Name: _

EE 105 Homework 4 Due 5pm, October 4 2019

Problem 1: Door closer

A basic automatic door closer uses a torsion spring to pull the door closed and a damper to prevent the door from swinging too fast and slamming shut.

Assume the door has a moment of inertia, I, of $10 \text{ kg} \cdot \text{m}^2$. This roughly represents a 30 kg door. The rotational damper has a damping force proportional to the angular velocity of the door, $B = 30 \text{ N} \cdot \text{m}/\frac{\text{rad}}{\text{sec}}$, and the spring constant K is $22.5 \text{ N} \cdot \text{m/rad}$.

- a) The door is opened to an angle of 60° and released from a standstill. Use MATLAB to plot the angle for t = 0 to 5 s.
- **b)** Can you improve the performance of the door closer, so that it closes faster without slamming? If so, explain how; if not, provide some mathematical justification as to why the current performance is optimal.

Problem 2: Switching power supply

The schematic below shows a simple buck converter, which steps a voltage down from V_{dd} to V_{out} without wasting much energy. Other power supplies (including 110 V power adapters for charging phones and such) work on a similar principle.

We can approximate the diode and transistor with a voltage source that has a constant DC offset (V_{dd} · duty cycle) and a sine wave with peak-to-peak amplitude of V_{dd} .¹ For simplicity, let's assume the duty cycle is 50 %; i.e., we're stepping the voltage down from V_{dd} down to $V_{dd}/2$. Thus, we can write the input

$$V_{in} = V_{dd}(0.5 + \cos(2\pi f_{switch} \cdot t))$$

where f_{switch} is the switching frequency in Hz.

¹The actual diode/transistor combination will produce a square wave, but the constant and sine wave are the first two terms if we take the Fourier transform.

You should already have the state-space and transfer function for this system from HW 2. You can crosscheck your answers with MATLAB.

- a) Find the forced/external response (i.e., the response to the input, assuming zero initial state). This will have two components, one corresponding to each of the two components of the input. *Hint: You can use Matlab's step command to sanity-check the constant-input part of your answer.*
- b) Plot the external response for $V_{dd} = 5 \text{ V}$, $f_{switch} = 10 \text{ kHz}$, $C = 50 \text{ }\mu\text{F}$, L = 5 mH, $R = 5 \Omega$, for at least 10 ms. Include your code and plot in your submission.
- c) Use Simulink to check your result, and include a plot from Simulink. Note that you can use MATLAB workspace variables as parameters for your Simulink simulation.
- d) Experiment with some different values of C and L, and comment on what happens.² Can you speed up the transient response so the power supply turns on faster? What are the tradeoffs?

It turns out this is a major challenge in power supply design and control — check out "The Kat Kim show" on YouTube for videos on both control theory and power electronics. (https://www.youtube.com/user/katkimshow/videos)

Problem 3: State space to transfer function

Consider the system described by

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -4 & 1\\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} + \begin{bmatrix} 1\\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix}$$

- a) Write the transfer function for this system. You should work this out by hand, but you can (and should) check your result with MATLAB.
- **b)** Is the system internally stable?

Problem 4: Block diagrams

The block diagram below represents a system in "control canonical form".

- **a)** Find the transfer function for the system. Note that a_n and b_n are constants.
- b) Find a state-space representation of this system. This should be easy.

²Assume R is fixed, because this represents the load.

The block diagram below represents a system in "observer canonical form".

- c) Find the transfer function for the system.
- d) Find a state-space representation of this system. Again, this should be easy.
- e) Write the transfer function for the block diagram below.

Problem 5: Reflection

- a) Approximately how long did you spend on this problem set?
- b) What questions do you have about this problem set, or about the course material so far?