00F

Y
-1000+ 4
O b] ect 0 ‘2 L g : ‘ 1‘2 1‘4 1‘6 1‘3 20

8 10
Time(ns)

(a) (b)

TR TR TR TR TR

Air

Time(ns)

Ground

20 25 30 35

Object Position(cm)

(¢) (d)

., and GPR signal

Figure 2.1: GPR and its signal, a) a single GPR, b) a single trace of received GPR signals, ¢) a GPR array,
each circle represents a pair of transmitters and receivers, d) image of GPR signals.

positions, the reflections are weaker and time-delays are large. Thus typical GPR signals show a manifest
hyperbolic curve around the position of an object. Fig. 2.1 (d) confirms that the object (landmine) reflected
signals are transient in two directions, the signals are clearly visible between 15 to 35 cm in the horizontal
position and 6 to 14 ns in the time axis.

GPR is different from the conventional radar in that 1) GPR operates in near-field scenario, 2) most

GPR antenna are close to the air/ground interface and ground reflection cannot be ignored, 3) the medium



ction using GPR‘

GPR operates in is highly lossy. At a frequency of f, the attenuation factor is

o= %a(f)\/g 2.1)

where p is the permeability, € is the permittivity, and ¢ is the conductivity of the medium. Note that the
conductivity is frequency-dependent. Depending on the shape of antenna and the way it works, spreading
function needs also to be considered to model the GPR signal accurately. Mathematically, if the transmitted
signal is p(t), then the signal reflected from an underground object can be approximated as ap(t — 7), an
attenuated and delayed version of p(t).

Because soil is usually inhomogeneous and air/ground interface is rough, there are multipath reflection
and refraction in GPR signal. When one includes frequency dependent conductivity at the soil, it becomes
prohibitive to process the GPR signal based solely on physics principles. On the other hand, we can overcome
the difficulty in modeling by exploiting the data diversity provided by a GPR array and use some basic physics

L. L. . . . iller:1995
principles and statistical method to look for some specific features in the GPR signals LI% .

2.2 Object Detection Using GPR

In the real world, GPR data are contaminated by measurement noise, specular reflection, and clutter.
Though all are undesirable, noise, specular reflection, and clutter affect GPR signal processing in different
ways. Noise is generally a stationary process and can be very well modeled as a stochastic process, such
as an additive white Gaussian noise (AWGN). Correspondingly, existing noise reduction schemes can be

. . ) Xu:2000b
used based on the assumption of the stochastic process, from moving average filter Ig to Wiener filter.

10
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Specular reflection is the reflection from the ground surface. It is usually the strongest component in GPR
data. Specular reflection depends on the roughness of the ground and other characteristics of the soil, such
as moisture. At best, specular reflection can be modeled as a stationary stochastic process, though it is
not always true. Specular reflection makes detecting shallowly buried objects very difficult because object
reflected signals are close to the specular reflection in time. On the other hand, objects deeply buried can
be easily separated by time-gating, i.e., throw away specular reflection by truncating reflected signal in the
first few nanoseconds and remained reflection shall contain only object reflected signal. There the problem
is to detect signals of low signal to noise ratio because of large attenuation associated with deeply buried
objects. Specular reflection usually reduces a detector’s probability of detection. Clutter is defined as any
undesirable components, except noise and specular reflection, in GPR data. Clutter, in contrast, increases
the number of false-alarms of a detector. Clutter takes different forms and can appear in many ways in GPR
data. When a clutter appear close to an object, it affects resolution of the detector. A clutter separated
from any objects may show up as a false-alarm. In combination with noise and specular reflection, clutter
generally affects the receiver operating characteristics (ROC) of the detector. The major challenge in GPR
signal processing is to enhance object reflected signals and reduce clutter and specular reflection.

Current mathematical methods for the problem of object detection fall into one of three categories.

. . |Gader:1999,Gader:2000
First, pattern matching methods [TI9,20] employ techniques such as fuzzy set theory and neural networks.

Such methods can be fast but require extensive training to function well. Moreover, performance analysis
B :1999

is limited to Monte-Carlo simulations. Second, image-then-detect techniques Zaf eemploy a beamforming

or backpropagation approach to build an image of the subsurface which is then post-processed to detect

objects. Such methods generally require the data from a full GPR scan to form an image and are thus

11



not well suited to on-line computations in which information is processed sequentially as the array proceeds
down track. More subtly, the attenuation associated with the propagation of the GPR signal typically results
in useful signal only over receivers located closest to object. Thus, methods based on beamforming which
require array-based observations are not really appropriate for this problem. As with the pattern matching
approaches, performance analysis tools are not readily available. Finally, there has been some very interesting
. _ . u:1998 . "
work done in the area of statistical processing methods F3 Where one can use models to examine quantities
. . . . [Pogaru:1998

such as detection rates, probability of false alarm, etc.; however the techniques in P or mstance are based
on highly complex electromagnetic models for the GPR sensor and are thus computationally intensive. Signal
processing in the framework of hypothesis testing has advantages of robustness, fast computation, on-line
. . . . u:1999, Xu:2000 . .

implementation, and being amenable to performance analysis. In [[23,24], 1t is shown that binary hypothesis
testing can be applied to detect mine by comparing received signal from neighboring radars. We model the

. . . . elstrom:1995
detection problem in a typical hypotheses testing framework }5[251,7

Hy : there is no object,

H there is an object.

The null hypothesis Hy means that there is no buried object in the field of view of the GPR array, so the
total received signal is comprised of specular reflection, clutter, and measurement noise. Reflection from the
air-ground interface is the dominant component of this part of the signal. The alternative hypothesis H;

indicates that there is buried object so that the received signal consists of nominal background, measurement

12



noise, and an object reflect signal. In the simplest mathematic form, we can write the received signals p as

Hoi p

Il
Q

H, : p=s+g (2.2)

where s is the object reflected signal and g represents the sum of nominal background and measurement noise.

2.2.1 Analysis of variance (ANOVA)
__sec:ANOVA

ANOVA is a body of methods to analyze data with a view to test hypotheses about the effects of one or
Ghosh:1970 . . . .
more factors . To review the basics of ANOVA, we follow the notation established above for the GPR
problem and for simplicity assume we have one received signal from a single T/R pair. Let p, a vector of
size K x 1, be the received signal and assume that p ~ N(s,agl) and we wish to test Hp : s = 0 (i.e.,
no object) vs. Hy : s # 0 (i.e., an object present) where s denotes the object reflected signal. Standard
. . . Fan:1996 . L.
ANOVA is essentially an “energy detection” scheme [[27] where we estimate s by p, generate the test statistic

u = ||p||?, and compare u to a threshold, 7. If P exceeds the threshold, H; is chosen, else Hy is selected.

The probability of detection of the standard ANOVA is

LIs(*

v= =
Qq(H1|H1) =Q (%) (2.3) |eq:power

1+ 2
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where 7 is the test threshold decided by setting an acceptable probability of false-alarm under Hy and @ is

Port:1994
the complementary cumulative distribution function and is strictly decreasing 28

0= / ~ Pu(w)du (2.4)

where P; is the probability density function of v under hypothesis H;.

While easy to understand and implement, ANOVA has its limitation. Estimating s by p assumes that s
is evenly or almost evenly distributed over its full dimension. When s is of high-dimensions and its nonzero
samples concentrate only on a sub-dimension, we can divide p into two types of fractions. One is the
” signal-rich fraction” and the other is called the “noisy fraction”. If there is prior information about the
location of the signal-rich fraction, better result can be achieved by carrying out ANOVA on the signal-rich
fraction only. In this way, a high-dimensional problem becomes a sub-dimensional one. For historical reason,

. . . . . ) ) ) . n :1996
ANOVA applied on the signal-rich fraction is called high-dimensional analysis of variance (HANOVA) 7.
HANOVA has a better performance than the corresponding ANOVA in terms of probability of detection and
probability of false-alarm. In reality, the length of this signal-rich fraction is not known a priori and there
is no clear starting and ending point of the signal-rich fraction. To take advantage of HANOVA, we need a
. . . . n:1996 . [Fan:1998
method to find about the signal-rich fraction adaptively. Recently, Fan and Fan and Lin [129 proposed
a scheme to adaptively truncate the original high-dimensional observation to a sub-dimension. When there

is a priori information indicating that the first k£; dimensions of an observation contains most of signal, an

14



estimate of k; is decided by

k1 2

ki = L[p]k—\/k 2.5 :decid
1 argkrlnax o2k 1 (2.5) |eq:decide

where [p], means the kth element of p. Then the HANOVA is simply a test on the first k; dimensions of
the observation vector p. In GPR application, we look for the fraction contains mostly of object reflected
signals and it does not start from the beginning, so we generalize the HANOVA to search for both the start

and end point of the signal-rich fraction.

2.2.2 Sequential probability ratio test (SPRT)

While HANOVA detects statistical significance at one stop of the array, it does not capture the structure of
object reflected signal seen as the array moves down-track. To improve performance, we use SPRT in the
second of our detection scheme. SPRT is a family of hypothesis testing methods that takes new observation
into calculation as it is gathered. SPRT is a natural choice in GPR signal detection because GPR signals
are usually obtained step by step. Denote the test statistic at the ith step as u(n), then SPRT takes the

form of a cumulative sum (cusum)

Un)=U(n—1)+ u(n). (2.6)

Here U(n) is the final test statistic and it is compared to a preset threshold at each step to make a decision of

the test result. Statistically, U(n) is a random walk process constrained to change between two thresholds,
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upper threshold 7, and lower threshold 7,. Standard SPRT makes one of three decisions at each step,

U(n) >n, = declare H; and stop,
> U(n) <n, = take another observation,

U(n) <mny = declare Hy and stop.

The false-alarm probability Q¢ equals the probability under Hy that the random variable U(n) crosses
the threshold 7, before passing below the lower threshold 7. And the probability of detection @4 is the
probability that U(n), under Hy, passes below b before exceeding 7,. Performance of the SPRT is decided
by the selection of (1,,7) and it is a difficult problem to determine (74, 7;) to minimize the average cost of
the SPRT. Wald %%ﬂ‘l%l%wn that, in approximation, the thresholds (n,,ns) required for attaining the

reliability (Qo,Qq) are

Qq
L 1[@] 20
- 1-Qa
N ln[l—Qo]‘ (2.8)

Since in GPR application, we are only interested in detecting objects, SPRT can be set to test against one

threshold 7 such that

U(n) <n = take another observation,

U(n) >n = there is an object, stop.
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In contrast to fixed sample size tests, SPRT can reduce the number of samples required to make a decision.

2.3 Histogram Modeling Techniques to Enhance GPR Images

In GPR signal (image) processing, the biggest challenge is to effectively remove the specular reflection from
the ground, i.e, the background. The background can be removed in two directions,  and ¢ respectively. To
remove the background in the z direction, two often used methods are subtraction of the ensemble average of
a GPR image or subtraction of a running average (moving average filter) of the image. Both methods have
the advantage of simple calculation and the moving average filter can be implemented sequentially. But both
methods have deteriorated performance when the ground surface is relatively rough. In that situation, both
methods cannot remove as much background as possible and there are remaining background sections in the
image and can be mistakenly identified as a valid target. To remove the background in the ¢ direction, the
method used is time-gating. In time-gating, when there is prior information about the depth of the buried
landmines, one can calculate the time required for the landmine reflected signal reach the GPR receiver and
discard all the signals arriving before that time. Two problems arise in using the time-gating techniques,
first, there is usually no prior information of the depth of the buried landmines; second, when the landmines
are buried close to the ground surface, even knowing the depth may not be enough to guarantee a good
time-gating because of the ground roughness. On the other hand, if the GPR images can be enhanced in
some way at first, then both kinds of background removal can be more effectively.

One kind of image enhancement is histogram modeling techniques (e.g. histogram equalization). His-

togram equalization modifies the dynamic range and contrast of an image by altering the image such that its
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intensity histogram has a desired shape. Histogram equalization employs a monotonic, non-linear mapping
which re-assigns the intensity values of pixels in the input image such that the output image contains a

uniform distribution of intensities (i.e. a flat histogram).

2.4 Seismic Migration and GPR

2.4.1 Data acquisition

Migration is geophysical inversion method that (re)constructs an image of subsurface reflectivity from mea-
surement made at the earth’s surface W&re different types of migration methods. For each specific
method, modification is necessary depending on the manner of data acquired. All the data are collected by
sensors consisting of transmitter and receiver. For the purpose of illustration, we assume sensors reside on
the horizontal axis x and let z; be the coordinate of the transmitter and z, be the coordinate of the receiver.
We then the half-offset coordinate of the transmitter and receiver as h = (x5 — x,.)/2. When the transmitter
and receiver are co-located, the half-offset h = 0 and the transmitter and receiver are said to be in zero-offset
setup. Zero-offset setup corresponds to monostatic radar system in GPR. In zero-offset setup, waves travel

the same path from the transmitter to the object and from the object to the receiver.

2.4.2 Exploding reflector model

In practice, transmitters and receivers of the GPR array take turns to transmit and receive electromagnetic
waves. For mathematical treatment, we can assume that all transmitters are activated at the same time,

but each receiver only records signals originating from the same transmitter-receiver pair. We can further
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Figure 2.2: Shows a) setup of F-K migration, waves travel at velocity v, b) exploding reflector model, waves

travel at velocity v/2.

assume that there is no transmitter at the surface, instead the object becomes a source. At time zero, the
object transmits a spherical wave in all directions and after the transmission, the object disappears. What
remains is a wavefield propagating in the soil. This assumption is called “exploding reflector model” P[él'z&s)l']aigM
and has been applied successfully in seismic signal processing. This assumption is not exactly true for GPR,
but as we will show later on, surprisingly good results can still be obtained by applying the assumption to
our problem. For distinction, we call the transmitter—object-reflector model as the “full model”, Fig. 2.2(a).
In the exploding reflector model, there is only up-going waves and waves travel at the half velocity as it
does in the full-model. This conversion is necessary to make the exploding reflector model consistent with
the full-model in describing the reflected wavefield, Fig. 2.2(b). The up-going spherical waves reach the
corresponding receiver after a certain time-delay. Different pairs of transmitters and receivers register the

reflected wave at different time-delays. The reflected waves form an approximate hyperbolic curve in the

GPR signal as seen in Fig. 2.1(d). When done correctly, seismic migration collapses the hyperbola and puts
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the position of the landmine at the tip of hyperbola.

2.4.3 Seismic migration

Migration is usually used to map underground reflectivity in the depth of hundreds of meters to kilometers.
It is well known that in lossy medium (soil), attenuation of a propagating wave is proportional to its
frequencies, (2.1). At such depth, electromagnetic waves attenuates too much in the soil to be useful. Instead,
acoustic waves are used because their frequencies are low. Though electromagnetic waves and acoustic waves
are different in the level of attenuation, they obey the same physical principles such as Snell’s law. As we
will see later on, this factor makes it possible to generalize migration methods to GPR application.

There are many migration methods and they all attempt to collapse the hyperbola seen in Fig. 2.1(d) to
a point, which represents the true position of the object. Classical methods include diffraction summation
migration and wavefront interference migration. In diffraction summation migration, for each point in the
object plane, a diffraction hyperbola is constructed and points on the hyperbolic curve are summed together.
This process is repeated for every point in the object plane to generate one migration image, Fig. 2.3(a) and
(b). While diffraction summation can be considered as a method collapsing hyperbola to a point, wavefront
interference migration works in the opposite way. It takes a seismic trace from the data plane and distribute it
over a semi-circle in the object plane, Fig. 2.3(c) and (d). Repeating the above process for every seismic trace
and adding the results together will generate a migration image. Mathematically, diffraction summation is
a “many to one” mapping and wavefront interference is a “one to many” mapping. Both methods had some

Gazdag:1984

success in the late 1960s and early 1970s, but they are not based on strict wave model [TI5]

On the other hand, there are types of migration methods based on the wave equation, such as frequency-
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(¢) (d)

Figure 2.3: Diffraction summation, a) points on an imagined hyperbola in the input plane are mapped to, b)
a point in the output plane. Wavefront interference, ¢) a point in the input plane explodes to, d) a hyperbola
in the output plane.

wavenumber (F-K) migration, space-time migration, and Kirchhoff migration. The idea is to use the wave
equation to back-propagate the wavefield. Assuming there is an exploding reflector and it activates at time
“i”

zero, and denote wavefield measured at z = 0, i.e., at the ground surface, as pi(z,z = 0,t), subscript

means the “image space”. F-K migration solves the wave equation by differentiation in Fourier domain.
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Because v is assumed constant, we can take the Fourier transform of p;(z, z,t) with respect to z and ¢,

P(ky,z =0,w) = / / pi(z, z = 0,t) exp[—j(kzx + wt]dzdt (2.9)

where k; is the horizontal wavenumber and w is the frequency. Fourier transform turns differentiation into

multiplication,
Zn T, (—jk)?P, (2.10)
5oz —— (—jk2)* P .
and
2 — (—jw)’R (2.11)
then we can write (6.1) as
1 £ \2 . 2 "
— (=jw)’P = (=jkz)* P + P (2.12)

v

where P! represents the second order partial derivative of P, with respect to z. Rearranging the above

equation gives
w?

F)ill + [_

i kﬁ] P =0. (2.13)
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. obinson:1983
Now we can define the vertical wavenumber k,(w,v) as 16

2 3
ky(w,v) = [% — k3:| . (2.14) |eq:extrap

. . . . . . . Gazdag:1984
The vertical wavenumber k, represents the dispersion relations of the one-direction wave equation lIl”§ . By

finding k,(w,v) we transform the problem from the space-time domain to the space-space domain and is able
to find the wavefield p,(z, z,t = 0), subscript “o” denotes the “object space”. In summary, F-K migration

has three steps,
1. Take Fourier transform of p;(z,z = 0,t) with respect to z, t.
2. Find the vertical wavenumber k,(w,v) as in (2.14).

3. Inverse Fourier transform to obtain p;(x, z,t = 0) as
1 oo oo
po(a 21t =0) = oz / / P (ke ) explj(kaz + ks (w, 0)2)]dky dw. (2.15)
0 —o0 J—o0

The assumption of above procedure is that velocity is constant in the vertical and horizontal direction and
also there is no ground interface. As we shall see later on, this assumption is not true in GPR application.

Since F-K migration is computed in discrete form on computer, we can write the pi(z,z = 0,t) as a
matrix p; of size M x N, x = x1,...,xN,t = t1,...,tpy, then the above steps of F-K migration can be

summarized as

1. Pi(ky,w) = FFT{pi(x,t)}.
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2. Convert the integral over w to an integral over k,(w,v) by letting

3. Po(ks, k) = Pi(ky, ko (w,v)).
4. po(z,2) = IFFT{Py(ky, k,)}.

One key advantage of F-K migration is that using a Fourier transform differential operations transform into
algebraic operations and step 1 and 3 can be quickly computed by fast Fourier transform.
Regular F-K migration has the disadvantage of losing resolution due to measurement noise, random

ground surface, and clutter in GPR signals and inaccurate estimation of velocity.

2.4.4 F-K migration of GPR signal

Most GPRs are technically bistatic, i.e., its transmitters and receivers are separated. However, when the
transmitter and receiver are closely positioned to each other, mathematically, we can treat the GPR as a

monostatic radar system and that will be the model we use in this paper. Some other assumptions about

. . . Jakubowicz:1983
the wave-equation migrations are

1. Sensors are located at the surface of ground.
2. The signal being processed is free of noise and clutter.

3. Soil is homogeneous, therefore wave has a constant propagation velocity.
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Of the above assumptions, the first two are never true in GPR application. GPRs are usually at some height
above the ground, therefore ray path is bending at the ground surface. Noise and clutter in GPR signals
usually distort the hyperbolic curve assumed in F-K migration and can make the migration result blurred
and focusing at wrong places. Wave propagation velocity is not always constant. In seismic signal process,

. . . . |Gibson:1983,Gazdag:1978
when soil is horizontally stratified, a smooth root-mean-square (rms) velocity I'[31,32[ is usually used. The

use of rms velocity is less helpful in GPR application on landmine localization because landmines are usually
buried in shallow depth and the surrounding soil is often not horizontally stratified but quite inhomogeneous.
Another assumption of F-K migration is that ground surface is flat. While such assumption may be true in
oil well exploration and subsurface pipe mapping, it is not so in landmine localization where ground surface
is usually rough. Rough ground surface will introduce random time-delays to the GPR signals and makes
the hyperbolic curve usually seen in GPR signals distorted.

In GPR application, the wavefield model is more complicated. Fig. 2.4 shows the corresponding F-K
migration model used in GPR application. Here waves travel two different paths, one in the air and one in
the soil. The ground reflection makes the wave-equation no longer valid. Nonetheless, using F-K migration

. . . . . [Yu:1996,Holzrichter:2000 . . .
directly in this scenario has achieved very good results [[33,34]. Obviously, improvement is possible if above

mismatches can be mediated in some way. That is why we turn to optimization theory to find a modification

of F-K migration.
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Figure 2.4: Shows a) setup of F-K migration, waves travel at velocity v, b) exploding reflector model, waves

ig:GPR FK model ‘ travel at velocity v/2.

2.5 Tikhonov Regularization in Optimization

' regularization‘

Because of aforementioned mismatches, it appears that using one constant velocity across the horizontal
direction is sub-optimal in F-K migration. One way of optimizing F-K migration is to use different velocities

at different GPR positions, Fig. 2.5. Making velocities depend on GPR positions, it is expected to take into
X Viowe W X
Z

(a) (b)

z

Figure 2.5: Wave propagation velocity, a) constant velocity in the horizontal direction, b) varying velocity

velocity in ch2| in the horizontal direction.
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consideration of rough ground surface and clutter to some extent. As a result, the F-K migration output shall
consist of a sharp mainlobe and suppressed sidelobes. As will be discussed in Chapter 6, an F-K migration
output with enhanced mainlobe and suppressed sidelobes has a smaller entropy. Therefore, in searching of
a better velocity estimation, the process is constrained to minimize entropy of the F-K migration output.
Method of Tikhonov regularization is well suited to solve this kind of optimization problem. Denoting the
new velocity vector of length N as v, Tikhonov regularization then looks for a solution to the following cost

function

m‘}n [[v = vol||3 + A*R(po)- (2.16)

where ) is a regularization parameter and R is a regularization operator, usually chosen to be the identity
matrix, a discrete approximation of the first or second order derivative operator, or entropy or inverse of
entropy of p,. The first term is a measurement of change of velocity such that the change shall be small.
It is referred to as a measurement of fidelity to the GPR signals. The second term penalizes some measure
of F-K migration output such that the final result shall have the characteristics we would like to have. The
relative importance between these two terms is controlled by the regularization parameter A\. As A\ — 0, we
demand that v stay close to vg. On the other hand, as A — oo, v¢ plays a limited role in influencing v and

v is solely determined by minimizing A2R.(p,).

eq:object

Belge:1998,Har
In Tikhonov regularization, proper selection of the regularization parameter is a non-trivial problem

[35,36]. A regularization parameter too small will cause under-regularization, i.e., the optimization problem

degenerates into a regular least-square problem. On the other hand, a regularization parameter too large
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makes the problem over-regularized, where output displays little fidelity to the data.
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Chapter 3

Forward Model

In this chapter, we introduce a forward scattering model. First, a simple GPR model based on ray theory is

presented. Then an array GPR model is developed.

3.1 Single GPR Model

To detect and localize mines, a ground penetrating radar array is implemented. Fig. 3.1 shows a typical
. . . . Bourgeois:1996 . .
single GPR system with the signals it generates 37E Tn this paper we assume a simplified model where
the signal seen by the receiver is composed of at most two components. The first signal is the reflected
signal from the ground and is always present in the data. The second component (if it exists) is the reflected
contribution from an object in the field of view of the array.

The received signal, ¢(t), is taken to be the sum of delayed and attenuated versions of two “template”

signals indicating the nominal behavior of the ground bounce signal and the nominal behavior of a signal
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Figure 3.1: Schematic drawing of a single GPR, transmitter and receiver.

arising from scattering from a mine. Mathematically we have

O(t) = ahy(t — 74) + bhp(t — ™) (3.1)

where 1), and 9, are the nominal ground bounce and mine reflected signal(mine signal), a and b are
attenuation factors, 74 is the delay of ground reflection, and 7, is the delay of the mine signal. Note that if
no mine is present, ¢ is just equal to the first term of Eq. 3.1.

To find the delays and the attenuation factors we assume that the propagation of signal from the trans-
mitter to the receiver can be described using a ray-optics-type model shown in Fig. 3.1. That is, the ground
bounce is composed of signal reflected from the interface at the specular point midway between the trans-
mitter and receiver while the four-part path of the mine component of the signal can be determined via the
judicious use of Snell’s law.

To begin, the 7, and 7,, are determined by the travel time of two-way paths and can be calculated as

2-way path length
Delay = .
ey velocity of the wave
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To find 74 and 7,,, we need to locate reflecting point and refracting point shown in Fig. 3.2. Let media 1

% Medial
(x1y1) (x2,y1)
€o
0.0 (x4, 0) €
Media2

@

Figure 3.2: Geometries for determining (a) the reflecting point and (b) the refracting point, €1 > €.

be air and media 2 be soil, with electric permittivity €y and ey, respectively, Fig. 3.2.(a), the reflecting point

on the boundary between two points (z1,y1) and (x2,y:) in media 1 is simply the mid-point (z4,0), where

T1+x2

T4 = 2

For the refracting point, according to Snell’s law, for a source located at (z1,y1) in media 1 and target

at (z3,y3) in media 2, the refracted ray from source to target must intersect boundary at a point (x5,0),

aport:1996
Fig. 3.2.(b), such that 38

Y

Media l
(x1,y1)
i
/\
(x5, 0) €o “
(6,0 € 1
N
Media2 | Ot .
(x3,y3)

(z1—w5)*

Re{al} _ Gi-zr it

€o

Solution of this quartic equation has four roots. By Fermat’s principle, which states that of all possible paths
joining two given points on a wave path, the wave path has actual least travel time, we can discard three

physically impossible roots and retain the true refracting point. Once the reflecting point and the refracting

(z3—25)2

(z3—25)2+y3
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point are established, the delay 7, and 7,, can be found as,

(z1 — 24)? + i

Ty = 2 . (3.4)
(21 —25)? +yi (23 —25)° + 3

= 2 2 3.5

Tm c * ¢/ Re /€1 (3:5)

c

where c¢ is the speed of light in air and ——-—
Re{el}

is the traveling speed of wave in soil.

In addition to the time delays, the received signal ¢(¢) has an amplitude reduction caused by propagation
through the soil as well as geometric spreading as it traverses both the air and the earth. In soil, the wave
attenuates exponentially with the distance it travels, e~®*¢. The quantity a, is the attenuation constant
of the soil which is related to the conductivity and permittivity of the medium Pﬁ%ﬁﬁhﬁ% is the distance

the wave travels in the earth. We assume geometric spreading results in an inverse path length amplitude

reduction. Referring to the setup of Fig. 3.2, then we have the overall amplitude reduction factors given by

a =

1 ( e~/ (23—25)2+y3 )2
and b= .
2y/(z1 — 24)? + 7 Viwr —a5)? +yf + /(23 — 75)2 + 43

3.2 Array GPR Model

In practice, GPR usually moves along a linear track.
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Chapter 4

Statistical Detection of Lanmines

Here we consider detection methods with an eye toward approaches that could be used in real-world scenarios.
Our interests are in techniques possessing three important characteristics. First, to reflect the manner in
which GPR data are acquired and the nature of the GPR mission, the algorithms should be causal in that
they need only the data at the current and previous sensor position to determine whether an object is
present in the field of view of the sensor. Second, they should be of low complexity. Preferably the number
of calculations would grow linearly with the size of the data set. Finally, the processing schemes should be
robust to uncertainties in the GPR environment and hence the particular detailed structure of the received
signals.

Here we consider a statistical, transient detection approach. By “transient” we mean that the signals of
interest are manifest in the GPR data for a small number of sensor positions and for relatively few samples

in any received waveform. For example, in Fig. 4.1 we plot raw observations obtained by one T/R pair
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Figure 4.1: Observation from one T/R pair, for a metal mine M20 buried at about position 20. Unit in the
horizontal axis is about 7.6 cm and unit in the time axis is 0.02 ns.

from an EG&G GPR system }EEIGO], over an M20 metal mine. Each column of this image is a time-series of
observations for a given stop of the array. It is seen that the received GPR signal is transient in two ways.
First, for each time-series (i.e. for each column of the image) containing an object signal, the signal appears
only in a brief window, roughly from samples 300 to 700. The reason is that the object signal always comes
after the signal arising from the bounce off of the air-ground interface and attenuates quickly in lossy media.
Second, the object signal shows up only at a few down-track positions of the GPR array, specifically locations
15 through 25. In both cases, the appearance of object signal changes the mean value of the data. Our
method for object detection then is based on detecting change in this mean first in the cross-track direction
and then in the down-track direction.

More specifically our approach consists of two parts. First, at each down-track position of the array,
we process the data among all T/R pairs to generate one test statistic. We use high-dimensional analysis
of variance (HANOVA) to test whether the data consists of reflected signal from a buried object. The
HANOVA is a generalized version of standard analysis of variance (ANOVA), which is a method for testing

. Fan:1996,Fan:1998 . . . .
hypothesis about means of random vectors [27,29]. Second, a sequential probability ratio test (SPRT) is
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applied to process the statistic of the HANOVA as the array moves down-track. The SPRT is a recursive
statistical hypothesis testing technique that provides early indication of the onset of changes in a time series.
The output of the SPRT is compared with a threshold. If it exceeds the threshold, a detection is declared,
otherwise, the GPR array moves one more step down-track and new data are collected and processed in the
above manner PFZ%STM

As explained in greater detail below, our approach does in fact satisfy the three requirements we discussed
previously. It is causal and has computational complexity that grows linearly with the size of the data.
Moreover, we show through real-data examples that it is robust, requiring little in the way of training and
able to successfully address the object detection problem for a number of GPR systems operating in a wide
range of environments. We do stress here that the algorithm in this paper is intended only to find anomalies
beneath the GPR array and not to solve the far more challenging classification problem. Thus, from a
practical perspective our approach will serve well as an efficient “pre-screener” in a larger automatic target
detection algorithm suite. Finally, our method is motivated by landmine detection using GPR, however it can
also be used in other detection application, such as laser-induced acoustic subsurface objects detection %@

Section 4.1 discusses the problem formulation and our method. Section 4.2 gives some examples of using
the method in different situations. Field data from different radar configurations and test sites are used to

show how the algorithm works. Conclusion and direction of future work are given in Section 4.4.
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4.1 Algorithm

To begin, we consider a single GPR T/R pairs as shown in Fig. 2.1(a). After each transmission, the receiver
collects an echo for a certain amount of time. Depending on the presence of an object, there are either three
or four components in the echo. One is measurement noise, assumed to be white and Gaussian. Another
is specular reflection from the ground-air interface. The third component is clutter, which is defined as any
undesirable signal except the noise and specular reflection. The fourth component is object signal, reflection
from a buried object.

For the GPR array shown in Fig. 2.1(c), assume we have M GPR T/R pairs surveying an area in N
steps, the task is to use present and previous array measurement to detect buried mines as the array moves

down-track. At each down-track position, we model the array detection problem in a typical hypotheses

. elstrom:1995
testing framework )

Hy : there is no object,

H : there is an object.

The null hypothesis Hyp means that there is no buried object in the field of view of the GPR array, so the
total received signal is comprised of specular reflection, clutter, and measurement noise. The alternative
hypothesis H; indicates that there is buried object so that the received signal consists of noise, specular
reflection, clutter, and an object signal.

In this paper we assume that most of specular reflection and noise have been removed via a preprocessing
stage. The most used methods are casual methods, such as subtraction of a moving average from the
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observation %(%nd non-causal methods, such as subtraction of an ensemble average from the observation }M'LSM
[23,42]. In this paper, a moving average (MA) filter is used.
In practice, the receiver collects time-samples of the reflection and stores it as a vector. For convenience,
we use vector notation in our discussion, i.e., y(m,n) is a column vector representing observation of the
mth T/R pair at the nth down-track position. The length of y(m,n) is K, the number of samples in time.

Fig. 4.2 shows the received signal after the background removal by a MA filter.! We then have the hypothesis

test

HO : Y(mvn) = g(mvn)

H, : y(m,n) = s(m,n) + g(m,n) (4.1) |eq:1
wherem =1,--- ,M,n=1,---,N are positions of GPR, y(m,n) is the vector observation of the mth T/R,

pair at the nth stop, s(m,n) is the assumed signal due to presence of buried object, g(m,n) is assumed to
be a white Gaussian noise with a zero mean, and covariance matrix UgI, where I is the identity matrix of
size K and independent of (m,n).

The statistical assumptions about g(m,n) are not strictly accurate in describing the noise in a GPR
signal. For example the background removal process will not be perfect leaving a component of correlated
“clutter” in the data which may or may not possess Gaussian statistic. Despite the mismatch, the use of
the additive white Gaussian noise model is useful for a number of reasons. This model allows us to develop

an algorithm for object detection which is firmly rooted in Gaussian-based statistical decision theory and

IFor the purpose of illustration, in this section we use field data from a buried metal mine to illustrate clearly the concept
under consideration. Examples which demonstrate better the utility of our approach on more challenging problems, including
buried plastic mines, are given in Section 4.2.

37



kground removal

100

200

300

400

Time
Time

600

700

800

900

1000 1000

10 20 2 10 20 2

15 15
Down-track position Down-track position

(a) (b)

100
200
300

400

Time
Time

600

700

800

900

1000 1000

10 15

20 25 20 25
Down-track position Down-track position

10 15

(¢) (d)

Figure 4.2: Signals from four T/R pairs, after background removal, a) pair 1, b) pair 2, ¢) pair 3, d) pair 4.
Unit in the horizontal axis is about 7.6 cm and unit in the time axis is 0.02 ns.

which can be generalized in the future for more complex noise processes. Moreover, the complexity of
such algorithms is quite low making them well suited for real-world implementation. Finally, test results in
Section 4.2 from real field data demonstrate that the method is quite effective in detecting objects. Thus,
the Gaussian noise model is shown to work in practice. While it may be interesting to explore other, more
accurate models for the sensor noise to determine for example what can be gained in terms of performance

and what would be lost in terms of computational complexity, such an effort is beyond the scope of the work
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in this paper.

Based on the previous discussion, after background removal the hypotheses test in (4.1) may be written as

where the notation y ~ N(X,R,) indicates that y is distributed as a Gaussian random vector with mean X
and covariance matrix Ry.

As stated in section 1.2, we take a two-step approach to the processing of y(m,n). First for each n we use
the HANOVA procedure to generate a single test statistic, Y (n), from the data from all T/R pairs. Second,
a recursive, sequential detection scheme is employed to process Y (n) as we proceed down track in order to

determine where objects are present.

4.1.1 Cross-track processing

We begin by discussing the use of HANOVA to process data in the cross-track direction. HANOVA is a
generalized version of analysis of variance (ANOVA). ANOVA is a body of methods to analyze the data with
a view to test hypotheses about the effects of one or more factors Wreview the basics of ANOVA,
we follow the notation established above for the GPR problem and for simplicity assume we have one data

vector from a single T/R pair of size K x 1, y ~ N(s,oZI) and we wish to test Hy : s = 0 (i.e., no object)

eq:2

. . . . . Fan:1996
vs. H; :s # 0 (i.e., an object present)?. Standard ANOVA is essentially an “energy detection” scheme [27

where we estimate s by y, generate the test statistic Y = ||y||?, and compare Y to a threshold, 7. If Y exceeds

2For notational simplicity, we drop the explicit dependence of all quantities on m and n in this discussion
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the threshold, H; is chosen, else Hy is selected. The probability of detection of the standard ANOVA is

S2
Py(H,|H,) = 77_"?“”2_’{ 4.3 :
W e (43)
(Tg

where + is the test threshold decided by setting an acceptable probability of false-alarm under Hy and @ is
the complementary cumulative distribution function and is strictly decreasing %&

Recently, Fan %d Fan and Lin W&ve noted that the performance of ANOVA suffers for
problems when the signal of interest is limited to a window of the observation vector. The reason is that
a full dimensional test loses its power due to accumulation of stochastic noise. To see why, suppose s is
different from 0 only for say the first ko samples of the full observation vector. Then on average as K > kg
goes large, Eszl [s]z /agx/ﬁ decreases due to the accumulation of zero mean noise samples and the term
within the parenthesis of (4.3) increases, thus reducing P;. Therefore, for higher probability of detection,
we would like to confine the test on a window mostly containing the signal of the observation vector. The

window we choose is a box window w, defined as

1, k=Fky, - ks
[W]k = (4.4) |eq:3

0, otherwse

where 1 < k; < ks < K. The k; and ko are chosen in a preset manner, as discussed later in this section.
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Multiplying each element in y by the corresponding element of w gives the windowed y,

[ywly = Vg X [W], k=1,--- K. (4.5)

To demonstrate the utility of HANOVA, we test the time-series shown in Fig. 4.3(a). We choose to test
the vector at its full dimension k; in (4.4) is 1 and k2 = 1000, and two windowed sub-dimensions (each
containing fewer and fewer noise components) k; = 100 and k2 = 900, and k; = 200 and k> = 800. From
Fig. 4.3(b), it is seen that by setting the window properly, higher probability of detection is gained at different
levels of detection thresholds, v in (4.3). It demonstrates that when signal is not “full-dimensional”, looking
for a window of signal-rich sub-dimensions to test will increase the probability of detection.

When the observation is a sequence of high-dimensional vectors whose components are mostly noise, as
is the case for our GPR problem, it is desirable to adaptively choose the window to maximize the probability
of detection. This kind of method of reducing a full dimensional test to a windowed version is called
HANOVA an:l.ggim’s original work was limited to problems in which the first ky dimensions are believed to
be signal-rich and used in HANOVA, with kg found from the data. Here we consider a generalization of Fan’s
work to take into account the fact that for the GPR problem the transient signal is significant over a window
not generally starting with the first dimension but in the middle of the observation vector. Moreover, this
window will vary with (m,n).

To choose this window we note that (4.3) indicates that the probability of detection achieves its maximum
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Figure 4.3: Motivating example for use of HANOVA rather than ANOVA. (a) displays sample data collected
by a GPR when over an object. The transient nature of the relevant portion of the signal is clear. Unit in
time is 0.02 ns. Using this signal, in(b) we display the decreasing detection rates associated with including
increasing numbers of “noise” samples in the processing. Probabilities of detection vs. thresholds, solid line,
a window from 200 through , -+’ line, a window from 100 to 900, -0’ line, no window.

value when the term inside the parenthesis is minimized. Equally, one wants to maximize the quantity

P, [s(m, )]
—1 —Vke—k+1 4.6
arkglilzax 2k Rt 1 2 — K1 (4.6)

where k1 < ko and kq,ke € 1,--- , K. The difficulty for us is that in general, the precise structure of s is not

known. Hence, we use the data to form an estimate of s as follows. Assume we are at the nth stop, then we

estimate s by the mean value of the previous I vectors

Z;=1;’(m7.7')7 n= 17 ,l
y(m,n) = (4.7)
Syl 5
where m = 1,--- , M and the corresponding window w(m,n) is decided based on §(m,n) as ki, ko are
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e FORn=1:N

—FORm=1: M

— §(m,n) = Ziza=y(md)

x Set k1(m,n) =1, find ka(m,n) by

ka(m,n) = argmax

[z’,:;[ﬁ(m,n)]k _ @]

ko=1,--- K U‘g\/E
* Let Pli:ko(m,n)] = <I>([gj2(m,n)][1;k2(m,n)]), where ®(-) is an operator that flips up-down
elements of its operand.
*x Find k1 (m,n) by

sy

k1(m,n) = k2(m,n) — arg max
k

x Set the window w(m,n) by

1, k=ki(m,n), -, ka(m,n)
0, otherwse

[w(m,n)], = {

*x Windowed yy (m,n) is decided by
Yw(m,n) =y(m,n) x w(m,n) (4.8)
— ENDFOR
¢ ENDFOR

Figure 4.4: Steps of deciding window w(m,n) and yy(m,n).

defined by (4.6). More will be said about choosing a proper [ in section 4.3.

Rather than looking for the optimal window by searching over all k;-ky pairs, we pursue a suboptimal,
but more efficient two-stage approach. First, we fix k; as 1, incrementally increase k2, and stop when (4.6)
is maximized. Thus we determine the end point of the window ky. Starting from k2, working backward
toward the first point, we similarly determine the starting point of the window, k1. Both searching steps

can be computed in linear complexity, it takes o(K) steps to find the ky and o(ks) steps to find the k3. In

summary the steps for looking for windows at the nth stop of the GPR array are given in Fig. 4.4.

3The notation o(K) means that the computational complexity grows slower than or equally fast as K increases.
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Figure 4.5: HANOVA and SPRT processing results for metal mine data shown in Fig. 4.2. Unit in the
horizontal axis is about 7.6 cm.

Having determined the window at the position (m,n), the next stage of processing is to generate a single
detection statistic at stop n. Here we generalize HANOVA to multiple vector observations, via
LM
— > llyw(m,n)|>. (4.9)

2
0’9 m=1

Note yw(m,n) can be of different length because of different window applied. Fig. 4.5(a) shows the result of
applying HANOVA to the data in Figure 4.2. Where the HANOVA output is high, so too is the likelihood
of an object being present. Thus in Fig. 4.5(a), the object is clearly detectable. More examples involving

different types of objects will be given in Section 4.2.

4.1.2 Down-track processing

While HANOVA detects statistical significance at one stop of the array, it does not capture the object signal

structure seen as the array moves down-track. To improve detection performance, we employ a sequential
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detection scheme to process Y (n) recursively as n increases in order to identify the transient signal arising

Helstrom:1995, Siegmund:1985
from the mine | [25,43]. Specification of this sequential probability ratio test (SPRT) begins by noting that

L. . Lo . [Fan:1996
under our models Y (n) takes on a 2 distribution under both Hy and H;. Standard statistical analysis o7

yields

Hy : Y(n) ~ Xzzile Ak(m,n) (0)

H: Y(n) ~ X%%zl Ak(myn) (62(n)) (4.10) |eq:hanova
forn =1,---, N where the notation x ~ Xf,(62) indicates that the random variable z is distributed according

11994
to a x2 law of order p and non-centrality parameter 62 R and Ak(m,n) = ky(m,n) —ky(m,n) is the length

of the (n,m)th window. For the GPR problem it is easy to show that

M
3 lstm,m) x wim,m)] 2. (a.11)

m=1

q
| =

For our problem, the length of each window, Ak(m,n), is large (on the order of hundreds) and the
Port:1994
central limit theorem permits us to approximate the x2 distribution using a Gaussian distribution [T28]. We

then have

M M
Hy: Y(n)~ N(ug,02) =N (Z Ak(m,n), 2 Ak(m,n))

M M
Hy: Y(n) ~N(u(n),o2(n) =N (Z Ak(m,n) +6%(n), 2 Y Ak(m,n) + 452(n)> .

(4.12) |eq:normal
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At stop n, the log likelihood ratio for the hypotheses testing problem in (4.12) is

_ ) ——
u(n) =Iln m, n=1---,N (4.13) |eq:likeli

where p, (Y (n)) is the PDF of Y (n) evaluated at the nth stop under H; and po(Y (n)) is the PDF of Y (n)
evaluated under Hy. Under Hg, po and 03 are estimated using data from an object-free area. Therefore,
for this algorithm, the GPR array must start by collecting data in a calibration region to initialize these
variables. Under Hi, one difficulty with generating u(n) is that ui(n) and o%(n) are typically not known
a priori since the underlying s(m,n) are not assumed known. It turns out that we only need to estimate

p1(n), and o?(n) can be found from the following relation

M
oi(n) = 2 Z Ak(m,n) + 46%(n)
m];l u
= 2 Z Ak(m,n) +4 [ul(n) — Z Ak(m,n)]
m=1 m=1
M
= 4dui(n)—2 Z Ak(m,n). (4.14) |eq:estima

At the nth stop, we estimate the mean of Y (n) by its maximum likelihood estimator p1(n) = Y (n).
The sequential probability ratio test statistic U(n) is a cumulative sum, changing with the acquisition of

each new u(n)

U(n) = max(0, U(n — 1) + u(n)). (4.15)
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e U(1)=0
e FORn=2,---,N

— m(n) =Y(n)
— Form 02 (n) according to (4.14)

Form u(n) according to (4.13)
U(n) = max(0, U(n — 1) +u(n))
IF U(n) > a, declare object, ENDIF

¢ ENDFOR

Figure 4.6: Sequential processing.
Because subsurface object detection is a binary hypothesis testing problem, e.g., we are only interested in
knowing whether there is a buried object, the SPRT statistic is bounded from lower bound, zero. When
U(n —1) +u(n) is negative, U(n) is reset to zero. For a preset threshold a, the SPRT will make one of two

decisions at each n

Un)>a = choose Hy

U(n) <a = take another observation.

. . . . Basseville:1993 | . .
The sequential detection is then essentially a repeated SPRT A4] and summarized in Fig. 4.6.
Fig. 4.5(b) shows the sequential test statistic when the SPRT is applied to the data in Fig. 4.5(a). Because
the SPRT in (4.15) has the form of a modified “integrator,” a typical time series for the SPRT statistic
takes a step-like form. The larger and sharper the step, the more likely it is that a target is present. At the
position where there is an object, the sequential test statistic has a clear upward change again indicating

the existence of an object at about position 16.
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4.2 Examples

In this section we use field data as examples to illustrate the performance of our method. The field data
are collected by both single GPR and GPR arrays at different test sites. For each data set, we compare
the results from using standard ANOVA, HANOVA, ANOVA followed by SPRT, and HANOVA followed
by SPRT. Comparison indicates that generally HANOVA performs better than ANOVA, and with SPRT,
both ANOVA and HANOVA make fewer false-alarms. In other words, HANOVA with SPRT gives the best
receiver-operating characteristics, as we shall see later in this section.

At first, we apply our method on data collected by single GPR at different test sites. Some data are taken
under relatively favorable condition, while most are from more hostile test sites which involve rough ground
surface and other clutter. Fig. 4.7 compares results of ANOVA and HANOVA on a buried steel object at
position 50. For comparison, the outputs of ANOVA and HANOVA are normalized to one. It is observable
that while both methods detect the object easily, the HANOVA is better in suppressing noise output where
there is no object, e.g., at position 1 through 40 and 60 through 100, Fig. 4.7(c) and (d). Fig. 4.8(a) and (b)
show the results from detecting a plastic mine, M19, at position 50. Again, the HANOVA performs better
in suppressing noise. At positions 20 through 40, the HANOVA creates a much lower noise level than the
ANOVA does. Similarly, the HANOVA produces a cleaner output at the end of the run.

Fig. 4.8(c) and (d) show the results of ANOVA and HANOVA in detecting an anti-tank mine, TM62,
from a very “noisy” data set. The mine is buried at position 60. Outputs of both HANOVA and ANOVA
consist of the correct detection and some false alarms. The HANOVA maintains a better performance than

the ANOVA in the sense that, for a given detection threshold, the HANOVA would generally have a smaller
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Figure 4.7: Results of a single GPR measurement above a steel object around position 50, a) raw observation,
b) observation after background removal, ¢) ANOVA output, d) HANOVA output. In a) and b), unit in the
horizontal axis is about 7.6 cm and unit in the time axis is 0.02 ns.

number of false-alarms. For the HANOVA, no false alarms will be declared for a threshold greater than
0.5, while for the ANOVA, the threshold must be set above 0.8 to avoid making a wrong decision. Between
threshold 0.5 and 0.8, the ANOVA will make two false-alarms while the HANOVA has zero false-alarm.
Next, by comparing the outputs of the SPRT in the above three examples, we see that sequential process-
ing generally smoothes the output and generates fewer false-alarms than by using ANOVA (or HANOVA)
only, Fig. 4.9. In all three examples, SPRT following HANOVA performs better than SPRT following
ANOVA, in the sense that the output is more leveled off at object-free area and the jump at the position of
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Figure 4.8: More comparison between the ANOVA and HANOVA, a) ANOVA over an M19, anti-tank mine,
buried at position 50, b) HANOVA over the M19, ¢) ANOVA over a TM62, anti-tank mine, buried to the
side of the track at position 58, d) HANOVA over the TM62. Unit in the horizontal axis is about 7.6 cm.

the buried object is sharper.

To study the receiver operating characteristic (ROC) of the method, we test our method on multiple
runs of different type of targets. Fig. 4.10(a) shows the ROC curves of ANOVA and HANOVA to detect 60
metallic objects. The objects include metallic mines such as TM15, TM46, and PMN. Fig. 4.10(b) shows the
ROC of ANOVA-SPRT and HANOVA-SPRT. Compared with Fig. 4.10(a), SPRT improves the performance

of both ANOVA and HANOVA. In generating these curves a correct identification of any of the objects was
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taken to be a “detection” whether or not the object itself was a mine. Indeed, as noted in the Introduction,
the algorithm in this paper is intended only to detect the presence of objects below the array and not to
solve the classification problem. Still, given the “real-world” conditions under which the data were taken,
the low false alarm rates here point to the robustness of our approach.

Next, we compare the performance of ANOVA, HANOVA, ANOVA-SPRT, and HANOVA-SPRT in
detecting 70 plastic mines. The mines are M19, VS-1.6, T72, and C4A1. Fig. 4.11 shows the ROC curves of
the above four methods. It is seen that both the ANOVA-SPRT and HANOVA-SPRT perform better than
the ANOVA and HANOVA, respectively.

As another example, we test our method on a different array radar system at another test site. The setup
of the GPR array is shown in Fig. 4.12. There is one transmitter in this system. In front of the transmitter,
four receivers are positioned in a 2x2 pattern. Above the transmitter and the receivers there is a hyperbolic
reflection plate, it is set so that the transmitter is at the focal point of the reflection plate. The array moves
on a linear track to collect data. At each step, the transmitter sends a spherical wave to the reflection plate
and after reflection, the sphere wave becomes plane wave. The four receivers then collect reflection of this
plane wave from the ground. The system has the advantage of generating plane wave and points it forward
to reduce ground reflection. Fig. 4.13 displays collected data from the two front receivers at the Dedham
test site of Northeastern University and the corresponding signal after background removal. In an area of
58 m?, there are 12 buried landmines of different types, such as M19, PMN, VS-2.2, and so on. Using our
method we are able to detect all 12 mines with a few false-alarms, Fig. 4.14. The results are similar to those
obtained by a single GPR. For a detection rate above 90%, the HANOVA has a significantly smaller number

of false-alarm.
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4.3 Window Selection in HANOVA

Ideally, we want to find a window that is sensitive to the presence of a signal and provides little response in
the test statistic when there is noise only. But these two requirements are often in conflict with each other.
From (4.7), we can change the order [ of the MA process to control the window we use. The smaller is [, the
more sensitive the window is to the presence of signal and strong noise. On the other hand, the larger is [,
the more robust will the statistic be to noise, which translates into a smaller probability of false-alarm. But
a large [ reduces sensitivity of the HANOVA to signal. Fig. 4.15 shows the effect of I on window selection
and the corresponding HANOVA results. Three different [ are used, i.e., I = 1,4,9. In the data, there are
three mine objects, two metal mines at the position 110 and 170. A weak mine object is at position 25. For
comparison, we normalize the HANOVA outputs in each case by its maximum value, which corresponds to
the strong metal mine buried at position 110. Fig. 4.15(a) and (b) show the window chosen by a MA of
order 1 and the resulting HANOVA output. The two strong objects can be detected at a threshold of 0.7,
the weak object can only be found at a threshold of 0.2. Fig. 4.15(c) shows the window chosen by a MA
of order 4. The window oscillates much less than the window in Fig. 4.15(a). From the HANOVA result,
Fig. 4.15(d), we can find all the three objects at a threshold of 0.3. Increasing the order of MA process can
make the results worse, Fig. 4.15(e) and (f). A large window reduces the sensitivity of the HANOVA to
signal and actually makes detection more difficult. Now the weak object at position 25 cannot be detected
at a threshold greater than 0.3. As a guideline, we find that MA processes of order between 3 and 10 yield
good windows both in sensitivity to signal and robustness to noise. This selection is affected by the step-size

of the array. An array moving at small step-size will allow an MA process of large [ in selecting windows,
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and vice versa.

4.4 Concluding Remarks

In this chapter, we have proposed a sequential, high-dimensional ANOVA to process GPR returns. The
method is tested on real data and has a relaxed requirement on the physical model used in the processing
routine. The method is on-line implementable and has a linear computational load. The method works in
two stages: first it looks for statistically significant difference from array observations, second, it applies a
sequential detection as new data are obtained. HANOVA is powerful in the sense of maximizing probability of
detecting statistically significant difference among sub-dimensions of a full vector of observations. Sequential
detection recursively processes the result of the HANOVA and enables real-time processing as new data are

collected. We have demonstrated the performance of this technique on samples of field data.
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Figure 4.11: Rate of detection and rate of false-alarms in detecting plastic mines, solid line is the result of
HANOVA, dashed line is the result of ANOVA, a) ANOVA vs. HANOVA, b) ANOVA-SPRT vs. HANOVA-

SPRT.
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Chapter 5

Iterative Histogram Equalization To

Enhance GPR Image

In this chapter we investigate using histogram equalization to enhance GPR images. As mentioned in the
previous chapters, GPR inevitably registers the specular reflection from the ground which interferes GPR
signal processing very much. Compared with the specular reflection, landmine reflect signals are of small
amplitude and hard to observe. Histogram equalization is very useful in enhancing weak signals P@iﬁi—i%%ng
iterative histogram equalization and background removal method, we can obtain better GPR images to
improve landmine detection. The background removal method used are median filter and subtraction of the
ensemble mean. The image enhancement method presented in this chapter is very effective in improving
GPR images when the landmines are buried close to the surface. In this case, time-gating as a method of

separating the specular reflection from the landmine reflected signals is not difficult to carry out because

59



m instroduction |

of the proximity of the two signals. The iterative histogram equalization (IHE) does not require searching
the boundary between the specular reflection and the landmine reflected signals. Instead, by enhancing the
landmine reflected signals, background removal becomes easier and more effective. At the end, landmine

reflected signals is more observable and detectable.

5.1 Introduction

The histogram of a signal represents the relative frequency of occurrence of the various amplitude levels in the
signal. Obviously the signal can be of one-dimensional or multi-dimensional. In GPR image enhancement,
histogram-modeling techniques modify a GPR image so that its histogram has a desired shape. For example,
in most cases, we would like to enhance the low-contrast part of the image which contains the landmine
reflect signals. As we will see, a GPR image of enhanced low-contrast part has a histogram stretched out.
Histogram-modeling techniques fall into three categories, histogram equalization, histogram modification,
and histogram specification, respectively. We use the histogram equalization to obtain better GPR images.

At this point, some observation about landmine detection are helpful to understand the challenges of the
problem. To the contrary of intuition, it is usually the shallowly buried landmines that is difficult to detect
because they are close to the surface and their signals are mixed with the specular reflection from the ground.
For the deep buried landmines, time-gating is often sufficient to separate the landmine reflected signal from
the ground bounce, i.e., by throwing away signals arrived in the first few nanoseconds one will have only
the landmine reflected signal left and detection is not very difficult. Returning to the detection of shallowly

buried landmines, we will see that simple background subtraction does not always produce satisfactory
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results. On the other hand, using histogram equalization, we can enhance the landmine reflected signal
and then background subtraction will be more constructive. What’s more, better result can be obtained by
iteratively applying the histogram equalization and background removal. In the next section, we introduce
an iterative histogram equalization method to enhance GPR images. The field data used in this chapter are

collected by BRTRC, Inc. at Fort AP Hill test site in Virginia, USA.

5.2 Iterative Histogram Enhancement

In landmine detection using GPR, the desired signal is the reflected wave from buried landmines. To enhance
the landmine reflected signals, we use histogram equalization to increase the contrast of the GPR image.
After the histogram equalization, background removal is carried out by subtracting the ensemble average
of the equalized image and a median filter is applied to remove any speckle point in the image. The whole
process is iterated to give better result before it diverges. The flowchart of iterative histogram equalization
is shown in Fig. 5.1. The median filter is taken over a window of 3 x 3. For a received GPR image y(m,n)

of size M x N, the mean subtraction is carried out as

z(:,n) =y(t,n) -y, n=1,...,N (5.1)

where ¥ = 25:1 y(:,n) is the ensemble average of y along the column direction. The median filter is

defined as

z(m,n) = median{y(m — k,n — 1), (k,l) € W} (5.2)
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where W is a pre-chosen filter window, usually of size 3 x 3, 5 x 5, or 7 x 7. The median filter is able to
remove a single very unrepresentative pixel in the filter window. The algorithm for median filtering requires
arranging the pixel values in the filter window in ascending or descending order and picking the middle
value. If the number of pixels in the filter is an even-number 2k, the median value is calculated as the
average of the arranged pixels at position k£ and k£ + 1. Because the average of two numbers is usually
different from either of the two numbers, median filter is almost always taken over a filter window consisting
of an odd-number of pixels such that the median is an actual pixel value in the filter window. For this
reason the median filter is better at preserving sharp discontinuities. Because in increasing image contrast,
the histogram stretch does not discriminate the desired details from the landmine reflected signals and other
small undesirable disturbance, interference will appear as the iteration goes on. The interference appears in
the form of speckle noise and can be very well removed by the median filter. In the next two sections, we

use examples to compare the performance of IHE with and without median filtering.

5.3 Examples

5.3.1 2-D examples

In this section we use some examples from field data to show the performance of the IHE. Fig. 5.2 (a)
displays a GPR image from a buried EM12 landmine at depth of 2.54 cm (1 inch). Output of subtracting
the ensemble average is shown in Fig. 5.2 (b). Fig. 5.2 (c¢) and (d) plot the columnwise Ls norm of Fig. 5.2 (a)
and (b). It is seen that there is not too much improvement. Results of histogram equalization are shown

in Fig. 5.3 where the images generated with and without median filtering are compared. It is seen that in
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Figure 5.1: Flowchart of iterative histogram equalization.

both cases the landmine is readily observable after 6 iterations but the images generated without median
filtering have speckle noise. The stripes to the left and right side of the landmine signal are due to the
background removal method, which is a subtraction of the ensemble average. Fig. 5.5 plots the histogram
of the results of the THE at iteration 1,2,...,6. From the figure, we see that the largest component of the
histogram increases as the iteration goes on, this corresponds to a more homogeneous background since the
largest component correponds to the background. This change is desirable because it means an increased
contrast of the image.

Fig. 5.6 shows results of applying the THE over a buried M21 landmine. The change in histogram is
displayed in Fig. 5.7. From both figures, it is seen that as iteration increases, the IHE produces better
images. Another example is shown in Fig. 5.8. In the figure, a VS16 landmine is buried at 2.54 cm. The
landmine is easily observable in Fig. 5.8 (d). The bright spot at the upper left corner can be eliminated
because in most cases we know the height of the GPR and signals arrived much earlier than the ground

bounce can be safely ignored.

5.3.2 3-D examples

The IHE can be expanded to three dimensions in a straight-forward manner. Again we use data collected

at Fort AP Hill test site to demonstrate the performance of the THE. The data was collected by a single
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Figure 5.2: (a) Original GPR image over an EM12 landmine, (b) image after subtracting the ensemble
average, (¢) columnwise norm of (a), (d) columnwise norm of (b).

GPR running down a linear track, starting from different cross-track position. The whole data set is of size
416 x 21 x 8 or 416 x 24 x 8, which means that at each stop the GPR takes 416 samples in time and makes
21 or 24 stops along the track, covering roughly one meter to 1.2 meters. In both cases, the GPR starts
again in one of eight different cross-track positions. Two examples are given in Fig. 5.9 and 5.10, over an
M15 and a VS-22 landmine. While in both cases there are speckle noises in some frames, it is seen that by

combining the eight images we can easily detect the landmines.
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5.4 Concluding Remarks

In this chapter, we present an image enhancement method based on histogram equalization. The THE
increases the contrast of a landmine reflected signal by altering the histogram of the original GPR image.
Followed by background subtraction and median filtering, the IHE is able to eliminate most of the ground
bounce and keep landmine reflected signals intact. The speckle noise incurred in the iteration is removed by
the median filter. The iterative method presented in this chapter aims to enhance GPR images when the
landmine reflected signals are weak in amplitude and do not display a manifest hyperbolic curve usually seen
in the GPR images. The method is based on image processing technique and statistical signal processing.

In the next chapter, we propose an optimized migration method based on the wave equation.
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Figure 5.3: Left column, images of the IHE with median filtering at iteration 1, 3, and 6. Right column,
images of the IHE with median filtering at iteration 1, 3, and 6.
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Figure 5.6: (a) Original GPR image over an M21 landmine, (b) image after subtracting the ensemble average,
(c) image of histogram equalization, (d) image of the IHE result at iteration 6.
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Figure 5.8: (a) Original GPR image over a VS16 landmine, (b) image after subtracting the ensemble average,
(c) image of histogram equalization, (d) image of the ITHE at iteration 6.
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Figure 5.9: (a) Cascaded GPR images over an M15 landmine, (b) cascaded images of the THE at iteration
-a] 1, (¢) cascaded images of the THE at iteration 6.
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Figure 5.10: (a) Cascaded GPR images over a VS-22 landmine, (b) cascaded images of the THE at iteration
1, (c) cascaded images of the THE at iteration 6.
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Chapter 6

Optimized F-K Migration to Locate

Landmines

To localize a buried landmine, F-K migration can be used to reconstruct underground reflectivity of the
medium. For the purpose of discussion, we describe the F-K migration in two dimensions. F-K migration
can be generalized to three dimensions in a straight-forward manner. Denote the 2-D wavefield registered
by a GPR array by p;(z,z = 0,t) where x is the horizontal direction, z is the vertical direction pointing from
the surface downward to the soil, and ¢ is time, then the task of F-K migration is reconstructing subsurface
reflectivity po(x, z,t = 0) from the received wavefield at the surface }BFP(%M

F-K migration has been proven to be a very effective geophysical inversion method in seismic data
processing. But there are additional considerations when using F-K migration on GPR data to localize

landmines. First, the ground surface is not flat. Rough ground surface introduces random time-delays and
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if not treated properly, this random time-delay affects performance of the F-K migration. Second, there are
noise and clutter in GPR signal and F-K migration may generate sidelobes. In landmine localization, regular
F-K migration uses constant wave propagation velocity for all the T/R pairs and performs well when GPR,
signal is clean. In the presence of rough ground surface, noise, and clutter, its performance deteriorates.
Using different velocities at different GPR, positions is able to improve F-K migration output. The varying

velocities are determined by Tikhonov regularization.

6.1 Algorithm

ation algorithm ‘

6.1.1 F-K migration

Here, we assume that most of measurement noise and ground reflection have been eliminated by some
. X . Xu:2000c¢ . .
preprocessing methods, such as moving average filtering 46]. The most important assumption of F-K
migration is the exploding reflector hypothesis. At time zero, the exploding reflector activates and emits
a spherical wave in all directions and the exploding reflector disappears. The array of GPR registers this
spherical wave at different horizontal positions. These waves are received at each surface point (z,z = 0) as

a function of ¢, so we can represent them as p;(x, z = 0,t), which satisfying the scalar wave equation

1% _ Opi | &pi
W2 o2 or? + 922 (6.1) |eq:wave e
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where v is the velocity of wave propagation and considered constant in the horizontal and vertical direc-

tion, Fig. 2.2(b). And the extrapolation equation is

2 3
ky(w,v) = [(:—2 — ki] . (6.2) |eq:extrap

zdag:1984
The vertical wavenumber k. represents the dispersion relations of the one-direction wave equation T51 For
convenience, we list steps of discrete F-K migration here. For an image of size M x N, F-K migration is

carried out as follows
1. Pi(ky,w) = FFT{pi(z,t)}.

2. Convert the integral over w to an integral over k,(w,v) by letting

3. Polky, ks) = Pi(ky, ks (w, v)).
4. po(@,z) = IFFT{P, (k. k.)}.

In the above procedure, a constant velocity is used in both the vertical and horizontal directions.

6.1.2 Regularization

:regularization ‘

The mismatches mentioned in Chapter 2 deteriorates performance of F-K migration. Despite the above

. . . . . . [Yu:1996 ,Holzrichter:2000
mismatches, F-K migration has been shown to work very well in GPR application [[33,34[. On the other

hand, because of these factors F-K migration may lose its resolution and sidelobes may show up in F-K
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(a) (b)

Figure 6.1: Rough ground surface introduces error in F-K migration, a) a flat ground surface and correct
localization, b) a rough ground surface and incorrect localization if velocities are kept constant. Solid line
refers to ideal situation, dash line is what will happen in reality.

migration results in some cases. To correct for the interference and inaccuracy introduced by the above
mismatches, we allow the wave propagation velocity v change in the horizontal direction. As pointed out
above, the key of F-K migration is the estimated velocity v in (6.2). In reality, v has to be estimated by
previous experiment or data from nearby area. In regular F-K migration, the estimated velocity is assumed
to be constant in the horizontal direction. A horizontally constant velocity does not take into account of
random ground surface and other mismatches in the assumptions of the F-K migration. Fig. 6.1 shows
how rough ground can cause error in F-K migration. First we assume that there are two GPR’s C; and
Cy on line AH and ground is flat and medium is homogeneous, Fig. 6.1(a) and a subsurface object is at
position G such that |GC;| = |GCs|. To back propagate waves received by the two GPR’s, we can draw
circles centering at Cy and Cs, with radius GC;. The radius is determined by multiplying wave propagation
velocity by estimated time-delay. The two circles ®C; and ©C5> intersects at G, which is the estimated

position of the object!. Next, we assume that the ground surface has a jump at point B and now the ground

1®C1 means the circle centering at point Cj.
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surface is the line denoted by ABDE, Fig. 6.1(b). The first GPR is still at Cy and but the second GPR
is at C3. Estimating time-delays as in the first case, we then draw two circles of different radii because it
takes longer for the GPR at Cj3 to receive reflection from G. Circle ®C; and ®Cj3 intersects at the correct
object position G. But that is under the assumption that we know how the ground surface changes. In
reality, without knowing the shape of ground surface, it will be assumed that the second GPR is still at
position Cy. Moving the center of ®C3 to Cz, the new circle ®C5 intersects with ®C; at F', which is deeper
than the correct object position. Therefore it confirms that when ground surface is rough, applying F-K
migration or other migration methods by assuming a flat ground surface will introduce error in the output.
One way to correct the above error is to assign a small radius to ®Cs, which means a small velocity shall be
used to back-propagate waves received by the GPR at C>. Essentially a desirable method can use varying
velocities to correct for the error introduced by the rough ground surface. The horizontal velocity dependence
makes Eq. 6.1 and hence Eq. 6.2 no longer applicable because now v is function of z. Nonetheless, from the
perspective of imaging processing, it is feasible to fine-tune Eq. 6.2 such that k. = k, (w, kz,v(z)). As shown
in section 6.2, improved results are obtained by allowing horizontal velocity dependence.

Our approach is better described in discrete form. Specifically, we denote the initial estimate of velocity
by vo and using vector notation, we write vy as a vector of length N, vo = [vg,...,vo], Fig. 6.2(a). For a

measured wavefield p of size M x N, from Eq. 6.2 we have a matrix k, of the same size such that

_[em) o 1 _
k,(m,n) = [Ug(n) —kz(n)] ,m=1,...,. M, n=1,...,N. (6.3)

Here we call k, the extrapolation matrix. In order to obtain better result, we allow velocities be different at
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(a) (b)
Figure 6.2: a) constant velocity in the horizontal direction, b) varying velocity in the horizontal direction.

each GPR position, Fig. 6.2(b). Denoting the new velocity vector as v, the extrapolation matrix becomes

w?(m) 2
v’(n) °

ke(mm) = |

In optimization, we then look for a solution to the following constrained optimization problem

Vv =argmin||v — V0||§ + )\ZR(po). (6.5) |eq:object:

elge:2000
Equation (6.5) is known as Tikhonov regularization T in signal processing. The regularization operator

R is chosen to be the inverse of varimax of p,

M N -1
Zm:l Zn:l pﬁ(m’ n)

R(po) = 5
(Pe) [Some1 Soney P2(m,n)]

(6.6)

Wy : 1998
The R(p,) is considered an approximation to entropy 48], The advantages of using inverse of varimax
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Figure 6.3: Image p, a) an image of all zeros with one non-zero element, R(p) = 1, b)—e), images of more
non-zero elements, R(p) = 2.0, 3.33, 5.0, 5.88, respectively.

norm over entropy are in computation, 1) computing varimax norm avoids logarithm of zero, which may
happen in computing entropy, 2) for an image of size M x N, the computational load of varimax norm is
a linear function of M N and the computational load of the entropy with L discrete probability levels is a
linear function of M N L, much more expensive if L is large. The first term in the objective function (6.5) is
a velocity fidelity constraint. It keeps distance between v and v( small because vy is often a good starting
point. The second term plays the role of a regularizer and is used to minimize entropy of p,. As A — 0, we
demand that v stay close to vo. On the other hand, as A — 0o, v¢ plays a limited role in influencing v and
v is solely determined by minimizing A\2R.(p,).

Minimizing R(p,) is to obtain simplicity or certainty in p,. Fig. 6.3 describes the behavior of R. An
image of all zeros and one non-zero element has the highest degree of certainty and it has a small R(p)
value of 1, Fig. 6.3(a). Adding more non-zero elements to the image reduces its certainty and the image
appears blurred. Fig. 6.3(b)-(e) shows that for images with increasing number of nonzeros, the corresponding
R(p) increases monotonically. In the case of F-K migration, minimizing R(p,) effectively eliminates some
sidelobes in the resulting images and sharpens mainlobes, which correspond to the correct positions of buried

landmines, as shown in section 6.2.
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Two dimensional F-K migration can be easily expanded to 3-D situation. In 3-D, wavefield p;(z,y, 2, )
obeys the 3-D scalar wave equation
1&p _ & Pp | OPpi

v2 Ot2  Ox2  Oy? + 022" (6.7)

And (6.2) becomes

The corresponding optimized 3-D F-K migration is a direct generalization of the optimized 2-D F-K migra-
tion. The 3-D F-K migration can be implemented using one-pass method or two-pass method which consists

of implementing two 2-D F-K migration successively, one in the z-direction and the other in the orthogonal

. . . . . |Gibson: 1983, Jakubowicz:1983 . . . Gibson:1983 |
direction, i.e, the y-direction I'[30,3I]. The one-pass method is also called full 3-D migration L31 , meaning
that migration is accomplished in a single pass at the full volume of 3-D data. In this paper, we chose to use
the one-pass method. In the optimization part of the 3-D F-K migration, the varimax norm is taken over

the full 3-D F-K migration images. Let p, be a 3-D matrix of size M x N x L, then

27]\7{:1 Er]:]:l ZIL:I Pg (m,n,1)
[y Ynly Sy p2(m,n, 1))

R(po) =
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zation examples ‘

6.2 Examples

In this section, we apply regular F-K migration and the optimized F-K migration to some data obtained
TeC:1997 . . . . .

at DeTeC [129]. At first, we demonstrate the effectiveness of our method in enhancing 2-D F-K migration

image. In the next subsection, we compare results of regular F-K migration and the optimized method in

3-D cases.

6.2.1 2-D examples

Fig. 6.4 shows the GPR signals over a small anti-personnel mine T72 of low metallic contents. In Fig. 6.4(a)
the hyperbolic curve of the mine is clear but there is interference beneath the hyperbolic curve. In regular F-
K migration, the mine position is correctly marked but sidelobes beneath the mine are severe. Qur method
produces a better image in which the mainlobe is enhanced, and sidelobes are considerably suppressed.
Fig. 6.5 compares result of regular F-K migration and our method over a large anti-personnel mine, PMN.
This mine has a “large” metallic content and a strong GPR reflection. Our method has a higher resolution
than the regular F-K migration does. Fig. 6.6 and Fig. 6.7 compare regular F-K migration and the optimized
method over two LI11 landmines. In Fig. 6.6, our method focuses at the right position of the landmine while
regular F-K migration generates a very noisy picture and puts mine location at a wrong place. For the second
LI11 landmine, the optimized method has a more obvious mainlobe and magnitude of sidelobes are reduced.
Table 6.1 lists values of R(p,) of the regular and the optimized F-K migration of the above examples. As
expected, results of the optimized F-K migration have smaller values of R(p,) (smaller entropy) than the

regular method. Note that among the examples, results of small R(p,) are visually more appealing than
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those of large values.
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Figure 6.4: F-K migration, a) GPR signals over a T72 mine, b) result of F-K migration, c) result of optimized
K migration T72 F-K migration.
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Figure 6.5: F-K migration, a) GPR signals over a PMN mine, b) result of F-K migration, ¢) result of
K migration PMN| oOptimized F-K migration.

6.2.2 3-D examples

Here we use GPR signals obtained from a 2-D grid on the x — y plane to show that our method has superior
performance than the regular F-K migration in three dimensions. The left column of Fig. 6.8 shows the GPR
signals from a 26 x 4 grid over a PMN landmine. Grid unit is 2cm. Using the 26 x 4 traces as input, regular

3-D F-K migration results are shown in the middle column. Results from our method are shown in the right
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Figure 6.6: F-K migration, a) GPR signals over an LI11 mine, b) result of F-K migration, c) result of
optimized F-K migration.
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Figure 6.7: F-K migration, a) GPR signals over another LI11 mine, b) result of F-K migration, c) result of
optimized F-K migration.

column, which compares favorably to the regular F-K migration. While there are variations in regular F-K

migration results, results of the optimized F-K migration are very consistent and correctly mark the mine
position.
6.3 Concluding Remarks

F-K migration can be used to process GPR array data to localize buried landmines. We point out some

limitations of using F-K migration on GPR array data and propose an optimization method in the form of
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Table 6.1: R(p,) of F-K migration and optimized F-K migration results.

R(po) T72 | PMN | LI11 (1) | LI11 (2)

F-K migration 233 | 333 588 556

Optimized F-K migration || 204 | 256 357 476

Tikhonov regularization to improve performance of F-K migration. As it is well known, performance of F-K

migration is directed determined by the wave propagation velocity. In regular F-K migration, velocity is

considered constant in the horizontal direction. The optimized F-K migration, aiming at minimizing entropy

of F-K migration image, allows wave propagation velocities be different at different GPR. positions. The

effect of varying velocities is to offset interferences introduced by rough ground surface, clutter, and possible

soil inhomogeneity. Minimizing entropy allows the optimized F-K migration to generate sharp and clean

image. A well chosen regularization parameter suppresses sidelobes in the F-K migration image and keeps

mainlobe at the correct position. Further modification and fast implementation of the optimization method

are discussed in Chapter 7.
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igration 3D PMN

Figure 6.8: 3-D example, left column, regular F-K migration image; right column, optimized F-K migration

image.
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Chapter 7

Future Work

ch:future work |

In previous chapters, we have demonstrated the performance of HANOVA followed by SPRT in object
detection and optimized F-K migration in object localization. Proposed work will be on a few fronts as

explained next.

7.1 Sequential Detection and Localization: Analytical Performance

Evaluation

nd Localization

Here we will work on schemes to integrate the sequential detection with localization. As the GPR moves
down-track, F-K migration can take wavefield obtained as input and back-propagate the wavefield. As new
trace obtained, F-K migration can combine the new trace with previous data in a “roll-over” manner. There-
fore, F-K migration can be incorporated with SPRT to detect and localize at the same time. Optimization

can be computed by a second computer or in a parallel computing scheme. On the other hand, we will use
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Monte-Carlo method to evaluate the performance of SPRT in terms of average run length and ROC’s.

7.2 Physics and Optimization

From the viewpoint of pure image processing, introducing horizontal velocity dependence is a method to
obtain better result. From the perspective of geophysics, the effect and meaning of horizontal velocity
dependence is not very clear at this point. In this part of the future work, we will examine the implication
of the horizontal velocity dependence on F-K migration. For the convenience of discussion, we summarize

regular F-K migration here

Pi(ky,w) = //pi(a:,z:o,t)e_i(k*””t) dxdt (7.1)

N 2%
k) = [5G -k (72)
Po(T,2,t=0) = / / P(ky,w)eilk=(@)ztkaal g,qr.. . (7.3)

Substituting (7.2) into (7.3), we obtain
Pol@,2,t =0) = / / P (ky, w)et (52 —KD2bkaz] guap (7.4)

In F-K migration, we treat the exploding reflector as a source and back-propagates from receivers to the
exploding reflector. On the other hand, we can also treat the receivers as an “array of sources” at positions
(m,0) where m = 1,..., M and the exploding reflector as a “receiver” at position (z,z). In this way, waves

propagate forward from the “array of transmitters” to the “receiver”. This process can be thought of as
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Leuschen:2001
a radiation problem and easily described by using Green’s function 501, Using vector notation shown in

Fig. 7.1, we have

po(r') = Z /P*(a:,w)[—w2p0G(r',rm;w)] dw (7.5) |eq:Green’:

T=T1

where G(r',r,) is the propagation Green’s function of the zero-offset GPR collections, P(z,w) is the received
signal by the zth receiver in frequency domain, w is the temporal frequency, and the superscript * stands
for complex conjugate. It is known that the Green’s function is a function only of the difference vector

R =1’ —r, and it satisfies the equation
[V2 + k|G (r' —rp) = —476(r' —1y) (7.6)

where 6(-) is the Dirac delta function and r' —r, = (x — 2,,)X + 2Z. The Green’s function solution to the
migration problem represents this solution in terms of a superposition of outgoing spherical waves with each
spherical wave being centered at the “source point” r, and weighted by the source strength P(x,w) at that

point. For comparison, we Fourier transform P(z,w) with respect to z and rewrite (7.5) as

po(r') = ZZM /[/ P*(kw,w)e"k”dkw] [~ 1oG(r' — 145 w)] dw

=1

= Z //P*(kz,w)e*ik“”[—w2u0G(r'—rz;w)] dwdk,

= //P*(km,w) Z e~ k=22 oG (r' — 143 w)] dwdk, (7.7) |eq:Green’:
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Exploding reflector
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reen’s function Figure 7.1: GPR geometry.

Comparing (7.4) and (7.7), we can see that the two migration equations are essentially the same. They both
apply a filter to the received signals to back-propagate them to the exploding reflector. The Green’s function
solution is based on the fact that the Helmholtz equation is linear and can be represented as a superposition
of elementary solutions to the equation when excited by delta functions. The F-K migration based on the
wave-equation reverses the roles of sources and receiver in Fig. 7.1 and back-propagates waves to the receiver.
Because of the reciprocity of the Green’s function, it is not hard to see that the two expressions are identical

in physics.

7.3 F-K migration in inhomogeneous medium

us FK migration‘

While F-K migration and other migration methods inversely propagate wavefield from the surface to sub-

surface, they do not explicitly take into account of attenuation in the soil. In this part of future work, we

propose a modification of F-K migration such that attenuation is considered. The 2D scalar wave equation

90



o .. [Chew:1990
in inhomogeneous medium is

Ppi Pp 1 9p Op

922 T 922 2o ot (7.8)
where
_ kK 2
T= - (HU/m?) (7.9)

where p and ¢ are magnetic permeability and electric conductivity, respectively. Small 7 means low atten-
uation. When 7 is infinitely small, the lossy wave equation reduces to the loss-free wave equation. Take

Fourier transform of (7.8), we obtain
(ke P+ P! = (=)’ P, + (—juw)r P (7.10)
From (7.10), we derive the extrapolation equation as
2 2
k, = [— + jwr — kg] . (7.11)

By taking attenuation into the wave equation, better results are expected from the F-K migration.
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n of resolution‘

7.4 Quantification of Resolution

Following the work of Berkhout %%ing resolution of far-field migrated result, we propose to use
similar approach to examine the resolution of near-field migration. The spatial resolution of the image is
determined by the width of the mainlobe, and the dynamic range is determined by the ratio of the mainlobe
amplitude over the maximum sidelobe amplitude. Narrower mainlobes and higher dynamic ranges provide
better resolved images. The lateral resolution of migration depends on the size of the GPR array and the

near field nature of GPR application in our research.
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