Problem 5.2 An abrupt GaAs p-n diode has \(N_d = 10^{17} \text{ cm}^{-3} \) and \(N_d = 10^{15} \text{ cm}^{-3} \).

(a) Calculate the Fermi level positions at 300K in the p and n regions.
(b) Draw the equilibrium band diagram and determine the contact potential \(V_{bi} \).

Solution

We will use the Boltzmann approximation to solve this problem. The Fermi level in the p-side region is given by the equation,

\[
E_{FP} = E_v - k_BT \ln \left(\frac{p}{N_v} \right)
\]

where \(N_v \) is the valence band effective density. Using \(N_v = 7.72 \times 10^{18} \text{ cm}^{-3} \), we get

\[
E_{FP} = E_v - (0.026) \ln \left(\frac{10^{17}}{7.72 \times 10^{18}} \right) = E_v + 0.113 \text{ eV}
\]

The Fermi level in the n-type region is given by

\[
E_{FN} = E_c + (k_BT) \ln \left(\frac{n}{N_c} \right)
\]

Using \(N_c = 4.45 \times 10^{17} \text{ cm}^{-3} \), we get

\[
E_{FN} = E_c - 0.159 \text{ eV}
\]

The built-in voltage can be obtained from these results by the simple equation

\[
eV_{bi} = (E_c - 0.159) - (E_v + 0.113) = E_g - 0.159 - 0.113
\]

\[
= 1.43 - 0.272 \text{ eV} = 1.158 \text{ eV}
\]

Thus \(V_{bi} = 1.158 \text{ volt} \).

Let us calculate \(V_{bi} \) using the relation,

\[
V_{bi} = \frac{k_BT}{e} \ln \left(\frac{n_n}{n_p} \right)
\]

For GaAs the np product is \(3.24 \times 10^{12} \text{ cm}^{-6} \) so that

\[
n_p = \frac{3.24 \times 10^{12}}{p_p} = \frac{3.24 \times 10^{12}}{10^{17}} = 3.24 \times 10^{-5} \text{ cm}^{-3}
\]

\[
V_{bi} = (0.026 \text{ V}) \ln \left(\frac{10^{15}}{3.24 \times 10^{-5}} \right)
\]

\[
= 1.167 \text{ volt}
\]

The two results are quite close to each other and the differences arise from the round off errors made in obtaining the various quantities.
Problem 5.3 Consider an Si p-n diode doped at $N_a = 10^{17}$ cm$^{-3}$; $N_d = 5 \times 10^{17}$ cm$^{-3}$ at 300 K. Plot the band profile in the neutral and depletion region. Also, plot the electron and hole concentration from the p- to the n-sides of equilibrium. How good is the depletion approximation?

\[
N_a = 10^{17}; N_d = 5 \times 10^{17}
\]

V_{bi}, W_n, W_p, $n \cdot p$

\[2.25 \times 10^3\]

E_{Fn}

n-side

5×10^{17}

\[(10^{-6} \text{cm})\]

Figure 5.1:

Solution

To solve this problem we need to calculate the built-in voltage and the depletion widths on the n-side and p-side.

\[
n_p = \frac{n_i^2}{p_p} = \frac{(2.25 \times 10^{20} \text{ cm}^{-6})}{10^{17} \text{ cm}^{-3}} = 2.25 \times 10^3 \text{ cm}^{-3}
\]

\[
p_n = \frac{n_i^2}{n_n} = \frac{(2.25 \times 10^{20} \text{ cm}^{-6})}{(5 \times 10^{17} \text{ cm}^{-3})} = 450 \text{ cm}^{-3}
\]

The built-in potential is

\[
V_{bi} = 0.026 \ln \left(\frac{10^{17}}{450}\right) = 0.86 \text{ V}
\]

\[
W_p(V_{bi}) = \left\{ \frac{2 \times (1.9 \times 8.85 \times 10^{-14} \text{ F/cm}) \times 0.86 \text{ V}}{(1.6 \times 10^{-19} \text{ C}) \times \left(\frac{5 \times 10^{17} \text{ cm}^{-3}}{(10^{17} \text{ cm}^{-3}) (6 \times 10^{17} \text{ cm}^{-3})}\right)} \right\}^{1/2} = 9.71 \times 10^{-6} \text{ cm}
\]

\[
W_n(V_{bi}) = 1.94 \times 10^{-6} \text{ cm}
\]

The band profile is plotted in Figure 5.1.
Problem 5.5 An abrupt silicon p-n diode at 300 K has a doping of \(N_a = 10^{18} \text{ cm}^{-3}\), \(N_d = 10^{15} \text{ cm}^{-3}\). Calculate the built-in potential and the depletion widths in the \(n\) and \(p\) regions.

Solution

We assume that we can use the Boltzmann approximation on which the equations in the text are based. We have

\[
V_{bi} = \frac{k_B T}{e} \ln \frac{n_a}{n_p}
\]

\[
n_p = \frac{n_t^2}{p_p} = \frac{2.25 \times 10^{20} \text{ cm}^{-6}}{10^{18} \text{ cm}^{-3}} = 2.25 \times 10^2 \text{ cm}^{-3}
\]

\[
V_{bi} = (0.026 \text{ volt}) \ln \left(\frac{10^{15}}{2.25 \times 10^2} \right)
\]

\[
= 0.757 \text{ volt}
\]

The \(p\)-side depletion width is

\[
W_p(V_{bi}) = \left\{ \frac{2(11.9 \times 8.85 \times 10^{-14} \text{ F/cm})(0.757 \text{ V})}{(1.6 \times 10^{-19} \text{ C})} \right\}^{1/2}
\]

\[
= \frac{10^{15} \text{ cm}^{-3}}{(10^{18} \text{ cm}^{-3})(10^{18} + 10^{15} \text{ cm}^{-3})}
\]

\[
= 9.89 \times 10^{-8} \text{ cm} = 9.89 \text{ Å!}
\]

\[
W_n(V_{bi}) = W_p(V_{bi}) \times \frac{N_a}{N_d} = 9.89 \times 10^{-8} \text{ cm}
\]

\[
= 0.989 \mu\text{m}
\]

Essentially all the depletion is on the lightly doped \(n\)-side.

Problem 5.8 The diode of Problem 5.3 is subjected to bias values of: (a) \(V_f = 0.1 \text{ V}\); (b) \(V_f = 0.5 \text{ V}\); (c) \(V_f = 1.0 \text{ V}\); (d) \(V_f = 5.0 \text{ V}\). Calculate the depletion widths and the maximum field \(E_m\) under these biases.

Solution

The built-in voltage is given by (see the solution of Problem 5.3),

\[
V_{bi} = 1.158 \text{ volt}
\]

The depletion widths and the maximum electric field values are:

\[
V_f = 0.1 \text{ V}
\]

\[
W_p(V_{bi} - 0.1 \text{ V}) = \left\{ \frac{2 \times (13.18 \times 8.85 \times 10^{-14} \text{ F/cm})(1.058 \text{ V})}{(1.6 \times 10^{-19} \text{ C})} \right\}^{1/2}
\]

\[
= 123.3 \text{ Å}
\]

\[
W_n = 1.233 \times 10^{-4} \text{ cm}
\]

\[
F_m = \frac{(1.6 \times 10^{-19} \text{ C})(10^{15} \text{ cm}^{-3})(1.233 \times 10^{-4} \text{ cm})}{(13.18 \times 8.85 \times 10^{-14} \text{ F/cm})}
\]

\[
= 1.69 \times 10^4 \text{ V/cm}
\]

\[
V_f = 0.5 \text{ V}
\]
\[
W_p(V_{bi} - 0.5 \text{ V}) = W_p(0.658 \text{ V}) = W_p(V_f = 0.1 \text{ V}) \left(\frac{0.658}{1.058} \right)^{1/2} \\
= 97.2 \text{ Å} \\
W_n(V_{bi} - 0.5 \text{ V}) = 0.972 \times 10^{-4} \text{ cm} \\
F_m(V_f - 0.5 \text{ V}) = F_m(V_f = 0.1 \text{ V}) \left(\frac{97.2}{123.3} \right) \\
= 1.33 \times 10^4 \text{ V/cm} \\
V_r = 1.0 \text{ V} \\
W_p(V_{bi} + 1.0 \text{ V}) = W_p(V_f = 0.1 \text{ V}) \left(\frac{2.158}{1.058} \right)^{1/2} \\
= 176.09 \text{ Å} \\
W_n(V_{bi} + 1.0 \text{ V}) = 1.76 \times 10^{-4} \text{ cm} \\
F_m(V_{bi} + 1.0 \text{ V}) = F_m(V_f = 0.1 \text{ V}) \left(\frac{176.09}{123.3} \right) \\
= 2.41 \times 10^4 \text{ V/cm} \\
V_r = 5.0 \text{ V} \\
W_p(V_{bi} + 50 \text{ V}) = W_p(V_f = 0.1 \text{ V}) \left(\frac{6.158}{1.058} \right)^{1/2} \\
= 297.5 \text{ Å} \\
W_n(V_{bi} + 5.0 \text{ V}) = 2.975 \times 10^{-4} \text{ cm} \\
F_m(V_{bi} + 5.0 \text{ V}) = F_m(V_f = 0.1 \text{ V}) \left(\frac{297.5}{123.3} \right) \\
= 4.08 \times 10^4 \text{ V/cm}
\]

Problem 5.10 Consider a p+n silicon diode with area \(10^{-4} \text{ cm}^2\). The doping is given by \(N_s = 10^{18} \text{ cm}^{-3}\) and \(N_d = 10^{17} \text{ cm}^{-3}\). Plot the 300 K values of the electron and hole currents \(I_n\) and \(I_p\) at a forward bias of 0.8 V. Assume \(\tau_n = \tau_p = 1 \mu\text{s}\) and neglect recombination effects. \(D_n = 20 \text{ cm}^2/\text{s}\) and \(D_p = 10 \text{ cm}^2/\text{s}\).

Solution

To calculate the electron and hole currents we first calculate the values of \(n_p, p_n\) and \(L_n\) and \(L_p\).

\[
\begin{align*}
n_p &= n_x^2 \left(\frac{2.25 \times 10^{20} \text{ cm}^{-6}}{10^{18} \text{ cm}^{-3}} \right) = 2.25 \times 10^2 \text{ cm}^{-3} \\
p_n &= n_x^2 \left(\frac{2.25 \times 10^{20} \text{ cm}^{-6}}{10^{17} \text{ cm}^{-3}} \right) = 2.25 \times 10^3 \text{ cm}^{-3} \\
L_n &= (D_n \tau_n)^{1/2} = \left[(20 \text{ cm}^2/\text{s})(10^{-6} \text{ s}) \right]^{1/2} = 4.47 \times 10^{-3} \text{ cm} \\
L_p &= (D_p \tau_p)^{1/2} = \left[(10 \text{ cm}^2/\text{s})(10^{-6} \text{ s}) \right]^{1/2} = 3.16 \times 10^{-3} \text{ cm}
\end{align*}
\]

The hole current injected at the depletion edge into the n-side is

\[
I_p(W_n) = \frac{(1.6 \times 10^{-19} \text{ C})(10^{-4} \text{ cm}^2)(0 \text{ cm}^2/\text{s})(2.25 \times 10^3 \text{ cm}^{-3})}{(3.16 \times 10^{-3} \text{ cm})} \left[\exp \left(\frac{0.4}{0.626} \right) - 1 \right] \\
= 5.47 \times 10^{13} \text{ A}
\]
The electron current injected at the depletion edge into the p-side is,

\[I_n(-W_p) = \frac{(1.6 \times 10^{-19} \text{ C})(10^{-4} \text{ cm}^2)(20 \text{ cm}^2/\text{s})(2.25 \times 10^3 \text{ cm}^{-3})}{(4.47 \times 10^{-3} \text{ cm})} \left[\exp \left(\frac{0.4}{0.026} \right) - 1 \right] \]

\[= 7.74 \times 10^{-11} \text{ A} \]

Both these currents decrease exponentially into the n-side and p-side region. To find their exact dependence in space, we need to calculate the depletion region edges \(W_n \) and \(W_p \) for the diode forward biased at 0.4 V. The built-in voltage is

\[V_{bi} = k_B T \ln \frac{n_n}{n_p} = (0.026) \ln \left(\frac{10^{17}}{2.25 \times 10^2} \right) \]

\[= 0.877 V \]

\[W_n(V_f = 0.4V) = \left\{ \left[\frac{2 \times (11.9 \times 8.85 \times 10^{-4})(0.477)}{(1.6 \times 10^{-19})} \right] \left[\frac{10^{18}}{10^{17}} \right] \right\}^{1/2} \]

\[= 7.56 \times 10^{-6} \text{ cm} \]

\[W_p(V_f = 0.4V) = 7.56 \times 10^{-7} \text{ cm} \]

Thus the electron injected current is \(7.74 \times 10^{-11} \text{ A} \) at \(x = -7.56 \times 10^{-7} \text{ cm} \) and decays exponentially with a decay constant of \(L_n = 4.47 \times 10^{-3} \text{ cm} \). The hole current is \(5.47 \times 10^{-10} \text{ A} \) at \(x = 7.56 \times 10^{-6} \text{ cm} \) and decays exponentially with a constant of \(L_o = 3.16 \times 10^{-3} \text{ cm} \).
Problem 5.14 Consider a p-n diode made from InAs at 300 K. The doping is \(N_d = 10^{16} \text{ cm}^{-3} = N_A \). Calculate the saturation current density if the electron and hole density of states masses are 0.02m_e and 0.4m_e, respectively. Compare this value with that of a silicon p-n diode doped at the same levels. The diffusion coefficients are \(D_n = 800 \text{ cm}^2/\text{s}; \) \(D_p = 30 \text{ cm}^2/\text{s} \). The carrier lifetimes are \(\tau_n = \tau_p = 10^{-8} \text{s} \) for InAs. For the silicon diode use the values \(D_n = 30 \text{ cm}^2/\text{s}; D_p = 10 \text{ cm}^2/\text{s}; \tau_n = \tau_p = 10^{-7} \text{s} \).

Solution

To find the saturation current, we need to first calculate the intrinsic carrier concentration is InAs which has a bandgap of 0.35 eV at 300 K. Using the expressions for intrinsic carrier concentration, we find that

\[
N_c = 7.26 \times 10^{16} \text{ cm}^{-3}; \quad N_v = 6.5 \times 10^{18} \text{ cm}^{-3}
\]

\[
n_i = (N_c N_v)^{1/2} \exp \left(\frac{-E_g}{2k_BT} \right) = 9.79 \times 10^{11} \text{ cm}^{-3}
\]

The diode parameters are

\[
n_p = \frac{n_i^2}{p_i} = \frac{(9.79 \times 10^{11})^2}{(10^{16})} = 9.58 \times 10^7 \text{ cm}^{-3}
\]

\[
p_n = \frac{n_i^2}{n_i} = 9.58 \times 10^7 \text{ cm}^{-3}
\]

\[
L_n = (D_n \tau_n)^{1/2} = (800 \times 10^{-8})^{1/2} = 2.8 \times 10^{-3} \text{ cm}
\]

\[
L_p = (30 \times 10^{-8})^{1/2} = 5.47 \times 10^{-4} \text{ cm}
\]

The saturation current density is

\[
J_o = (1.6 \times 10^{-19} \text{ C}) \left[\frac{(30 \text{ cm}^2/\text{s})(9.58 \times 10^7 \text{ cm}^{-3})}{(5.47 \times 10^{-4} \text{ cm})} + \frac{(800 \text{ cm}^2/\text{s})(9.58 \times 10^7 \text{ cm}^{-3})}{(2.8 \times 10^{-3} \text{ cm})} \right]
\]

\[= 5.22 \times 10^{-6} \text{ A/cm}^2\]

For a comparable silicon p-n diode, we have the following parameters:

\[
n_p = \frac{n_i^2}{p_i} = \frac{2.25 \times 10^{20}}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3} = p_n
\]

\[
L_n = (30 \times 10^{-7})^{1/2} = 1.73 \times 10^{-3} \text{ cm}
\]

\[
L_p = (10 \times 10^{-7})^{1/2} = 1.0 \times 10^{-3} \text{ cm}
\]

\[
J_o = (1.6 \times 10^{-19}) \left[\frac{30 \times 2.25 \times 10^4}{1.73 \times 10^{-3}} + \frac{10 \times 2.25 \times 10^4}{1.0 \times 10^{-3}} \right]
\]

\[= 9.84 \times 10^{-11} \text{ A/cm}^2\]

We see that the saturation current values are extremely high in the InAs diode when compared to the silicon diode.
Problem 5.18 Consider a Si p-n diode at 300 K. Plot the I-V characteristics of the diode between a forward bias of 1.0 V and a reverse bias of 5.0 V. Consider the following cases for the impurity-assisted electron-hole recombination time in the depletion region: (a) 1.0 μs; (b) 10.0 ns; and (c) 1.0 ns. Use the following parameters:

\[A = 10^{-3} \text{ cm}^2 \]
\[N_a = N_d = 10^{16} \text{ cm}^{-3} \]
\[\tau_n = \tau_p = 10^{-7} \text{ s} \]
\[D_n = 25 \text{ cm}^2/\text{s} \]
\[D_p = 6 \text{ cm}^2/\text{s} \]

Solution

We start by calculating the built-in voltage,

\[n_p = \frac{n_i^2}{N_a} = 225 \text{ cm}^{-3} = p_n \]
\[V_{bi} = \frac{k_B T}{e} \left(\frac{\tau_p}{\tau_n} \right)^{1/2} = 0.94 \text{ V} \]

The prefactor for the ideal current is

\[I_0 = (1.6 \times 10^{-19}) (10^{-3}) \left(\frac{6 \times 225}{1.75 \times 10^{-4}} + \frac{25 \times 225}{1.58 \times 10^{-3}} \right) \]
\[= 8.5 \times 10^{-16} \text{ A} \]

To get the prefactor for the nonideal case we need to calculate the depletion width as a function of bias. The depletion width for this diode turns out to be

\[W(V) = 5.13 \times 10^{-6} \sqrt{V_{bi} - V} \text{ cm} \]

where \(V_{bi}, V \) are in volts. The prefactor for the recombination-generation current is

\[I_{GR}^p = \frac{(1.6 \times 10^{-19}) (10^{-3}) (5.13 \times 10^{-6}) (1.5 \times 10^{10}) \sqrt{V_{bi} - V}}{2\tau} \]

Case (a): \(\tau = 1.0 \mu s; \ I_{GR}^p = 6.16 \times 10^{-12} \sqrt{V_{bi} - V} \text{ A} \)
Case (b): \(\tau = 10 \text{ ns}; \ I_{GR}^p = 6.16 \times 10^{-10} \sqrt{V_{bi} - V} \text{ A} \)
Case (c): \(\tau = 1 \text{ ns}; \ I_{GR}^p = 6.16 \times 10^{-8} \sqrt{V_{bi} - V} \text{ A} \)

The I-V relation for the diode is (the value of \(V_{bi}, V \) in the second term square root is in units of volts)

Case (a):

\[I = 8.5 \times 10^{-16} \left(\exp \left(\frac{eV}{k_B T} \right) - 1 \right) + 6.16 \times 10^{-12} \sqrt{V_{bi} - V} \left(\exp \left(\frac{eV}{2k_B T} \right) - 1 \right) \text{ A} \]
Problem 5.23 The critical field for breakdown of silicon is 4×10^5 V/cm. Calculate the n-side doping of an abrupt p^+n diode that allows one to have a breakdown voltage of 30 V.

Solution
The critical field for the silicon is

$$F_{crit} = 3 \times 10^5 V/cm$$

The doping concentration needed to allow a breakdown voltage of 30 volts is

$$N_d = \frac{\varepsilon F_{crit}^2}{2eV_{BD}} = \frac{(11.9 \times 8.85 \times 10^{-14} F/cm)(3 \times 10^5 V/cm)^2}{2 \times (1.6 \times 10^{-19} C)(30V)} = 9.87 \times 10^{15} cm^{-3}$$

Problem 5.28 A p^+n silicon diode has an area of 10^{-2} cm2. The measured junction capacitance is given by (at 300 K)

$$\frac{1}{C^2} = 5 \times 10^8 (2.5 - 4 V)$$

where C is in units of μF and V is in volts. Calculate the built-in voltage and the depletion width at zero bias. What are the dopant concentrations of the diode?

Solution
The intercept of the $\frac{1}{C^2}$ vs. V relation occurs at

$$V = \frac{2.5}{4} \text{ volt} = 0.625 \text{ volt} = V_{bi}$$

The slope of the $\frac{1}{C^2}$ vs. V relation gives the value

$$\frac{d(1/C^2)}{dV} = 2 \times 10^9 (\mu F)^{-2} V^{-1} = 2 \times 10^{21} F^{-2} V^{-1}$$

This slope gives us

$$\frac{N_aN_d}{N_a + N_d} = \frac{2}{A^2 \varepsilon e} \frac{dV}{d(1/C^2)} = \frac{2}{(10^{-2} \text{ cm}^2)^2 (1.6 \times 10^{-19} \mu F/cm)(11.9 \times 8.85 \times 10^{-14} F/cm)(2 \times 10^{21} F^{-2} V^{-1})} = 5.93 \times 10^{15} \text{ cm}^{-3}$$

We know that the built-in voltage is given by,

$$V_{bi} = \frac{kT}{e} \ln \frac{N_aN_d}{n_i^2}$$

which gives for N_aN_d the value,

$$N_aN_d = \exp \left(\frac{0.625}{0.026} \right) \times (2.25 \times 10^{23} \text{ cm}^{-5}) = 6.19 \times 10^{30} \text{ cm}^{-6}$$
Using these two values (i.e. for \(N_a N_d \) and \(N_a N_d/(N_a + N_d) \) we get \(N_a \) is larger than \(N_d \) in the \(p^+n \) diode),

\[
N_a = 1.04 \times 10^{17} \text{ cm}^{-3} \\
N_d = 5.95 \times 10^{13} \text{ cm}^{-3}
\]

The zero bias depletion width is given by,

\[
W = \left[\frac{2eV_{bi}}{c} \left(\frac{N_a + N_d}{N_a N_d} \right) \right]^{1/2} \\
= \left[\frac{2(11.9 \times 8.85 \times 10^{-14} \text{ F/cm})(0.625)}{(1.6 \times 10^{-19} \text{C})(5.93 \times 10^{13} \text{ cm}^{-3})} \right]^{1/2} \\
= 3.72 \times 10^{-4} \text{ cm}
\]

Problem 5.32 Consider a Si \(p-n \) diode at room temperature with following parameters:

\[
N_d = N_a = 10^{17} \text{ cm}^{-3} \\
D_n = 20 \text{ cm}^2/\text{s} \\
D_p = 12 \text{ cm}^2/\text{s} \\
\tau_n = \tau_p = 10^{-7} \text{ s}
\]

Calculate the reverse saturation current for a long ideal diode. Also estimate the storage delay time for the long diode.

Now consider a narrow diode made from the structure given above. The thickness of the \(n \)-side region is 1.0 \(\mu \text{m} \). The thickness of the \(p \)-side region is also 1.0 \(\mu \text{m} \). Calculate the reverse saturation current in the narrow diode at a reverse bias of 2.0 volt. Also estimate the storage delay time for this diode.

Solution

The built-in voltage for the diode is

\[
V_{bi} = 0.817 \text{ V}
\]

The depletion width for the diode is \((V_{bi}, V \) are in volts)

\[
W_n = W_p = 8.13 \times 10^{-6} \sqrt{V_{bi} - V}
\]

For the long diode the reverse saturation current density is

\[
J_o = (1.6 \times 10^{-19}) \left(\frac{12 \times 2250}{1.09 \times 10^{-3}} + \frac{20 \times 2250}{1.41 \times 10^{-3}} \right) \\
= 9.05 \times 10^{-12} \text{ A cm}^{-2}
\]

The storage delay time depends upon the details of the switching condition, but is approximately equal to \(\tau_n \) or \(\tau_p \), i.e., \(10^{-7} \) s. For the short diode the reverse current is bias dependent even for the ideal diode case. The depletion width changes the neutral
region width of the n and p diodes by about 10%. The reverse saturation current at a reverse bias of 2.0 V is

$$J_o = (1.6 \times 10^{-19}) \left(\frac{12 \times 2250}{8.6 \times 10^{-5}} + \frac{26 \times 2250}{8.6 \times 10^{-5}} \right)$$

$$= 1.34 \times 10^{-10} \text{ A cm}^{-2}$$

The storage delay time is approximately the transit time across the neutral n or p regions. For the p-side the transit time is 4.2×10^{-10} s. This is a very short time.