Homework 3 - The Multiple Access Channel

1. Capacity region of simple multiple access channels.

(a) What is the capacity of the following multiple access channel?

$$
\begin{array}{r}
X_{1} \in\{-1,0,1\} \\
X_{2} \in\{-1,0,1\} \\
Y=X_{1}^{2}+X_{2}^{2}
\end{array}
$$

i. Find the capacity region.
ii. Describe $p^{*}\left(x_{1}\right), p^{*}\left(x_{2}\right)$ achieving a point on the boundary of the capacity region.
iii. What is the capacity if $Y=X_{1} X_{2}$?
(b) Find the capacity region of the modulo-2 sum MAC, where X_{1} and X_{2} are binary and $Y=$ $X_{1} \oplus X_{2}$. Show that the capacity region can be expressed as the union of $\mathcal{R}\left(X_{1}, X_{2}\right)$ sets and therefore time sharing is not necessary.
2. MAC capacity as cutset bounds. For the multiple access channel we know that (R_{1}, R_{2}) is achievable if

$$
\begin{aligned}
R_{1} & <I\left(X_{1} ; Y \mid X_{2}\right) \\
R_{2} & <I\left(X_{2} ; Y \mid X_{1}\right) \\
R_{1}+R_{2} & <I\left(X_{1}, X_{2} ; Y\right)
\end{aligned}
$$

for X_{1}, X_{2} independent. Show, for X_{1}, X_{2} independent, that

$$
I\left(X_{1} ; Y \mid X_{2}\right)=I\left(X_{1} ; Y, X_{2}\right)
$$

Thus R_{1} is less than the mutual information between X_{1} and everything else.

Interpret the information bounds as bounds on the rate of flow across cutsets S_{1}, S_{2} and S_{3}.
3. Achievable SNR region. Consider a Gaussian multiple access channel $Y=g X_{1}+X_{2}+Z$ with $Z \sim N(0,1), g \geq 1$, and the power constraints P_{1} on X_{1} and P_{2} on X_{2}.
(a) Specify the capacity region of this channel with SNRs $S_{1}=g^{2} P_{1}$ and $S_{2}=P_{2}$.
(b) Suppose we wish to communicate reliably at a fixed rate pair (R_{1}, R_{2}). Specify the achievable $S N R$ region $\mathcal{S}\left(R_{1}, R_{2}\right)$ consisting of all SNR pairs $\left(s_{1}, s_{2}\right)$ such that $\left(R_{1}, R_{2}\right)$ is achievable.
(c) Find the SNR pair $\left(s_{1}^{*}, s_{2}^{*}\right) \in \mathcal{S}\left(R_{1}, R_{2}\right)$ that minimizes the total average transmission power $P_{\text {sum }}=P_{1}+P_{2}$. (Hint: You can use a simple geometric argument.)
(d) Can $\left(R_{1}, R_{2}\right)$ be achieved with minimum total average power $P_{\text {sum }}$ using only successive cancellation decoding (i.e., without time sharing)? If so, what is the order of message decoding? Can (R_{1}, R_{2}) be achieved by time division with power control? (Hint: Treat the cases $g=1$ and $g>1$ separately.)
(e) Find the minimum-energy-per-bit region of the Gaussian MAC, that is, the set of all energy pairs $\left(E_{1}, E_{2}\right)=\left(P_{1} / R_{1}, P_{2} / R_{2}\right)$ such that the rate pair $\left(R_{1}, R_{2}\right)$ is achievable with average code power pair $\left(P_{1}, P_{2}\right)$.
4. Multiple-antenna Gaussian MAC. Consider a two-user Gaussian multiple access channel with channel output $Y=\left(Y_{1}, Y_{2}\right)$ given by

$$
\begin{aligned}
& Y_{1}=X_{1}+Z_{1} \\
& Y_{2}=X_{1}+X_{2}+Z_{2}
\end{aligned}
$$

where channel inputs X_{1} and X_{2} from each user are both subject to power constraint P, and the zero-mean unit-variance Gaussian noises Z_{1} and Z_{2} are independent of each other and channel inputs.
(a) Find the capacity region.
(b) Find the time-division region with power control. Is it possible to achieve any point on the boundary of the capacity region (except for the end points) using time-division?
5. Capacity of Gaussian MAC with rate splitting. The capacity of a multiple access channel can be achieved by successive cancellation decoding to achieve the corner points of the capacity region, and time-sharing to achieve the rate points in between. Instead of time-sharing, another technique that can achieve the capacity of the Gaussian MAC is rate splitting at one of the encoder, and then use successive single-user decoding. The idea is to split one encoder (say encoder 2) into two encoders operating at the respective rates R_{21} and R_{22}, where $R_{2}=R_{21}+R_{22}$. Suppose that these encoders generate codewords with respective powers P_{21} and P_{22}, where $P_{2}=P_{22}+P_{22}$. Then the transmitted codeword from user 2 is the sum of the two codewords generated by these two encoders. The decoder performs single-user decoding in three stages: first, decode the R_{21} code; second, decode the R_{1} code; third, decode the R_{22} code.
(a) Establish the achievable rate region for the Gaussian MAC using this rate-splitting and singleuser decoding technique.
(b) Show that this rate region equals to the known MAC capacity region.

Notes: This rate-splitting approach to the Gaussian MAC was established in Bixio Rimoldi and Rudiger Urbanke, "A Rate-Splitting Approach to the Gaussian Multiple-Access Channel" IEEE Trans. on Info. Theory, Vol. 46, NO. 2, 1996.
6. Multiple access channel with degraded message sets. Consider a DM-MAC $\left(\mathcal{X}_{1} \mathcal{X}_{2}, p\left(y \mid x_{1}, x_{2}\right), \mathcal{Y}\right)$. Sender 1 encodes two independent messages (M_{0}, M_{1}) uniformly distributed over $\left[2^{n R_{0}}\right] \times\left[2^{n R_{1}}\right]$, while Sender 2 encodes the message M_{0} only. Thus, the common message M_{0} is available to both senders, while the private message M_{1} is available only to Sender 1 . The receiver Y needs to decode both M_{0} and M_{1}.

Multiple access channel with DMS.

The capacity region of this channel is given by the convex closure of all rate pairs $\left(R_{1}, R_{2}\right)$ satisfying

$$
\begin{aligned}
R_{1} & <I\left(X_{1} ; Y \mid X_{2}\right) \\
R_{1}+R_{0} & <I\left(X_{1}, X_{2} ; Y\right)
\end{aligned}
$$

for some $p\left(x_{1}, x_{2}\right) p\left(y \mid x_{1}, x_{2}\right)$.
(a) Prove the achievability of the capacity region.
(b) Prove the weak converse of the capacity region.
(c) What is the capacity region for the AWGN-MAC with degraded message sets under noise power 1 and input power constraints P_{1} and P_{2} ?

