Homework 3

Fall 2017 - EE 105, Feedback Control Systems (Prof. Khan)

Problem 1 (20 pts)

Consider the following matrix, $A \in \mathbb{R}^{2 \times 2}$,

$$
A=\left[\begin{array}{ll}
1 & \alpha \tag{1}\\
0 & 2
\end{array}\right] .
$$

Plot both its two-norm, $\|A\|_{2}$, defined as

$$
\|A\|_{2} \triangleq \sqrt{\lambda_{\max }\left(A^{T} A\right)}
$$

where $\lambda_{\max }(\cdot)$ is the maximum eigenvalue of the matrix in the argument; and spectral radius, $\rho(A)$, defined as

$$
\rho(A) \triangleq \max _{i}\left|\lambda_{i}(A)\right| .
$$

as a function of $\alpha \in[-10,10]$. Comment on the dependence of α on $\|A\|_{2}$ and $\rho(A)$. Repeat for

$$
A=\left[\begin{array}{ll}
1 & \alpha \tag{2}\\
\alpha & 2
\end{array}\right]
$$

and comment.
From the plot, provide a relationship between $\|A\|_{2}$ and $\rho(A)$.

Problem 2 (20 pts)

Write the state-space representation of the parallel RLC circuit in Fig. 1. From the state space, find the following:
(a) internal, external and total response of the RLC circuit;
(b) write the eigenvalues in terms of R, L, and C ;
(c) find the conditions under which the internal response is stable (goes to zero with out oscillations), unstable, stable-oscillations, oscillatory.
(d) For each of the cases: stable (goes to zero with out oscillations), unstable, stable-oscillations, oscillatory, use Matlab to plot the RLC internal response, i.e., the time evolution of $v_{c}(t)$ and $i_{L}(t)$.

Fig. 1. A parallel RLC circuit

Problem 3 (20 pts)

(a) For $A \in \mathbb{R}^{2 \times 2}$, let $\operatorname{det}(A)=-4$ and let $\operatorname{trace}(A)=3$. Find the eigenvalues of A. Is A positive-definite?
(b) Is the eigenvalue information enough to conclude that A is symmetric ? If yes, justify, if not, give a counter-example.
In other words, we know that a (real-valued) symmetric matrix has real eigenvalues, but if a matrix has real eigenvalues, is it symmetric ?

