Name: \qquad

EE 105 Homework 2

Due in class, September 182019

Problem 1: State space formulation

Write a state-space representation for the following differential equations:
a) $\ddot{x}(t)=a_{1} \dot{x}(t)+a_{2} x(t)+b u(t)$
b) $\dot{y}(t)=k_{1} y(t)+k_{2} u(t)$ Don't overthink this one.
c) $\dddot{y}(t)=b u(t)$

Problem 2: Circuit model

The circuit below represents a basic buck converter, which converts a DC voltage to some lower voltage. We'll analyze the transient behavior in future homework problems, but for now we just need a model.

a) Find the transfer function for this circuit.
b) Develop a state-space model for this circuit.
c) Find the eigenvalues of your state transition matrix, A.

Problem 3: Matrix theory

a) Let $A \in \mathbb{R}^{2 \times 2}$ be symmetric with eigen-pairs $\left(\lambda_{1}, \mathbf{v}_{\mathbf{1}}\right)$ and $\left(\lambda_{2}, \mathbf{v}_{\mathbf{2}}\right)$. If

$$
\begin{gathered}
\operatorname{det}(A)=3 \\
\operatorname{trace}(A)=2 \\
\mathbf{v}_{\mathbf{1}}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

find A. Is the solution unique?
b) Are the following statements true or false? If true, prove the result; if false, show a counter-example.

- Symmetric matrices are invertible.
- For all matrices A where all eigenvalues are zero, A is a zero matrix (all elements are zero).
- If the matrix Λ is diagonal, then $V \Lambda V^{T}$ is symmetric for any square matrix V.

Problem 4: A fun matrix

Consider the following matrix:

$$
A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & -\cos \theta
\end{array}\right]
$$

where $0 \leq \theta \leq 2 \pi$.
a) Find the eigenvalues of A.
b) What does this matrix do to a vector in \mathbb{R}^{2} ?

Problem 5: Reflection

a) Approximately how long did you spend on this problem set?
b) What questions do you have about this problem set, or about the course material so far?

