Name: \qquad

EE 105 Homework 6
Due 5pm, November 152019
(or when I return your midterm exams, whichever is later)

Problem 1: Damping ratio and phase margin

Consider the system

$$
G(s)=\frac{\omega_{n}}{s\left(s+2 \zeta \omega_{n}\right)}
$$

which under unity feedback produces an overall (familiar) TF of

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

a) Use Matlab to draw Bode plots of $G(s)$ for $\zeta=0.1,0.5,0.9$. It's best if you draw them all on one plot.
b) For each value of ζ, find the phase margin. Comment on the relationship between the phase margin and ζ.

Problem 2: Compensation

For each of the controllers below $(C(s)=\ldots)$, do the following:
i Use Matlab to make a Bode plot of $C(s)$.
ii Identify the relationship between the coefficients and the break point(s), and write this mathematically.
iii Describe what the controller does to the phase margin, assuming the poles/zeros are placed where they make a difference.
iv Determine how the controller responds at DC (i.e., what does it do with steady-state error)?
a) Proportional control $\left(C(s)=k_{P}\right)$
b) PD control $\left(C(s)=k_{P}+s k_{D}\right)$
c) PI control $\left(C(s)=k_{P}+k_{I} / s\right)$
d) Lead compensation: $\left(\frac{s+z}{s+p}\right)$ with $z<p$ or $\left(\frac{T_{D} s+1}{\alpha T_{D} s+1}\right)$, with $\alpha<1$
e) Lag compensation: $\left(\frac{s+z}{s+p}\right)$ with $z>p$ or $\left(\alpha \frac{T_{D} s+1}{\alpha T_{D} s+1}\right)$, with $\alpha>1$

Problem 3: Reflection

a) Approximately how long did you spend on this problem set?
b) What questions do you have about this problem set, or about the course material so far?

