Homework 1: Linear algebra concepts Due: February 20, 2017

- 1. Suppose that $A \in \mathbb{C}^{n \times n}$ (the set of complex-valued matrices of size $n \times n$) is nonsingular. This statement is equivalent to saying that A has no eigenvalues equal to 0. If $\lambda \in \sigma(A)$ (the set of eigenvalues of A), show that $\lambda^{-1} \in \sigma(A^{-1})$. If $Ax = \lambda x$ and $x \neq 0$, give an eigenvector of A^{-1} associated with λ^{-1} .
- 2. Let $A \in \mathbf{R}^{n \times n}$. If λ is a real eigenvalue of A with $Ax = \lambda x$, $0 \neq x \in \mathbf{C}^n$, let $x = \zeta + i\eta$, where $\zeta, \eta \in \mathbf{R}^n$ are the entrywise real and imaginary parts of x. Show that $A\zeta = \lambda\zeta$ and $A\eta = \lambda\eta$; conclude that there is a real eigenvector of A associated with λ . Must both ζ and η be eigenvectors of A? Can there be a real eigenvector associated with a complex non-real eigenvalue of A?
- 3. A matrix $A \in \mathbb{C}^{n \times n}$ is called Hermitian if $A^* = A$. If A is Hermitian, show that all eigenvalues of A are real. Hint: Let $\lambda \in \sigma(A)$ be arbitrary, and let x be an associated eigenvector. Then examine the relation $x^*Ax = \lambda x^*x$.
- 4. For matrices $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$, show by direct calculation that $\operatorname{tr} AB = \operatorname{tr} BA$. Use this fact to show that for $A \in \mathbb{C}^{n \times n}$ and nonsingular $S \in \mathbb{C}^{n \times n}$, $\operatorname{tr} S^{-1}AS = \operatorname{tr} A$. The matrix $S^{-1}AS$ is called a similarity of A, and this result says that the trace is a similarity invariant.
- 5. Let $A, B \in \mathbb{C}^{n \times n}$. If B is similar to A, show that the characteristic polynomial of B is the same as that of A. Show that rank is also a similarity invariant: If B is similar to A, then rank $B = \operatorname{rank} A$.
- 6. If $A \in \mathbf{S}^n$ (the set of symmetric matrices of size $n \times n$). Show that

$$\operatorname{tr} A^k = \sum_{i=1}^n \lambda_i^k \tag{1}$$

for all positive integers k. The right-hand sum is called the k^{th} moment of the eigenvalues of A. (Note that this result also holds for a generic square matrix in $\mathbf{C}^{n \times n}$ but the proof is more involved.)

7. Let $A, B \in \mathbb{C}^{n \times n}$, A is non-singular. Find the vector x to maximize the following function:

$$f(x) = \frac{x^* B x}{x^* A x} \tag{2}$$

where x^* denotes the conjugate transpose of x. What is the maximum value of f(x)?