Homework 2

1. Find the channel capacity of the following discrete memoryless channel:

where $\operatorname{Pr}\{Z=0\}=\operatorname{Pr}\{Z=a\}=\frac{1}{2}$. The alphabet for x is $\mathbf{X}=\{0,1\}$. Assume that Z is independent of X. What is the optimal input distribution $p^{*}(x)$ that achieves the capacity? Observe that the channel capacity depends on the value of a.
2. Using two channels.

Find the capacity C of the union 2 channels $\left(\mathcal{X}_{1}, p\left(y_{1} \mid x_{1}\right), \mathcal{Y}_{1}\right)$ and $\left(\mathcal{X}_{2}, p\left(y_{2} \mid x_{2}\right), \mathcal{Y}_{2}\right)$ where, at each time, one can send a symbol over channel 1 or channel 2 but not both. Assume the output alphabets are distinct and do not intersect. Show $2^{C}=2^{C_{1}}+2^{C_{2}}$.
3. Consider a time-varying discrete memoryless binary symmetric channel. Let $Y_{1}, Y_{2}, \cdots, Y_{n}$ be conditionally independent given $X_{1}, X_{2}, \cdots, X_{n}$, with conditional distribution given by $p\left(y^{n} \mid x^{n}\right)=$ $\prod_{i=1}^{n} p_{i}\left(y_{i} \mid x_{i}\right)$, as shown below.

(a) Find $\max _{p(x)} I\left(X^{n} ; Y^{n}\right)$.
(b) We now ask for the capacity for the time invariant version of this problem. Replace each p_{i}, $1 \leq i \leq n$, by the average value $\bar{p}=\frac{1}{n} \sum_{j=1}^{n} p_{j}$, and compare the capacity to part (a).
4. Consider the ordinary additive noise Gaussian channel with two correlated looks at X, i.e., $Y=$ $\left(Y_{1}, Y_{2}\right)$, where

$$
\begin{aligned}
& Y_{1}=X+Z_{1} \\
& Y_{2}=X+Z_{2}
\end{aligned}
$$

with a power constraint P on X, and $\left(Z_{1}, Z_{2}\right) \sim \mathcal{N}_{2}(\mathbf{0}, K)$, where

$$
K=\left[\begin{array}{cc}
N & \rho N \\
\rho N & N
\end{array}\right]
$$

Find the capacity C for
(a) $\rho=1$
(b) $\rho=0$
(c) $\rho=-1$
5. Consider the following parallel Gaussian channel in the figure below where $Z_{1} \sim \mathcal{N}\left(0, N_{1}\right), Z_{2} \sim$ $\mathcal{N}\left(0, N_{2}\right)$, and Z_{1} and Z_{2} are independent Gaussian random variables and $Y_{i}=X_{i}+Z_{i}$. We wish to allocate power to the two parallel channels. Let β_{1} and β_{2} be fixed. Consider a total cost constraint $\beta_{1} P_{1}+\beta_{2} P_{2} \leq \beta$, where P_{i} is the power allocated to the $i_{\text {th }}$ channel and β_{i} is the cost per unit power in that channel. Thus, $P_{1} \geq 0$ and $P_{2} \geq 0$ can be chosen subject to the cost constraint β.

(a) For what value of β does the channel stop acting like a single channel and start acting like a pair of channels?
(b) Evaluate the capacity and find P_{1} and P_{2} that achieve capacity for $\beta_{1}=1, \beta_{2}=2, N_{1}=3, N_{2}=$ 2 , and $\beta=10$.
6. Consider the following channel:

Throughout this problem we shall constrain the signal power

$$
E[X]=0, \quad E\left[X^{2}\right]=P,
$$

and the noise power

$$
E[Z]=0, \quad E\left[Z^{2}\right]=N,
$$

and assume that X and Z are independent. The channel capacity is given by $I(X ; X+Z)$.
Now for the game. The noise player chooses a distribution on Z to minimize $I(X ; X+Z)$, while the signal player chooses a distribution on X to maximize $I(X ; X+Z)$. Letting $X^{*} \sim \mathcal{N}(0, P)$, $Z^{*} \sim \mathcal{N}(0, N)$, show that Gaussian X^{*} and Z^{*} satisfy the saddle point conditions

$$
I\left(X ; X+Z^{*}\right) \leq I\left(X^{*} ; X^{*}+Z^{*}\right) \leq I\left(X^{*} ; X^{*}+Z\right)
$$

Thus

$$
\min _{Z} \max _{X} I(X ; X+Z)=\max _{X} \min _{Z} I(X ; X+Z)=\frac{1}{2} \log \left(1+\frac{P}{N}\right)
$$

and the game has a value. In particular, a deviation from normal for either player worsens the mutual information from that player's standpoint. Can you discuss the implications of this?
Note: Part of the proof hinges on the entropy power inequality from Chapter 16, which states that if \mathbf{X} and \mathbf{Y} are independent random n-vectors with densities, then

$$
e^{\frac{2}{n} h(\mathbf{X}+\mathbf{Y})} \geq e^{\frac{2}{n} h(\mathbf{X})}+e^{\frac{2}{n} h(\mathbf{Y})}
$$

7. A train pulls out of the station at constant velocity. The received signal energy thus falls off with time as $1 / i^{2}$. The total received signal at time i is

$$
Y_{i}=\frac{1}{i} X_{i}+Z_{i}
$$

where Z_{1}, Z_{2}, \cdots are i.i.d. $\sim \mathcal{N}(0, N)$. The transmitter constraint for block length n is

$$
\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}(w) \leq P, \quad w \in\left\{1,2, \cdots, 2^{n R}\right\}
$$

Using Fano's inequality, show that the capacity C is equal to zero for this channel.
8. Consider the vector Gaussian noise channel

$$
Y=X+Z
$$

where $X=\left(X_{1}, X_{2}, X_{3}\right), Z=\left(Z_{1}, Z_{2}, Z_{3}\right), Y=\left(Y_{1}, Y_{2}, Y_{3}\right), E\left[\|X\|^{2}\right] \leq P$, and

$$
Z \sim \mathcal{N}\left(0,\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]\right)
$$

Find the capacity. The answer may be surprising.
9. Joint typicality theorem and Packing lemma.
(a) Let $\left(X_{i}, Y_{i}\right)$ be i.i.d. according to $p(x, y)$. We say that $\left(x^{n}, y^{n}\right)$ is jointly typical (written $\left.\left(x^{n}, y^{n}\right) \in A_{\epsilon}^{(n)}\right)$ if all the following inequalities hold:

$$
\begin{aligned}
2^{-n(H(X)+\epsilon)} & \leq p\left(x^{n}\right) \leq 2^{-n(H(X)-\epsilon)} \\
2^{-n(H(Y)+\epsilon)} & \leq p\left(y^{n}\right) \leq 2^{-n(H(Y)-\epsilon)} \\
2^{-n(H(X, Y)+\epsilon)} & \leq p\left(x^{n}, y^{n}\right) \leq 2^{-n(H(X, Y)-\epsilon)}
\end{aligned}
$$

Now suppose that $\left(\tilde{X}^{n}, \tilde{Y}^{n}\right)$ is drawn according to $p\left(x^{n}\right) p\left(y^{n}\right)$. Thus, $\left(\tilde{X}^{n}, \tilde{Y}^{n}\right)$ have the same marginals as $\left(X^{n}, Y^{n}\right)$ (which were drawn according to $p\left(x^{n}, y^{n}\right)$) but are independent. Prove that

$$
\operatorname{Pr}\left\{\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \in A_{\epsilon}^{(n)}\right\} \leq 2^{-n(I(X ; Y)-3 \epsilon)}
$$

(b) Let (U, X, Y) be i.i.d. according to $p(u, x, y)$. Let $\left(\tilde{U}^{n}, \tilde{Y}^{n}\right) \sim p\left(\tilde{u}^{n}, \tilde{y}^{n}\right)$ be a pair of arbitrary distributed random sequences (not necessarily according to $\left.\prod_{i=1}^{n} p_{U, Y}\left(\tilde{u}_{i}, \tilde{y}_{i}\right)\right)$. Let $X^{n}(m), m \in$ $\left[1,2^{n R}\right]$ be random sequences each distributed according to $\prod_{i=1}^{n} p_{X \mid U}\left(x_{i} \mid \tilde{u}_{i}\right)$. Assume that $X^{n}(m)$ is pairwise conditionally independent of \tilde{Y}^{n} given \tilde{U}^{n}, but is arbitrarily dependent on other $X^{n}(m)$ sequences.
Prove that

$$
\operatorname{Pr}\left\{\left(\tilde{U}^{n}, X^{n}(m), \tilde{Y}^{n} \in A_{\epsilon}^{(n)}\right\} \rightarrow 0\right.
$$

for some $m \in\left[1,2^{n R}\right]$ as $n \rightarrow \infty$ if

$$
R<I(X ; Y \mid U)-\epsilon
$$

