Homework 1: Linear algebra concepts Due: February 20, 2017

1. Suppose that $A \in \mathbf{C}^{n \times n}$ (the set of complex-valued matrices of size $n \times n$) is nonsingular. This statement is equivalent to saying that A has no eigenvalues equal to 0 . If $\lambda \in \sigma(A)$ (the set of eigenvalues of A), show that $\lambda^{-1} \in \sigma\left(A^{-1}\right)$. If $A x=\lambda x$ and $x \neq 0$, give an eigenvector of A^{-1} associated with λ^{-1}.
2. Let $A \in \mathbf{R}^{n \times n}$. If λ is a real eigenvalue of A with $A x=\lambda x, 0 \neq x \in \mathbf{C}^{n}$, let $x=\zeta+i \eta$, where $\zeta, \eta \in \mathbf{R}^{n}$ are the entrywise real and imaginary parts of x. Show that $A \zeta=\lambda \zeta$ and $A \eta=\lambda \eta$; conclude that there is a real eigenvector of A associated with λ. Must both ζ and η be eigenvectors of A ? Can there be a real eigenvector associated with a complex non-real eigenvalue of A ?
3. A matrix $A \in \mathbf{C}^{n \times n}$ is called Hermitian if $A^{*}=A$. If A is Hermitian, show that all eigenvalues of A are real. Hint: Let $\lambda \in \sigma(A)$ be arbitrary, and let x be an associated eigenvector. Then examnine the relation $x^{*} A x=\lambda x^{*} x$.
4. For matrices $A \in \mathbf{C}^{m \times n}$ and $B \in \mathbf{C}^{n \times m}$, show by direct calculation that $\operatorname{tr} A B=\operatorname{tr} B A$. Use this fact to show that for $A \in \mathbf{C}^{n \times n}$ and nonsingular $S \in \mathbf{C}^{n \times n}, \operatorname{tr} S^{-1} A S=\operatorname{tr} A$. The matrix $S^{-1} A S$ is called a similarity of A, and this result says that the trace is a similarity invariant.
5. Let $A, B \in \mathbf{C}^{n \times n}$. If B is similar to A, show that the characteristic polynomial of B is the same as that of A. Show that rank is also a similarity invariant: If B is similar to A, then rank $B=\operatorname{rank} A$.
6. If $A \in \mathbf{S}^{n}$ (the set of symmetric matrices of size $n \times n$). Show that

$$
\begin{equation*}
\operatorname{tr} A^{k}=\sum_{i=1}^{n} \lambda_{i}^{k} \tag{1}
\end{equation*}
$$

for all positive integers k. The right-hand sum is called the $k^{\text {th }}$ moment of the eigenvalues of A. (Note that this result also holds for a generic square matrix in $\mathbf{C}^{n \times n}$ but the proof is more involved.)
7. Let $A, B \in \mathbf{C}^{n \times n}, A$ is non-singular. Find the vector x to maximize the following function:

$$
\begin{equation*}
f(x)=\frac{x^{*} B x}{x^{*} A x} \tag{2}
\end{equation*}
$$

where x^{*} denotes the conjugate transpose of x. What is the maximum value of $f(x)$?

