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Abstract:

The regularized least squares methods for the solution of ill-posed inverse prob-

lems are summarized, and appropriate references are stated. Additionally, an adap-

tive multi-scale algorithm is proposed to solve highly ill-posed inverse problems with

fewer degrees of freedom and comparable performance. The algorithm controls the

level of detail in the reconstruction by distributing the ¯ne scale information to the

appropriate intervals in the overall estimation interval. The method is applied to a

linear inverse problem, namely the reconstruction of a signal from its blurred and

noisy version. The results are stated, compared with the regular ¯ne scale approach

and the relevant properties are explained. This treatment is seen as a step for the

application of the algorithm to the nonlinear inverse problems where it is forseen to

provide a decrease in the complexity of the inversion as well as better convergence

in the solution space than the regular approach.

� �������	
��

Least-squares estimation methods are commonly used in solving linear in-

verse problems. A linear inverse problem can be expressed as the problem

of estimating the vector x based on the knowledge of a data vector b which

is related to x as b = Ax+ n. Here A is a known linear transformation ma-

trix and n is a random noise vector. Inverse problems are typically ill-posed,

meaning that small perturbations in the data can lead to large amplitude,

non-physical artifacts in the reconstruction. Linear ill-posed problems arise

in a variety of applications: astronomy [1], computerized tomography [2],

electrocardiography [3], early vision [5] and meteorology [4] are just a few of

these. Vast amount of literature on ill-posed problems exist in the setting of

Hilbert spaces and other in¯nite dimensional spaces. See for example [6], [7],
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[8], [9], [10], [11]. Also, introductions on ill-posed problems can be found in

[12], [1], [13], [14], [15], [16]. The paper by Hofmann [17] contains a valuable

material on in¯nite-dimensional as well as ¯nite-dimensional ill-posed prob-

lems. Most numerical methods for treating discrete ill-posed problems seek

to overcome the reconstruction problems by replacing the problem with a

nearby well-conditioned problem whose solution approximates the required

solution, moreover is a more satisfactory solution than the ordinary least

squares solution. This is done by adding an extra regularization term to

the cost function that is to be minimized, which itself incorporates more

information about the sought solution, for example forcing the solution to

be smooth.

The problem of reconstructing a signal from its blurred and noisy version

is an ill-posed problem as described above and regularized estimation meth-

ods can be applied to estimate each sample of the original signal with the

right choice of the regularization. When the blur is linear the solution to the

problem is found by minimizing the cost function in the form of jjAx¡ bjj.
The problems in the reconstruction due to ill-posedness is re°ected in the

properties of the matrix A. Namely, when the problem is ill-posed, the

matrix A is ill conditioned and all its singular values decay to zero in such

a way that there is no particular gap in the singular value spectrum (large

condition number of A) [18]. The norm to express the actual cost function

is typically chosen to be 2-norm (least-squares). The norm chosen for the

additional cost term can vary from 1-norm to 2-norm. When both terms

are expressed with 2-norm, the solution that minimizes the total cost can

be expressed by a simple linear equation.

When the blur is non-linear, the cost function is in the form of jjF[x]¡ bjj
and the reason of being ill-posed is less obvious mathematically, depend-

ing on the nonlinear mapping F. The additional regularization term again

can be chosen to be anything from 1-norm to 2-norm but in any case the

minimization of the cost must be done iteratively by applying numerical

techniques such as Levenberg-Marquardt, Gauss-Newton etc. The addi-

tional problem associated with non-linear problems is that the iteratively

converged solution is a local minima depending on the initial choice of the

estimated parameters and one cannot be sure about being global of the so-

lution. In non-linear cases, when the number of samples to be estimated

is large, sample-by-sample inversion might be inappropriate because of this

di±culty of approaching to the global minimum, plus the computational

complexity of the iterative techniques.

In our work, instead of estimating each sample, we propose to express

the signal to be inverted as a weighted sum of some set of re¯nable ba-
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sis functions and estimate the weight of each function. This is generally

known as estimation in a subspace. The basis functions we choose are re¯n-

able second order box splines (obtained by convolution of a box with itself

twice) [19]. Re¯nability means that each basis function (parent) can be rep-

resented as a linear combination of ¯ner scale children functions. Instead

of each parent one can use its ¯ner scale children in the basis set to get

a more detailed representation of the original signal at the intervals when

needed. The use of such a function tree is motivated by the fact that while

inverting, one might not need the same level of re¯nement at every place

in the estimation interval. In other words, depending on the vector to be

inverted, there might be regions in the estimation interval where coarser

scale representation is su±cient to give a satisfactory solution. If we can

adaptively determine the level of re¯nement required at the proper places in

the estimation interval, this allows us to have a lower order representation of

the unknown signal comprised of relatively few ¯ne scale coe±cients supple-

mented by a small number of coarse scale coe±cients. In some applications,

this fact may decrease the complexity by decreasing the order of estima-

tion and in others it can lead to better reconstructions than the ordinary

regularized solution. A similar approach was used related to wavelet-based

regularization techniques for two-dimensional non-linear inverse scattering

problems in [20], [21], where the representation of the original signal is done

using wavelet functions. Using the spline functions instead of wavelets in

this work, we give up the orthonormality property of wavelets which leads

to a more °exible method for modeling the unknown signal.

In order to produce a low order reconstruction based on this idea, we

must determine the distribution of the ¯ne scale detail adaptively based on

the perturbated data (we don't have the original signal to determine this)

in an automatic and controlled manner. The method to accomplish this

starts with an estimation based on a coarse scale set of basis functions and

iteratively re¯nes the reconstruction ¯rst to add detail and then to get rid of

unnecessary degrees of freedom to obtain a better description of the signal

by adjusting the resolution. The details of this procedure is explained in

Section 3.

As mentioned above, limiting the degrees of freedom this way in the re-

construction is useful for two reasons. First, one can achieve computational

e±ciencies with the help of low dimensionality. This is important especially

in the non-linear reconstruction problems, because the iterative numerical

techniques required in the reconstruction are computationally demanding.

Second, this approach can lead to better reconstructions, which is also im-

portant, in particular, in non-linear inverse problems where the convergence
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to a local-minima is a problem. In other words, it is possible to converge to a

lower cost point in the solution space than is the case for a high dimensional

sample-by-sample inversion approach. Although both advantages are seen

more likely to be abtained in non-linear problems, in our work, we present

the suggested technique by applying it to a linear problem as a demonstra-

tion of its use and as a step to achieving these advantages for non-linear

problems in the future applications.

Section 2 summarizes the principles of inversion using regularized least-

squares estimation for linear and non-linear problems. Section 3 describes

the method proposed in this work and gives the details of the algorithm that

controls the level of re¯nement needed. In Section 4, we apply the algorithm

to a linear reconstruction problem and state the associated results.
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Our problem is to reconstruct the signal x(n) from its blurred and noisy

(additive noise) version y(n). When the blur is modeled as a linear ¯lter:

y(n) = L[x(n)] + v(n) (1)

where L represents the linear ¯ltering operation. This can be written in the

matrix form:

y = Hx+ v: (2)

H is the matrix representing the linear ¯ltering operation L. In the special

case where the blur is also shift invariant (Linear shift invariant ¯lter), the

system L can be represented by its unit sample response h(n) and equation

(1) can be written using the convolution operation as:

y(n) = h(n) ¤ x(n) + v(n): (3)

Equation (3) can also be written in matrix form as in equation (2). In this

case, the matrix H representing the linear shift invariant ¯ltering operation

is a toeplitz matrix.

The standard linear least-squares solution to the problem stated in equa-

tion (2), for any matrix H (need not be toeplitz) is obtained by minimizing

the mean square cost:

argmin
x
jjy ¡Hxjj2

2
: (4)
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The well known solution to this is:

x̂ = (HTH)¡1HTy: (5)

In most cases, though, the problem is ill-posed, that is the solution

is very sensitive to perturbations of H and y. This happens when the

condition number of the matrix H is large [22]. In such a situation the

largest perturbations are associated with the smallest generalized singular

value of H [18]. One of the best known regularization methods is Tikhonov

regularization [10] (also called damped least squares [23]). The Tikhonov

regularized solution x̂ is de¯ned as the solution to the following least squares

problem:

x̂ = argmin
x
jjy ¡Hxjj22 + ¸

2jjLxjj22: (6)

¸ controls the weight of the regularization term on the cost function. The

weight should not be so small as to not stabilize the solution and it should

not be so big that it will outweigh the data term. As ¸ ! 0, we demand

that x̂ just ¯t the data. On the other hand, as ¸ ! 1 the data play a

limited role in in°uencing x̂ and we obtain overly smooth estimates. Proper

selection of this parameter is a non-trivial problem ([18], [24]), although in

some cases it can be set by trial and error.

The choice of regularization matrix L in (6) depends on the problem. The

choice of L = I, the identity matrix, controls the perturbations by putting

extra cost proportional to the energy of the vector x, forcing less perturbated

solutions by limiting the energy. Another popular choice of L is the di®eren-

tial matrix that gives ¯nite di®erence approximation to the ¯rst derrivative

of x(n).

L =

2
66664

1 ¡1
1 ¡1

. . .

1 ¡1

3
77775
N¡1£N

(7)

where N is the length of the vector x. This choice of L forces the elements

of vector x change smoothly by putting extra cost directly proportional to

the derrivative of x(n).

It can be shown that Tikhonov regularization of (6) in e®ect dampens

or ¯lters out the the contributions to x̂ corresponding to the generalized

singular values of H smaller than about ¸, making the solution less sensitive

to perturbations than the ordinary least squares solution [18]. In fact, it

is shown in [22] that the condition number of the problem (6) is inversely
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proportional to the parameter ¸. In addition, it can be shown that the

contributions to x̂ corresponding to small generalized singular values are

more oscillatory than large ones [25], therefore Tikhonov regularized solution

is indeed smoother than the unregularized solution since the e®ects of small

singular values are ¯ltered out.

The regularization term in (6) could in general be ¸2jjLxjjpp, p being in

the range [1; 2]. The p = 2 case is known as smoothness regularizer, based on

the discussion above. As p approaches 1, the regularizer is more encouraging

of forming pro¯les which have edges or other sharp discontinuities. With

p = 1, one has the total variation (TV) regularization scheme [26], [27].

When p is chosen to be 2, the solution to (6) can be expressed as

x̂ = (HTH+¸LTL)
¡1
HTy: (8)

The discussion in Section 2 until this point has been for the case of linear

blur. When the blur is non-linear, we have the model:

y(n) = f (x(n)) + v(n): (9)

where f(:) is a non-linear function. In matrix form:

y = F[x] + v: (10)

F is a non-linear operator on vector x. Least-squares solution is the vector

x that minimizes the regularized cost function.

x̂ = argmin
x
jjy ¡F[x]jj22 + ¸

2jjLxjj22: (11)

The solution to (11) can be found numerically by iterative techniques

such as Levenberg-Marquardt, Gauss-Newton, etc. These algorithms start

by an initial choice of x = x0, and iteratively approach to a local minima of

the cost function, generally depending on x0.

Up to this point we applied the least-squares estimation to the samples

of the signal x(n). Hence the order of the problem is N, the length of the

vector x. In another approach, if we express x as a linear combination of

M basis vectors bi; i = 0; 1; :::;M ¡ 1 then

x =
M¡1X
i=0

aibi , x = Ba (12)

where a = [a0a1:::aM¡1]
T and B = [b0b1:::bM¡1].
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Our aim now is to estimate a and express x̂ = Bâ. Assuming a linear

blur and using the equation (12) in equation (2)

y = HBa+ v (13)

and regularized least squares estimate for a from equation (6) is

â = argmin
a
jjy ¡HBajj2

2
+ ¸

2jjLBajj2
2

(14)

and using (8)

â = (BTHTHB+¸BTLTLB)
¡1
BTHTy: (15)

Since the length of vector a is M, the order of the least squares esti-

mation problem in this case is M. Therefore, if M ¿ N , that is if we can

satisfactorily express x with a number of basis vectors much less than the

length of x, then we can decrease the complexity of the solution a great

deal using this kind of approach. The quality of this approach, of course,

depends on how well we can approximate x withM number of basis vectors.

The same argument holds also for the case of non-linear blur. By ex-

pressing the vector x in terms of little number of basis vectors, it is possible

to decrease the complexity of the solution, although the solution cannot be

expressed by a simple linear eqation and must be found iteratively. The

solution is the minima of the cost function similar to (14):

â = argmin
a
jjy¡ F[Ba]jj22 + ¸

2jjLBajj22: (16)

where F is the non-linear transformation on x.

Depending on the application, one can choose a ¯xed number of basis

vectors (M ¿ N) that are appropriate to approximate x with some satis-

faction (estimation in a subspace). However, in most cases we do not have

much prior information about the properties of the original signal x, hence

we do not know the basis functions that would be appropriate to express

it. Solution to this, as we showed in our work, is obtained by choosing the

number of the re¯nable basis vectors variable and adapting the re¯nement

in the basis set by iteratively updating the reconstructions based on the

available perturbated vector y. Re¯nability discussed here means that each

basis vector (parent) can be represented as a linear combination of ¯ner scale

children vectors. Instead of each parent one can use its ¯ner scale children

in the basis set to get a more detailed representation of the original vector

x, which improves the reconstruction at the price of increase in the inversion

complexity. Choosing the basis vectors to be re¯nable, we can represent the
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original vector with any combination of ¯ne and coarse scale basis vectors

and have a control of adaptively concentrating the reconstruction quality to

the intervals of the original signal where more information is carried. This

control can be done by using the vector y, without knowing x, as will be

shown later.

The trade-o® involved in the control of re¯nement process is the follow-

ing: We do not want a lot of re¯nements everywhere, because re¯nement in

the basis increases the number of the vectors used to represent x, hence the

number of parameters that have to be estimated in equation (15) and this

increases the complexity of the reconstruction process. The parent vector

might just give a satisfactory representation of the original vector x in some

intervals without the need for its children and it is a good idea to stick with

the parents in these intervals to limit the complexity. So, the trade-o®, while

doing re¯nement is between quality of the reconstruction (better with more

re¯nement) and the complexity (less with less re¯nement).

A good way of implementing a strategy based on this idea is to construct

a basis vector tree (Figure 1) that is composed of splitting each vector to

its children, further splitting the children to their children and so on. The

vectors at the top of the tree cover a broader range in the interval in which

we want to estimate our original vector x, hence provide a coarser approxi-

mation to x. As we come down the tree, the children cover a narrower range

in the estimation interval and provide a ¯ner approximation to x. Figure 1

shows the graphical representation of such a tree, where each parent has four

children. By de¯ning such a tree, the problem of choosing a good basis that

balances the reconstructon quality and the solution complexity by adap-

tively controlling the degrees of freedom involved, reduces to the problem

of starting from a coarse scale basis vectors and determining the intervals

where we need to further re¯ne the initial basis vectors and the intervals we

stick to the coarser scale vectors. The more splitting we do, the better is

the reconstruction, however, the more complex we make the inversion.

One important point is worth mentioning once again. The vectors to give

a good representation of the original vector x must be determined without

knowing x. Therefore, the algorithm that makes the search in the re¯nable

vector tree to control the level of re¯nement needed, should ¯nd the good

combination of vectors utilizing the available perturbated vector y. The

following section describes the details of this algorithm and the basis vector

tree we used in our work, namely the second order box splines.
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Figure 1: The graphical representation of the vector tree
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The basis vectors that we use to represent the original signal x(n) are the

second order box splines which are obtained by convoluton of a box with

itself twice [19]. As explained above, each vector can be split into its ¯ner

scale children and we have a tree of vectors that are obtained this way. In

our case each vector has four children and the graphical representation of

the tree is similar to the one shown in Figure 1. The spline vectors are such

that they reach a maximum and they attenuate fast after a certain point and

become zero (Figure 2). The vectors at the same level of the tree have the

same width, which means they cover same length in the estimation interval

(Figure 3a). Each parent is a linear combination of its children and the

children give a more detailed representation in the interval that the parent

covers. Figure 2 shows this relation between a parent and its children. The

parent is obtained by the sum of the children at both ends and three times

the children in the middle.

As explained above, we want to express vector x as a linear combination

of a set of basis vectors that are to be chosen from this tree, which will

provide that the ¯ne scale information is appropriately distributed in the

estimation region. To demonstrate what we mean by "appropriate distribu-

tion of ¯ne scale information", assume for a moment that we know vector

x a-priori and we are seeking a good set of basis vectors (little in number,
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Figure 2: A parent and its children

good quality in the MSE sense) to represent x. Figure 3b shows how we

can express a square signal with 18 evenly distributed basis vectors (least

square ¯t, projection) that are at the same level of the vector tree as shown

in Figure 3a. We express the same square signal in Figure 4b with another

set of 16 basis vectors shown in Figure 4a, this time ¯ner scale vectors are

also used and concentrated around the discontinuity. The approximation in

Figure 4b is much better than the approximation in Figure 3b both sub-

jectively and in the MSE sense, MSE in 4b is 0.5234, MSE in 3b is 1.3783.

The reason for this improvement with less functions is that the basis vec-

tors chosen in Figure 4a are concentrated wisely in the intervals where more

information about x exist (the discontinuities) and coarser scale vectors are

used at the intervals where they are satisfactory (the °at intervals). Also,

vectors whose contributions to the overall function are small are discarded.

Such adaptation of re¯ned basis vectors can be done for any signal and we

will show that it is possible to do it based on perturbated vector y, without

knowing the original vector x.

The algorithm we use in order to ¯nd a good set of basis vectors that

represent vector x based on the vector y, starts with a low order, coarse

scale collection of basis vectors. It is obvious that when we split each vec-

tor in the basis to their children, we will get a better representation of x.

After splitting, though, we can search for those children vectors that don't

contribute more than their parents to the quality of x and merge them back

to their parents. By repeating splitting and merging back, we only keep

the ¯ner scale children which improve the representation of x and keep the
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Figure 3: a)The basis vectors at the same level of the tree (b)The representation of a

square signal with this set
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Figure 4: (a)The basis vectors re¯ned more at the discontinuity (b)The representation

of the same square signal with this set
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parents whereever they are good enough. The goal is to provide arbitrary

detail to x, followed by a stage in which we determine which, if any, degrees

of freedom associated with this detail warranted. Those not needed are re-

moved. While one might consider many methods to decide for how to do

the merging of the children to the parents to accomplish the stated goal, in

Figure 5 and in the paragraph following it, we explain an approach which

we have found to work well in our case.

After splitting all the vectors in the current basis set, we search for the

collections of nodes which represent a complete set of children for a given

parent. This collection normally is composed of four vectors while it has only

two vectors at the end points of the tree. Figure 5 shows these 4-vector and

2-vector collections in rectangles. For each of these collections we consider

a new basis obtained by replacing the ¯ne scale children with all of their

coarse scale parents. In the 4-vector case, there are three relevant parents,

while in the 2-vector case there are two relevant parents. Figure 5 shows

these parent vectors that are considered to replace the children in ellipses.

Figure 5: 3-for-4 and 2-for-2 replacements for merging of children to parents

After splitting all the vectors in the current basis set, in order to prune

away the unnecessary detail we want to try these kind of replacements and

keep those that do not e®ect the reconstruction quality much. In 3-for-4

replacements, whenever the four vectors as shown in Figure 5 are detected

in the basis set, they can be replaced by their three-vector equivalent if this

replacement does not e®ect the reconstruction more than a certain treshold.
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Same is true for 2-for-2 replacements. Therefore, after splitting the basis, the

reconstruction for each 3-for-4 and 2-for-2 replacement is done and for those

that do not e®ect the reconstruction too much, we keep the replacement in

the updated basis to reduce the complexity (less vectors in the basis). At

each step, after splitting, this kind of search and merging continues until

there is a signi¯cant di®erence between the reconstruction qualities.

After ¯nishing the merging of ¯ne scale vectors this way, one can further

decrease the number of associated degrees of freedom by searching for and

discarding the vectors with small coe±cients, that is whose contribution

to x is small. We also incorporate this idea to our algorithm following a

very similar approach. After splitting and merging the basis vectors enough

times, we determine the vector with minimum coe±cient in the resulting

basis set. This vector is discarded if, again, doing so does not a®ect the

reconstruction signi¯cantly. This ¯nding the minimum-coe±cient vector

and comparison of reconstructions continues until the e®ect of discarding

the minimum-coe±cient vector is above a certain treshold.

The algorithm repeats splitting, merging and discarding stages (merging

and discarding phases are loops themselves) satisfactory number of times and

the resulting basis vectors distribute the information detail appropriately as

explained in Figure 4, based on the perturbated vector y. We formalize and

summarize the details of the steps of the algorithm next using the formulas

we stated in Section 2.
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STEPS OF THE ALGORITHM

1 Start with initial set of basis vectors B0 = [b0b1:::bM¡1]

2 Repeat su±cient times

2.1 Split each vector bi in B0 to get B1

2.2 Find current estimate using B1

x̂curr = B1â = B1(B
T

1
HTHB1+¸B

T

1
LTLB1)

¡1
BT

1
HTy

2.3 Start merging

2.3.1 Find all three for four replacement possibilities in B1. Let

B1;1;B1;2; :::;B1;r are obtained by doing only one replace-

ment for each possibility

2.3.2 Find the r reconstructions corresponding to each B1;i by

projecting the current estimate onto span of each B1;i

x̂i = B1;i(B
T

1;iB1;i)
¡1BT

1;ix̂curr; i = 1; 2; :::; r

2.3.3 Find the replacement that produces minimum error com-

pared to the current estimate

x̂p = argmin jjx̂curr ¡ x̂ijj
2
2

x̂i

2.3.4 If relative error between x̂p and x̂curr is below a certain

treshold, update B1 to B1;p and continue merging (go to

step 2.3)

relative error =
jjx̂curr ¡ x̂pjj2
jjx̂currjj2

otherwise start discarding small-coe±cient vectors (go to step

2.4)

2.4 Start discarding vectors that have little coe±cients

2.4.1 Find the vector with minimum coe±cient by looking at the

vector of weights, â = (BT

1
B1)

¡1BT

1
x̂curr. Discard it from

B1 to get a candidate basis Bcand.

2.4.2 If the relative error between the estimate based on Bcand

and the current estimate x̂curr is below the threshold update

B1 to Bcand and continue discarding (go to 2.4)

relative error =
jjx̂curr ¡ (BT

cand
Bcand)

¡1BT

cand
x̂currjj2

2

otherwise update B0 to B1 and go to step 2.
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The threshold parameter in the merging and discarding phases can be

di®erent from each other, however in our implementation we chose the same

threshold in both phases. In the merging phase, we do the merging when

the relative error is smaller than the threshold. In the discarding phase we

discard the minimum-coe±cient vector if the relative error is smaller than

the threshold. Therefore, larger the threshold, the more merging and dis-

carding we do. When we choose a larger threshold, we are willing to get

rid of more vectors from the basis set by merging and discarding (less com-

plexity) compared to a smaller threshold. The result is that the threshold

parameter can be used to control the complexity of the inversion process

and the quality of the reconstruction which are inversely proportional to

each other as explained before.

In the next section, we apply the algorithm proposed here to verify the

the results and the comments made in this section.
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Let's choose x(n) in equation (1) to be a square signal followed by a ramp

as shown in Figure 6a. The length of the signal is chosen to be N = 128.

Let's choose the blur in the same equation to be a linear blur modeled with

a bell shaped impulse response as shown in Figure 6b.
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Figure 6: (a) The signal to be recovered (b) Two possible blurs modelled by narrow and

wide impulse response h(n)

The impulse response of the blur can be narrow or wide. Also choosing

the additive noise to be gaussian and independent from signal x(n), our aim

is to recover x(n) from the blurred and noisy signal y(n). First choice is to

apply regularized least-squares inversion to each sample of x(n) as described
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in equation (6) with L being the di®erential matrix shown in (??) to force

smooth reconstructions. Figure 7 shows the result for the combination of

the cases of narrow/wide blur and 10/40 dB noise realizations. The regular-

ization parameter ¸ is set by trial and error to some value that balances the

regularization term and the actual cost term. For more rigorous discussion

of how to choose ¸ see [18], [24].
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Figure 7: Regularized least-squares reconstruction (a) narrow blur, SNR=40dB, ¸ =

1, MSE=0.3847 (b) narrow blur, SNR=10dB, ¸ = 50, MSE=1.9648 (c) wide blur,

SNR=40dB, ¸ = 0:005, MSE=1.6189 (d) wide blur, SNR=10dB, ¸ = 5, MSE=3.8637

Looking at Figure 7, we see that wider blur and more noise make the

reconstructions worse in the MSE sense as expected, apparantly they e®ect

the data that we base our reconstruction on in a negative way. Also it is

very important to choose a right ¸, especially for low SNR to stabilize the

reconstruction, while not getting too much smoothing e®ect.

As explained in section 2 and 3, let's now express x(n) as a linear combi-

nation of second order box splines and invert for the weights of each vector.

To decide for the vectors to be in the basis with the knowledge of y(n), that

distributes the resolution appropriately in the estimation region and thereby

reducing the inversion complexity, we use the algorithm described in section
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3, which determines the appropriate re¯nement in the basis vector tree de-

scribed before. The reconstruction with a good choice of ¸ (set by trial and

error) and a threshold parameter (that balances the reconstruction quality

(MSE) and the inversion complexity) is shown in Figure 8 (narrow blur)

and Figure 9 (wide blur). The decided basis vectors for each case are also

shown. The reconstructions in ¯gures 8 and 9 are done based on the same

data (same noise realizations) that is used to obtain the reconstructions in

¯gure 7.
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Figure 8: Reconstruction and the basis vectors decided by the algorithm (a) narrow

blur, 40dB (b) narrow blur, 10 dB
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Figure 9: Reconstruction and the basis vectors decided by the algorithm (a) wide blur,

40dB (b) wide blur, 10 dB

A close look at the Figures 8 and 9 shows that the basis vectors that

are decided by the algorithm that we described in Section 3 are such that

the ¯ner scale vectors are used around the discontinuities of the original

signal and coarser scale vectors are used in the °at regions as expected and

explained in Section 3. The observation is that the narrower the blur and

the higher the SNR, the better this decision can be done, and the decision

is not as good otherwise. The better reconstruction of the signal observed

for less noise and narrower blur is due to the quality of this decision, as

well as due to that we can estimate the weights of each vector better under

these conditions. The important point is that in Figures 8 and 9 we obtain

the reconstruction qualities comparable to the sample-by-sample inversion

shown in Figure 7 in the MSE sense, although the order of the inversion

is much less (order in Figures 8 and 9 is around 20, whereas in Figure

7 it is 128). This means that parameters estimated in Figures 8 and 9

(around 20) have about the same information as the parameters estimated
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in Figure 7 (the 128 samples), which is the result of concentrating the ¯ne

scale information to the intervals where it is needed.

Figure 10 compares the average reconstructions obtained by using the

adaptive approach and that is obtained by ¯xed, ¯ne scale inversion where

SNR=40 dB and blur is chosen to be narrow. The reconstructions are aver-

aged over 50 noise realizations. The ¯xed, ¯ne scale inversion was done by

using 2-norm and di®erential matrix in the regularization term in equation

(6) (p = 2) and ¯nding the solution using the closed form equation (8) of

Section 2. The adaptive inversion was done by running the step 2 of the

algorithm explained in section 3 ten times. It is seen that, on the average

the reconstruction at the °at parts of the signal is better for the adaptive

approach, because of its ripple-free nature, which is an advantage gained

by using coarse scale functions at those °at areas. However, the average

mean square error that is obtained by ¯xed, ¯ne scale inversion in this case

is slightly better than the adaptive approach, being 0.5059, whereas it is

0.5634 for adaptive method (10.2% better).
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Figure 10: Comparison of the average reconstructions over 50 noise realizations, narrow

blur, SNR=40 dB (a)¯xed, ¯ne scale inversion (b) adaptive approach

Looking at Figure 10, it can be commented that the adaptive approach

leads to more stable solutions on the average. This is more obvious when

we make the relevant perturbation worse. Figure 11 shows the average

reconstructions (based on 50 noise realizations) for both methods where

SNR=10 dB and blur is wide. The regularization parameter ¸ is chosen

to be same for both cases. The adaptive approach (10 runs of step 2), in

this case is better than the ¯xed, ¯ne scale approach in the MSE sense too,

MSE being 3.8534, whereas it is 16.8712 for the ¯ne scale approach. 16.8712

is obtained again by choosing p = 2 and using the di®erential matrix of
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equation (7). Choosing p closer to 1 in the regularization term, one may get

better solutions in the MSE sense for the discontinuous function that we try

to invert here. In any case, the adaptive approach successfully makes the

reconstruction while keeping the order of inversion much smaller.
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Figure 11: Comparison of the average reconstructions over 50 noise realizations, wide

blur, SNR=10 dB (a)¯xed, ¯ne scale inversion (b) adaptive approach

This smaller order inversion in the adaptive approach, however, does

not directly mean less complex solution than the regular approach in the

linear blur cases. Because we have to go through an additional complexity

in order to obtain the appropriate basis functions adapted to the signal to

be converted. However, in the non-linear cases, this property of being low

order might be exploited to obtain less complex solutions, since the iterative

numerical techniques used in such problems are computationally intense.

Further results are presented below about the appropriate way of choos-

ing the threshold parameter to balance the reconstruction quality and the

order of the inversion. As explained before, the larger the threshold value,

the less number of basis vectors are decided by the adaptive algorithm to

represent the original signal, which, in turn, results in less quality in recon-

struction in the MSE sense. As a study of this issue, we made the plots of
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average MSE and average order of inversion resulted by the adaptive ap-

proach based on 50 noise realizations in Figure 12 (narrow blur) and Figure

13 (wide blur).
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Figure 12: Average MSE and average inversion order based on 50 noise realizations (a)

narrow blur, 40dB (b) narrow blur, 10 dB
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Figure 13: Average MSE and average inversion order based on 50 noise realizations (a)

wide blur, 40dB (b) wide blur, 10 dB

Figures 12 and 13 verify our discussion about how threshold parameter

e®ect MSE and the inversion order. One important observation is that, as

the order of inversion decreases with increasing threshold, the MSE level

stays steady at the ¯rst, then rises very fast for the large values of the

threshold. This suggests that actually there is not much di®erence in the

MSE sense between the reconstruction done by 15 basis functions and the

one done by 30 basis functions. This observation, graphically gives us an

idea of how to set the threshold parameter. The wise way of doing this is

to set the threshold to a value that provides a satisfactory reconstruction in

the MSE sense with the least number of basis functions. These conditions

are satis¯ed in the interval of the threshold values right before the MSE

steeps up.

22



$ %������
�� ��� ��	��
 &��'

We have summarized the regular least squares methods in order to recon-

struct a signal from its blurred and noisy version as well as proposed an

alternative adaptive method to do the reconstruction with a lower order

inversion. First the conditions on making these kinds of problems ill-posed

are described, then the regularization methods to overcome ill-posedness are

summarized. References from the literature has been stated for the reader

when appropriate. The summary was concentrated on the solutions for the

linear blur models, although the basics of the techniques to do the inversion

in non-linear cases were also explained, and the di±culties are expressed.

The main subject has been an alternative adaptive method to do the

inversion in the ill-posed cases. The method relies on expressing the origi-

nal signal as a weighted sum of re¯nable basis functions and estimating the

weight of each function in the inversion process. The appropriate re¯ne-

ment in the basis vectors is determined in a controlled manner based on

the perturbated signal at hand and this way the resolution of information

is distributed appropriately on the estimation interval. Basically the result

of this decision is that the ¯ner scale basis vectors are used in the steeper

portions of the original signal and the coarse scale vectors are used in the

°at regions. This result is obtained based on the perturbated vector without

an a-priori information about the original signal.

By using this kind of approach instead of doing ¯ne scale inversion evenly

distributed in the estimation interval, we concentrate the information appro-

priately on much smaller number of parameters and estimate them, thereby

decreasing the order of inversion. These properties of the method was tested

by applying to a linear inverse problem, its performance was investigated

and the relevant properties were presented. It was shown that the method

gives comparable and sometimes better performance in the MSE sense than

the ¯xed ¯ne-scale approach with much less order of inversion. The issues

about choosing the threshold parameter to balance the MSE and the inver-

sion order were also disscussed.

The smaller order of inversion of the adaptive approach does not neces-

sarily mean less complexity, because of the additional complexity required

in the decision of the appropriate re¯nement in the basis vectors. However,

less complexity solutions can be found in treating nonlinear inverse prob-

lems based on this smaller order inversion idea since in such problems, one

has to use iterative numerical methods which are computationally intensive.

The method so far is applied to a linear inverse problem as a demonstration

of its use and its application to nonlinear problems is left as a future work,
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which is foreseen to lead to less complex solutions of these problems.

Another area to be studied about the proposed adaptive method is

whether it can lead to more global solutions in the treatment of nonlinear

inverse problems. It is important to understand this and the circumstances

(classes of pro¯les, noise conditions, etc.) under which distributing the re-

¯nement in a controlled manner this way can converge to a more global

minima in the solution space.
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