Using the schematic of Fig. 1, determine for the 2N2222, the transistor β_F for $I_B=10\mu A$.
by sweeping V_1 from $0V$ to $12V$.
Calculate V_{EARLY} and r_o.

Using bias point analysis, find β_{DC} at the Q point $V_{CE}=6V$, $I_B=10\mu A$.

Determine r_e and r_π at $V_{CE}=6V$, $I_B=10\mu A$ using the schematic of Fig. 2.

Using the values for r_o, r_π, and β_{AC} found from simulation use a small-signal model to determine the input impedance, output impedance and voltage gain of the emitter follower in Fig. 3.

Determine the simulation values of Z_{in}, A_v, and Z_o.

In the amplifier of Fig. 4, choose the DC offset voltage V_{OFF} to optimize the amplifier for AC operation.
Choose the AC voltage V_{AMP} to generate the largest AC collector voltage that can be achieved without distortion.
Check your result with a simulation.