Problem 1

This problem makes more sense when you consider what a "matrix norm" is.
First, let's define the 2-norm of a vector x in \mathbb{R}^{n} to be

$$
\sqrt{\sum_{i=0}^{n} x_{i}^{2}}
$$

In English, this says that the 2-norm of a vector is its length in \mathbb{R}^{n}.
Given this definition of a vector 2-norm, we can define the matrix 2-norm as

$$
\|A\|_{2}=\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

In other words, the 2-norm is the maximum amount of "stretch" or "extension" that a matrix does to a vector. If there is some vector which increases its length by a factor of 3 when multiplied by the matrix A, then the 2 -norm of the matrix is (at least) 3 .

This definition is equivalent to the definition presented in the original problem.

As you work this problem, consider how that relates to the eigenvalues of the matrix.

Problem 2

For part (a), you don't need to do anything other than to write the formulae for the internal/external/total response, and indicate what the matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are. Since the input isn't specified, you can't calculate a specific output.

Please turn in your plots (at least four, one for each case) and a printout of your Matlab code.

