Lecture 2: Wireless propagation mechanisms

In this lecture we will discuss the basic mechanisms that govern the propagation of electromagnetic waves which are used in wireless communications.

Three basic mechanisms are:
- Reflection
- Diffraction
- Scattering

First we will discuss free space attenuation as the simplest scenario to provide the basics.

1. Free Space Attenuation:

Consider a transmit and a receive antenna in free space, separated by a distance d.

The received power at the receive antenna is given by

$$ P_{RX} (d) = P_{TX} \cdot G_{TX} \cdot \frac{1}{4\pi d^2} \cdot A_{RX} $$

$$ = P_{TX} \cdot G_{TX} \cdot G_{RX} \cdot \left(\frac{\lambda}{4\pi d}\right)^2 \text{ (Fried's law)} $$

where:

- P_{TX}: transmit power
- G_{TX}: transmit antenna gain in the direction of the receiver ($G_{TX} = 1$ for isotropic transmit antenna)
- G_{RX}: receive antenna gain, $G_{RX} = \frac{4\pi}{\lambda^2} A_{RX}$

Antenna gains depend on the type of antennas. A_{RX}: (area) effective area of the receiver's antenna.
\[\lambda: \text{wavelength} \quad (\lambda = \frac{c}{f} = \frac{3 \times 10^8}{f}) \]

\[d: \text{distance between transmit and receive antennas} \]

The validity of Friis' law is restricted to the far field: \(d \gg \lambda \) and \(d \gg \text{largest dimension of the antenna} \)

\[\text{Free-space path-loss factor} = \left(\frac{\lambda}{4\pi d} \right)^2 \]

We see that signal power decreases as the square of distance. The path-loss factor or path-loss exponent describes how received power varies with distance and is 2 for free space.

\[\text{Reflection and Transmission:} \]

\[\begin{align*}
\delta_1 & : \text{dielectric constant} \\
\delta_2 & : \text{dielectric constant} \\
\text{Surface between two dielectric materials}
\end{align*} \]

\[\text{Reflection:} \quad \frac{E_r}{E_i} = \frac{\sqrt{\delta_1}}{\sqrt{\delta_2}} \]

\[\text{Transmission:} \quad \frac{E_t}{E_0} = \frac{\sqrt{\delta_2}}{\sqrt{\delta_1}} \]
Reflection and transmission for a layer of dielectric structure (such as through the wall for cell phones indoors) are complicated to model. Multi-layer structures are often described by "effective" dielectric constants or reflection/transmission constants, which are measured directly for each composite structure.

Using a two-ray model: a direct path, and a reflected path off the ground, we can derive a "text book" model:

\[P_{RX}(d) = P_{TX} G_{TX} G_{RX} \left(\frac{h_{RX} h_{RX}}{d^2} \right) + P_{TX} G_{TX} G_{RX} \left(\frac{h_{RX} h_{RX}}{d^2} \right) \]

This model predicts power attenuation with path loss factor of 4 (~d^{-4}) and is independent of the wavelength. It holds only for \(d \geq \frac{4h_{RX} h_{RX}}{\lambda} \).

In reality, this model is imprecise (because of the over simplification), and path loss exponent can be measured in the range 1.5 < \(\gamma \) < 5.5.

3. Diffraction: While reflection assumes infinitely extended objects/surfaces, all real objects have finite size. These finite-size objects creates diffraction at the edges.
1) Diffraction by a knife edge or screen:

- Wavefront
- Shadow Zone
- Diffraction

2) Diffraction by a wedge:

3) Models for diffraction in urban areas (multiple screen)

Modeling diffraction by multiple screens is an extremely challenging mathematical problem and usually does not give exact solutions, though many approximation methods exist.
4. **Scattering by rough surfaces**

While reflection assumes a smooth surface, all/most practical surfaces contain some roughness which is usually assumed to be random.

- Specular reflection
- Specular scattering
- Smooth surface
- Rough surface

Reflection has been studied extensively due to radar technology, with two main theories evolved: the Kirchhoff theory and the perturbation theory.

Large scale propagation model:

\[
P_{rx}(d) = P_{tx}(1m) - 20 \log (d_{break}/1m) - \gamma 10 \log \left(\frac{d}{d_{break}} \right)
\]

\[
P_r(d) = P_{tx}(1m) + 10 \log_{10} K - 10 \gamma \log \frac{d}{d_0} - 9 \text{dB}
\]