Homework 1

1. Here is a statement about pairwise independence and joint independence. Let X, Y_{1} and Y_{2} be binary random variables. If $I\left(X ; Y_{1}\right)=0$ and $I\left(X ; Y_{2}\right)=0$, does it follow that $I\left(X ; Y_{1}, Y_{2}\right)=0$?
(a) Yes or no?
(b) Prove or provide a counterexample.
(c) If $I\left(X ; Y_{1}\right)=0$ and $I\left(X ; Y_{2}\right)=0$ in the above problem, does it follow that $I\left(Y_{1} ; Y_{2}\right)=0$? In other worlds, if Y_{1} is independent of X, and of Y_{2} is independent of X, is it true that Y_{1} and Y_{2} are independent?
2. Consider a sequence of n binary random variables $X_{1}, X_{2}, \cdots, X_{n}$. Each n-sequence with an even number of 1's has probability $2^{-(n-1)}$ and each n-sequence with an odd number of 1 's has probability 0 . Find the mutual informations

$$
I\left(X_{1} ; X_{2}\right), I\left(X_{2} ; X_{3} \mid X_{1}\right), \cdots, I\left(X_{n-1} ; X_{n} \mid X_{1}, \cdots, X_{n-2}\right)
$$

3. Let X, Y and Z be joint random variables.
(a) Prove the following inequality and find conditions for equality

$$
I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z)
$$

(b) Give examples of X, Y and Z for the following inequalities

- $I(X ; Y \mid Z)<I(X ; Y)$
- $I(X ; Y \mid Z)>I(X ; Y)$

4. Csiszár's sum identity is given as follows.

$$
\sum_{i=1}^{n} I\left(X_{i+1}^{n} ; Y_{i} \mid Y^{i-1}\right)=\sum_{i=1}^{n} I\left(Y^{i-1} ; X_{i} \mid X_{i+1}^{n}\right)
$$

where $X_{n+1}, Y_{0}=\emptyset$. Prove this identity.
5. An n-dimensional rectangular box with sides $X_{1}, X_{2}, \cdots, X_{n}$ is to be constructed. The volume is $V_{n}=\prod_{i=1}^{n} X_{i}$. The edge-length l of an n-cube with the same volume as the random box is $l=V_{n}^{1 / n}$. Let X_{1}, X_{2}, \cdots be i.i.d. uniform random variables over the interval $[0, a]$.

Find $\lim _{n \rightarrow \infty} V_{n}^{1 / n}$, and compare to $\left(E V_{n}\right)^{1 / n}$. Clearly the expected edge length does not capture the idea of the volume of the box.
6. Suppose that (X, Y, Z) are jointly Gaussian and that $X \rightarrow Y \rightarrow Z$ forms a Markov chain. Let X and Y have correlation coefficient ρ_{1} and let Y and Z have correlation coefficient ρ_{2}. Find $I(X ; Z)$.
7. Let $Y=X_{1}+X_{2}$. Find the maximum entropy (over all distributions on X_{1} and X_{2}) of Y under the constraint $E\left[X_{1}^{2}\right]=P_{1}, E\left[X_{2}^{2}\right]=P_{2}$.
(a) if X_{1} and X_{2} are independent.
(b) if X_{1} and X_{2} are allowed to be dependent.

