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Lecture 3:
Gaussian Channels

1 Scalar Gaussian channel

Consider a discrete-time channel in which the input X; and output Y; are samples at time 7 and are
continuous signals. The noise samples Z; are i.i.d Gaussian, and X; and Z; are independent. At
each sample, the channel can be expressed as

Yi=Xi+72

Without any constraint, the capacity is infinity.

Average power constraint

For each codeword X™ = (X1, Xa, -, X,,)

1 n
E;Xf <P

We can also write F[X?] < P although this is slightly different as it implies the average power per
column of the codebook (at each time sample).

Then using the result from the DMC

I(X;Y) = h(Y) — h(Y|X) = h(Y) — h(X + Z|X)
— h(Y) — h(Z|X) = h(Y) — h(Z)

1
=h(Y) — §log27reN.
Since E[X? < Pand E[Z?| < N,s0Y =X+ 7 — E(Y?) < P+ N and
1
hY) < §log27re(P—|-N)

xwhere the equality holds iff Y ~ N(0, P+ N) and X ~ N (0, P).
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Theorem
The capacity of a Gaussian channel with input power constraint P and noise variance o> = N is

1 P
=1 14+ —].
C 20g(—|—N)

This capacity is achieved with X ~ N (0, P).

The proof of this theorem is similar to the proof of the DMC capacity but involves extra steps
concerned the power constraint.

Set the SNR= % = 7, so it could be written as C' = % log(1++). In a graph we usually plot the
capacity against v4p = 10log;, .

2 Parallel Gaussian channels

Consider K parallel Gaussian channels with independent noises Z; ~ N (0, N;).
Vo= Xp+ Zp, k=1...K

The inputs X; are independent with Z; and have sum power constraint as
K
Y EX{] =P
i=1
Because of indepedent noises, the transmission rate can be upper-bounded as

I(X17X27“'7Xk;}/17}/27”'7yk)§ I(le}/;>
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Question: How to optimize power allocation?

max 3y log (1 + %)
s.t. Y P, =P,
P >0

Form the Lagrangian, we have

1 P
J=§ZIOg<1+E)+)\ZPi
o] 1 1 1

_ - A= P ——— _N.
op 2PN ATV =gy

The optimal power allocation is

b= (u—N;)"
where g is such that Y P, = P. This is called water-filling.
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3 Parallel Gaussian channels with colored nosie

In the case of colored noise, (7, Zy, -+, Zx) ~ N (0, K,). (If K, = diag(Ny, Ny, ..., Ni) then again
we have independent noises as the previouse case.)

The optimal input X = (X1, Xo, -+, X}) is X ~ N(0, K,). We want to find the optimal K,
subject to

E(X)+E(X)+---+EX})<P
= tr(K,) < P.

Since Z ~ N (0, K.) — H(z) = % log (2me|K.|"). The problem becomes

— 2

1 det(K, + K,)
I(X;Y) = - log | 02z T 2a)

max [(X;V) =3 Og( det(K.) )

s.t. tr(K,) < P,

Let K, = QA.QT be the eigenvalue decomposition, then K, = QA.QT is the eigenvalue decompo-
sition of the optimal K, where \,, = (u — Ay,)". In other words, we design the the input signals
to be correlated with the same eigenvectors as the noise correlation, and perform water-filling on
the eigenvalues of K. This is also the idea in a MIMO channel if both the transmitter and receiver
know the channel.

4 Bandlimited Channels

The bandlimited channel is the channel with spectrum H(f) = 0 if |f| > W. With sample rate
2W, we could reconstruct the signal completely. For each sample, the power constrain becomes %.
Assume white noise with Power Spectrum Density(PSD) %, then the total noise power = NyW,

. .o NoW _ N,
and noise power per sample is St = <P

So the capacity per sample is

1

Then the capacity for the bandlimited channel is

=2 =Wl 1 .
C W, Wog< +N0W)

If the noise is not white but is a stationary Gaussian stochastic process with covariance matrix
K, then we perform waterfilling on the eigenvalues of K,. As the number of samples increases, the
density of the eigenvalue of K tends to the power spectrum of the noise, and waterfilling translates
to the spectral domain.



