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Lecture 3:

Gaussian Channels

1 Scalar Gaussian channel

Consider a discrete-time channel in which the input Xi and output Yi are samples at time i and are
continuous signals. The noise samples Zi are i.i.d Gaussian, and Xi and Zi are independent. At
each sample, the channel can be expressed as

Yi = Xi + Zi

Without any constraint, the capacity is infinity.

Average power constraint

For each codeword Xn = (X1, X2, · · · , Xn)

1

n

n
∑

i=1

Xi
2 ≤ P.

We can also write E[X2] ≤ P although this is slightly different as it implies the average power per
column of the codebook (at each time sample).

Then using the result from the DMC

I(X; Y ) = h(Y ) − h(Y |X) = h(Y ) − h(X + Z|X)

= h(Y ) − h(Z|X) = h(Y ) − h(Z)

= h(Y ) −
1

2
log 2πeN.

Since E[X2] ≤ P and E[Z2] ≤ N , so Y = X + Z → E(Y 2) ≤ P + N and

h(Y ) ≤
1

2
log 2πe(P + N)

xwhere the equality holds iff Y ∼ N (0, P + N) and X ∼ N (0, P ).
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Theorem

The capacity of a Gaussian channel with input power constraint P and noise variance σ2 = N is

C =
1

2
log

(

1 +
P

N

)

.

This capacity is achieved with X ∼ N (0, P ).

The proof of this theorem is similar to the proof of the DMC capacity but involves extra steps
concerned the power constraint.

Set the SNR= P
N

= γ, so it could be written as C = 1

2
log(1+ γ). In a graph we usually plot the

capacity against γdB = 10 log10 γ.

2 Parallel Gaussian channels

Consider K parallel Gaussian channels with independent noises Zi ∼ N (0, Ni).

Yk = Xk + Zk, k = 1 . . . K

The inputs Xi are independent with Zj and have sum power constraint as

K
∑

i=1

E[X2

k ] = P.

Because of indepedent noises, the transmission rate can be upper-bounded as

I(X1, X2, · · · , Xk; Y1, Y2, · · · , Yk) ≤
k

∑

i=1

I(Xi; Yi)

≤
1

2

k
∑

i=1

log

(

1 +
Pi

Ni

)

.

Question: How to optimize power allocation?

max 1

2

∑

log
(

1 + Pi

Ni

)

s.t.
∑

Pi = P,

Pi ≥ 0

Form the Lagrangian, we have

J =
1

2

∑

log

(

1 +
Pi

Ni

)

+ λ
∑

Pi

∂J

∂Pi

=
1

2

1

Pi + Ni

+ λ = 0 −→ Pi = −
1

2λ
− Ni.

The optimal power allocation is
Pi = (µ − Ni)

+

where µ is such that
∑

Pi = P . This is called water-filling.
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3 Parallel Gaussian channels with colored nosie

In the case of colored noise, (Z1, Z2, · · · , Zk) ∼ N (0, Kz). (If Kz = diag(N1, N1, . . . , Nk) then again
we have independent noises as the previouse case.)

The optimal input X = (X1, X2, · · · , Xk) is X ∼ N (0, Kx). We want to find the optimal Kx,
subject to

E(X2

1 ) + E(X2

2 ) + · · · + E(X2

k) ≤ P

⇒ tr(Kx) ≤ P.

Since Z ∼ N (0, Kz) → H(z) = 1

2
log (2πe|Kz|

n). The problem becomes

max I(X; Y ) =
1

2
log

(

det(Kz + Kx)

det(Kz)

)

s.t. tr(Kx) ≤ P,

Let Kz = QΛzQ
T be the eigenvalue decomposition, then Kx = QΛzQ

T is the eigenvalue decompo-
sition of the optimal Kx, where λxi

= (µ − λNi
)+. In other words, we design the the input signals

to be correlated with the same eigenvectors as the noise correlation, and perform water-filling on
the eigenvalues of KZ . This is also the idea in a MIMO channel if both the transmitter and receiver
know the channel.

4 Bandlimited Channels

The bandlimited channel is the channel with spectrum H(f) = 0 if |f | ≥ W . With sample rate
2W, we could reconstruct the signal completely. For each sample, the power constrain becomes P

2W
.

Assume white noise with Power Spectrum Density(PSD) N0

2
, then the total noise power = N0W ,

and noise power per sample is N0W
2W

= N0

2

So the capacity per sample is

Cs =
1

2
log

(

1 +
P

N0W

)

.

Then the capacity for the bandlimited channel is

C = 2WCs = W log

(

1 +
P

N0W

)

.

If the noise is not white but is a stationary Gaussian stochastic process with covariance matrix
KZ , then we perform waterfilling on the eigenvalues of Kz. As the number of samples increases, the
density of the eigenvalue of KZ tends to the power spectrum of the noise, and waterfilling translates
to the spectral domain.
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