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Homework 5

1. Two-way channel. The 2-way channel is a channel very similar to the interference channel, with
the additional provision that sender 1 is attached to receiver 2 and sender 2 is attached to receiver 1,
as shown in Figure 1. Hence, sender 1 can use information from previous received symbols of receiver
2 to decide what to send next.

Consider the 2-way channel shown in Figure 1. Assume here that the outputs Y1 and Y2 depend only
on the current inputs X1 and X2.
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Figure 1: Two-way channel.

(a) By using independently generated codes for the two senders, show that the following rate region
is achievable:

R1 < I(X1; Y2|X2),
R2 < I(X2; Y1|X1),

for some product distribution p(x1)p(x2)p(y1, y2|x1, x2).

(b) Show that the rates for any code for a two-way channel with arbitrarily small probability of
error must satisfy

R1 ≤ I(X1; Y2|X2),
R2 ≤ I(X2; Y1|X1),

for some joint distribution p(x1, x2)p(y1, y2|x1, x2).
The inner and outer bounds on the capacity of the two-way channel are due to Shannon. He
also showed that the inner bound and the outer bound do not coincide in the case of the binary
multiplying channel X1 = X2 = Y1 = Y2 = {0, 1}, Y1 = Y2 = X1X2. The capacity of the
two-way channel is still an open problem.

2. AWGN-IC. Consider the following AWGN interference channel (AWGN-IC) model. At time i

Y ′
1i = g11X

′
1i + g21X

′
2i + Z ′1i

Y ′
2i = g12X

′
1i + g22X

′
2i + Z ′2i,

where Z ′1i and Z ′2i are discrete-time white Gaussian noise processes with average power N1 and N2

respectively, independent of X ′
1i and X ′

2i, and gjk, j, k = 1, 2, are the channel gains. Let the codewords
Xn

1 and Xn
2 have average power constraints of P ′

1 and P ′
2, respectively.

(a) Convert the above channel to the standard AWGN-IC shown below with direct link gains of 1
and unit noise variances. What are the new codeword power constraints P1 and P2, and the new
channel gains a and b? Provide arguments to why these two channels have the same capacity.
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(b) For a < 1 and b < 1, derive the achievable rate regions for the standard AWGN-IC with the
following coding schemes:

i. Time-sharing with power control
ii. Treating interference as Gaussian noise
iii. Simultaneous decoding of both messages at both receiver
iv. Han-Kobayashi rate splitting

Compare these rate regions. Does any of these regions include other regions? Prove or provide
numerical examples (show a plot).

3. Binary interference channel. Consider the following binary interference channel:

Y1 = (X1 ⊕ Z1) ·X2

Y2 = (X2 ⊕ Z2) ·X1

where the inputs X1 and X2 are binary and independent of each other, the noises Z1 and Z2 are i.i.d.
with distribution Bern(α) and are independent of the inputs.

(a) Find the maximum rate of user 1.

(b) Evaluate the Han-Kobayashi region for this channel, using binary auxiliary random variables.
(Note that binary auxiliary random variables may not be optimal, but are assumed here for sim-
ple computation.) Specify the encoding and decoding techniques and the optimal distributions
of the auxiliary random variables that are used to achieve the boundary of this region.

4. Equivalent inner bounds for the DM-IC. For a discrete memoryless interference channel (DM-
IC), the Han-Kobayashi (HK) achievable rate region is the convex closure of the rate tuple satisfying

R11 ≤ I(W1; Y1|U1, U2, Q)
R10 ≤ I(U1;Y1|W1, U2, Q)
R20 ≤ I(U2;Y1|U1,W1, Q)

R11 + R10 ≤ I(U1,W1; Y1|U2, Q)
R11 + R20 ≤ I(U2,W1; Y1|U1, Q)
R10 + R20 ≤ I(U1, U2; Y1|W1, Q)

R11 + R10 + R20 ≤ I(U1,W1, U2; Y1|Q)
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and 7 similar inequalities for R22, R20, R10 for some (p(q)p(u1|q)p(w1|q)p(u2|q)p(w2|q)p(x1|u1, w1, q)
p(x2|u2, w2, q)). (U1,W1, U2, W2) are auxiliary random variables serve to carry the messages (M10,M11,
M20,M22), respectively.

On the other hand, the Chong-Motani-Garg (CMG) achievable rate region is the convex closure of
the rate tuple satisfying

R11 ≤ I(X1;Y1|U1, U2, Q)
R11 + R10 ≤ I(X1;Y1|U2, Q)
R11 + R20 ≤ I(U2, X1; Y1|U1, Q)

R11 + R10 + R20 ≤ I(X1, U2; Y1|Q)

and 4 similar inequalities for R22, R20, R10 for some (p(q)p(u1, x1|q) p(u2, x2|q)).
Simplify these rate constraints using the Fourier-Mozkin elimination process to obtain a rate region
in terms of R1 and R2.

Show the equivalence between these two representations of the achievable rate regions.

5. Cognitive interference channel (also called IC with degraded message sets (IC-DMS)) The inter-
ference channel with degraded message set (IC-DMS) is an interference channel in which the message
and codeword of one encoder is known non-causally at the other encoder. In other words, transmit-
ter 2 encodes two independent messages (M1,M2) uniformly distributed over [2nR1 ] × [2nR2 ], while
transmitter 1 encodes the message M1 only. Receiver 1 needs to decode only M1 and receiver 2 needs
to decode only M2. This channel is also called the cognitive channel.
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Interference channel with DMS.

(a) Use Gel’fand-Pinsker and Han-Kobayashi coding techniques, propose an achievable rate region
for this channel.

(b) What is this achievable rate region for the standard Gaussian IC with degraded message sets?

6. Capacity gain from channel state information. Consider the DMC with DM state p(y|x, s)p(s).
This problem compares between value of state information at the decoder and at the encoder.

First, show that the capacity gain due to state information at the decoder is bounded by proving the
following statements:

(a) CSI-D − CSI-none ≤ maxp(x) H(S|Y ).
(b) CSI-ED − CSI-E ≤ maxp(x|s) H(S|Y ).

For part (b), assume the same type of encoder state information in both capacity expressions (both
causal or both noncausal) and prove for both cases. These results show that the state information
at the decoder is worth at most H(S) bits.

Next, show that the state information at the encoder can be much more valuable by providing an
example where CSI-E−CSI-none > H(S). (You can provide an example with either causal or non-causal
state information.)
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7. Input optimization Consider a binary discrete memoryless channel with discrete memoryless binary
state S. When S = 1, the channel is a binary symmetric channel (BSC) with cross over probability
α. When S = 2, the channel is a BSC with cross over probability β. Assume α < β < 0.5. Let S be
Bern(p), that is, Pr(S = 1) = p where 0 ≤ p ≤ 1.

Compute the capacity of this channel when the state is known non-causally only at the encoder.
What is the capacity-achieving input distribution?

For α = 0.01 and β = 0.89, plot this capacity with as a function of p. Also plot and compare with
the capacity with state known only at the decoder.

8. Handoff Consider two symmetric Gaussian ICs, one with SNR S and INR I > S, and the other with
SNR I and INR S. Thus, the second Gaussian IC is equivalent to the setting where the messages
are sent to the other receivers in the first Gaussian IC. Which has a larger capacity region?

9. Gaussian Z interference channel Consider the Gaussian IC depicted in the Figure below with
SNRs S1, S2, and INR I1. (Here the INR I2 = 0.)
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Gaussian interference channel with I2 = 0.

(a) Find the capacity region when S2 <= I1.

(b) Find the sum-capacity when I1 <= S2.

(c) Find the capacity region when S2 <= I1/(1 + S1).
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