Welcome to EE 105!

Please find a seat and fill out a name tent with the name you go by.

EE 105 Feedback control systems

Steven Bell 4 September 2019

What is a control system?

A process or system ("plant") where we can measure some output and control some inputs and where the measurement is used modulate the input.

About me

Assistant teaching professor in ECE

Bachelor's in Computer Engineering

MS/PhD in Electrical Engineering

About me

Assistant teaching professor in ECE

Bachelor's in Computer Engineering


MS/PhD in Electrical Engineering

Never took a "true" control systems course (!)

But I've taken several related courses, and built real control systems.

About you

While you're waiting: Introduce yourselves Write down as many real-world examples of control systems as you can

Logistics

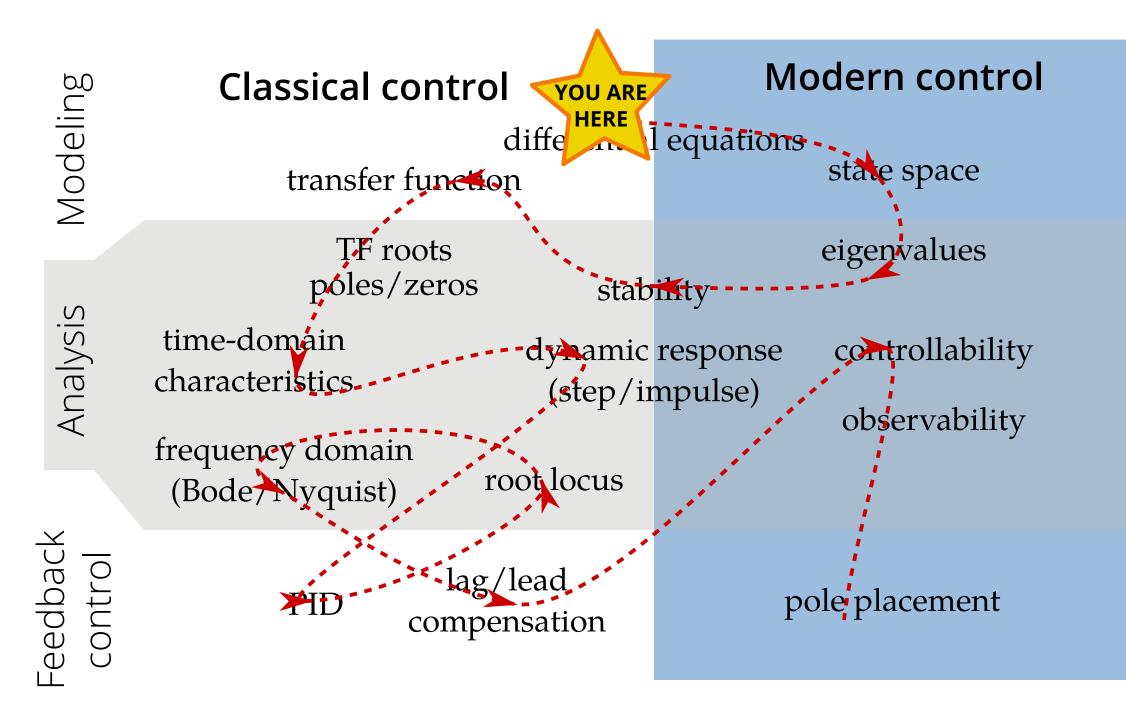
Course website: http://www.ece.tufts.edu/ee/105/

- Go read the syllabus
- Textbooks
- Weekly homework, due on Wednesdays
- Final project building something cool
 - Take-home midterm and final

Office hours

- I'm in Halligan 202c Come say hi; I'll have cookies next week
- TA: Maziar Amiraski

Device policy


No laptops or cell phones out during class, please.

Duncan et al., 2012 Digital Devices, Distraction, and Student Performance: Does In-Class Cell Phone Use Reduce Learning? http://casa.colorado.edu/~dduncan/wp/wp-content/uploads/AER010108.pdf

Ravizza et al., 2014 *Non-academic internet use in the classroom is negatively related to classroom learning regardless of intellectual ability* https://www.sciencedirect.com/science/article/pii/S0360131514001298

Real-world control systems

50 L	Classical control	Modern control
Modeling	differential transfer function	equations state space
Analysis	TF roots poles/zerosstabtime-domain characteristicsdynamic (step/infrequency domain (Bode/Nyquist)root locus	response controllability
Feedback control	lag/lead PID compensation	pole placement

By the end of class today, you should be able to:

- Give examples of feedback control systems
- Describe the parameters of interest
- Define "linear system" and identify systems as linear or non-linear
- Sketch the general form of an LTI system