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1. Find the channel capacity of the following discrete memoryless channel:

Z

X Y

where Pr{Z = 0} = Pr{Z = a} = 1
2 . The alphabet for x is X = {0, 1}. Assume that Z is independent

of X. What is the optimal input distribution p∗(x) that achieves the capacity? Observe that the
channel capacity depends on the value of a.

2. Using two channels.

Find the capacity C of the union 2 channels (X1, p(y1|x1),Y1) and (X2, p(y2|x2),Y2) where, at each
time, one can send a symbol over channel 1 or channel 2 but not both. Assume the output alphabets
are distinct and do not intersect. Show 2C = 2C1 + 2C2 .

3. Consider a time-varying discrete memoryless binary symmetric channel. Let Y1, Y2, · · · , Yn be con-
ditionally independent given X1, X2, · · · , Xn, with conditional distribution given by p(yn|xn) =
∏n

i=1 pi(yi|xi), as shown below.

(a) Find maxp(x) I(X
n;Y n).

(b) We now ask for the capacity for the time invariant version of this problem. Replace each pi,
1 ≤ i ≤ n, by the average value p̄ = 1

n

∑n
j=1 pj , and compare the capacity to part (a).

4. Consider the ordinary additive noise Gaussian channel with two correlated looks at X, i.e., Y =
(Y1, Y2), where

Y1 = X + Z1

Y2 = X + Z2

with a power constraint P on X, and (Z1, Z2) ∼ N2(0,K), where

K =

[

N ρN
ρN N

]

Find the capacity C for
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(a) ρ = 1

(b) ρ = 0

(c) ρ = −1

5. Consider the following parallel Gaussian channel in the figure below where Z1 ∼ N (0, N1), Z2 ∼
N (0, N2), and Z1 and Z2 are independent Gaussian random variables and Yi = Xi +Zi. We wish to
allocate power to the two parallel channels. Let β1 and β2 be fixed. Consider a total cost constraint
β1P1+β2P2 ≤ β, where Pi is the power allocated to the ith channel and βi is the cost per unit power
in that channel. Thus, P1 ≥ 0 and P2 ≥ 0 can be chosen subject to the cost constraint β.

(a) For what value of β does the channel stop acting like a single channel and start acting like a
pair of channels?

(b) Evaluate the capacity and find P1 and P2 that achieve capacity for β1 = 1, β2 = 2, N1 = 3, N2 =
2, and β = 10.

6. Consider the following channel:

Throughout this problem we shall constrain the signal power

E[X] = 0, E[X2] = P,

and the noise power

E[Z] = 0, E[Z2] = N,

and assume that X and Z are independent. The channel capacity is given by I(X;X + Z).

Now for the game. The noise player chooses a distribution on Z to minimize I(X;X + Z), while
the signal player chooses a distribution on X to maximize I(X;X + Z). Letting X∗ ∼ N (0, P ),
Z∗ ∼ N (0, N), show that Gaussian X∗ and Z∗ satisfy the saddle point conditions

I(X;X + Z∗) ≤ I(X∗;X∗ + Z∗) ≤ I(X∗;X∗ + Z).
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Thus

min
Z

max
X

I(X;X + Z) = max
X

min
Z

I(X;X + Z) =
1

2
log

(

1 +
P

N

)

,

and the game has a value. In particular, a deviation from normal for either player worsens the mutual
information from that player’s standpoint. Can you discuss the implications of this?
Note: Part of the proof hinges on the entropy power inequality from Chapter 16, which states that
if X and Y are independent random n-vectors with densities, then

e
2

n
h(X+Y) ≥ e

2

n
h(X) + e

2

n
h(Y)

7. A train pulls out of the station at constant velocity. The received signal energy thus falls off with
time as 1/i2. The total received signal at time i is

Yi =
1

i
Xi + Zi

where Z1, Z2, · · · are i.i.d. ∼ N (0, N). The transmitter constraint for block length n is

1

n

n
∑

i=1

x2i (w) ≤ P, w ∈ {1, 2, · · · , 2nR}

Using Fano’s inequality, show that the capacity C is equal to zero for this channel.

8. Consider the vector Gaussian noise channel

Y = X + Z

where X = (X1, X2, X3), Z = (Z1, Z2, Z3), Y = (Y1, Y2, Y3), E[||X||2] ≤ P , and

Z ∼ N



0,





1 0 1
0 1 1
1 1 2









Find the capacity. The answer may be surprising.

9. Joint typicality theorem and Packing lemma.

(a) Let (Xi, Yi) be i.i.d. according to p(x, y). We say that (xn, yn) is jointly typical (written

(xn, yn) ∈ A
(n)
ǫ ) if all the following inequalities hold:

2−n(H(X)+ǫ) ≤ p(xn) ≤ 2−n(H(X)−ǫ)

2−n(H(Y )+ǫ) ≤ p(yn) ≤ 2−n(H(Y )−ǫ)

2−n(H(X,Y )+ǫ) ≤ p(xn, yn) ≤ 2−n(H(X,Y )−ǫ)

Now suppose that (X̃n, Ỹ n) is drawn according to p(xn)p(yn). Thus, (X̃n, Ỹ n) have the same
marginals as (Xn, Y n) (which were drawn according to p(xn, yn)) but are independent. Prove
that

Pr{(X̃n, Ỹ n) ∈ A(n)
ǫ } ≤ 2−n(I(X;Y )−3ǫ).
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(b) Let (U,X, Y ) be i.i.d. according to p(u, x, y). Let (Ũn, Ỹ n) ∼ p(ũn, ỹn) be a pair of arbitrary
distributed random sequences (not necessarily according to

∏n
i=1 pU,Y (ũi, ỹi)). Let X

n(m),m ∈
[1, 2nR] be random sequences each distributed according to

∏n
i=1 pX|U (xi|ũi). Assume that

Xn(m) is pairwise conditionally independent of Ỹ n given Ũn, but is arbitrarily dependent on
other Xn(m) sequences.

Prove that
Pr{(Ũn, Xn(m), Ỹ n ∈ A(n)

ǫ } → 0

for some m ∈ [1, 2nR] as n → ∞ if

R < I(X;Y |U)− ǫ.
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