
EE 200 Exam 3

Tufts University

13 December 2018

SOLUTIONS

Question Points

Sorting 10
Choosing data structures 10

Heaps 5
Binary search trees 14

Threading and mutexes 6
Middle-pointer lists 6

Total 51
Bonus 2+2

Question 1: Sorting

There are three leading sorting algorithms with N log(N) runtime. Describe in one or two sentences how
each algorithm works.

(a) [2 pts] Mergesort

Works recursively from the bottom up. Each iteration splits the array, mergesorts each half, and then
merges the two sorted subarrays.

(b) [2 pts] Quicksort

Works recursively from the top down. Picks a pivot value and swaps elements so that all values on
the left are less than the pivot and all values on the right are greater, then resursively quicksorts each
half.

(c) [1 pt] Heapsort

Turns the array into a min-heap, and then repeatedly pulls the minimum values off the heap to create
the sorted array.

What are the disadvantages of each one? (i.e., why wouldn’t you always choose one of them and ignore the
others?)

(d) [2 pts] Mergesort

1

Requires a separate array to put the sorted data in (i.e, it doesn’t work in place and therefore requires
2× the memory).

(e) [2 pts] Quicksort

Becomes O(N) for particularly bad combinations of pivot choice and input data.

(f) [1 pt] Heapsort

Has higher constant factors than Mergesort or Quicksort — roughly 2× slower.

Question 2: Choosing data structures

Suppose you’re building the “contacts” application for a phone. You have a set of contacts with names and
phone numbers, and you want to be able to do two things as quickly as possible:

• Search for a contact’s phone number by name. That is, given a name, find the person’s phone number.

• Do reverse lookup for caller ID. That is, given a phone number, find the name of the person calling.

(a) [4 pts] What data structure(s) would you use to store this information, and why? There isn’t a single
correct answer — I’m more interested in your logic for choosing a solution.

There are several options:

• Use a hash table mapping names to numbers. This is O(1) for lookup, and O(N) for reverse
lookup.

• Use a hash table mapping numbers to names. This is O(N) for lookup, and O(1) for reverse
lookup.

• Use two hash tables which are kept in sync. This gives O(1) access both ways, but requires double
the storage and bookkeeping.

• Use a tree organized by characters or digits, which allows for quick auto-completion and log(N)
lookup.

(b) [1 pt] Using your solution, what is the Big-O runtime for looking up a phone number from a name?

(c) [1 pt] Using your solution, what is the Big-O runtime for finding a name given a phone number?

The standard template library type std::unordered set implements an unordered collection of unique
elements (like a Python set). That is, duplicates are not allowed, and items can only be inserted and
removed by value.

(d) [2 pts] What data structure would you use to implement std::unordered set? Briefly explain your
choice.

2

This is a perfect application for a hash table: there is no need to order items, and a hash table provides
O(1) access. In fact, if your read the documentation for unordered set, there are a few methods
which expose details of the underlying hash table implementation.

The standard template library type std::stack implements a last-in-first-out queue. Items are pushed
into the stack and come out in reverse order when popped off (i.e., the most recently pushed item comes
off first, like a stack of dinner plates).

(d) [2 pts] Which of the following would be a good candidate to implement a stack? Mark all that apply.

• Array or std::vector

• Binary search tree

• Hash table

• Heap

• Linked list

An array or std::vector would work well: just append and remove items from the end, and use a
counter to keep track of the current top of the stack. A linked list would also work: new items are
inserted and removed from the front of the list, which always gives O(1) access time.

Question 3: Heaps

Suppose you have a min-heap with 12 elements, represented by the following array:

7 11 9 21 24 13 34 31 23 92 25 99

(a) [2 pts] Draw the conceptual structure of the heap as a tree.

(b) [1 pt] How many elements do you need to examine to determine the minimum value in the heap?

Since the minimum value is at the root of the min-heap, we only need to examine a single element:
the root.

(c) [2 pts] How many elements do you need to examine to determine the maximum value in the heap?

3

One approach would be to examine every item. However, we can do better, because any node in the
heap which has children must be less than its children. Said another way, we need to examine all of
the leaf nodes, which are 31, 23, 92, 25, 99, and 34 — six in total.

Question 4: Binary search trees

A binary search tree class has the following (partial) declaration:

class BTree
{
public:

// Destructor, which cleans up all memory
˜BTree();

// Other methods...

// Assignment operator, which makes a deep copy of the tree
const BTree& operator=(const BTree& rhs);

class Node {
public:

Node(int val) { value = val; left = nullptr; right = nullptr; }
int value;
Node* left;
Node* right;

};

private:
Node* mRoot;
int mSize;

};

(a) [4 pts] Write the destructor for the BTree class, which cleans up all of the memory from dynamically-
allocated Nodes. You’re welcome to write one or more helper functions if it makes your code simpler.

void delete_helper(BTree::Node* location)
{

if(location){ // If this node isn’t NULL, we have to clean it up
delete_helper(location->left); // Do a postorder traversal
delete_helper(location->right);
delete location;

}
}

BTree::˜BTree()
{

delete_helper(mRoot);
}

4

(b) [10 pts] Write the assignment operator for the BTree class, which makes a deep copy of the tree. Again,
you’re welcome to use helper functions (including any you wrote above) if it makes things easier. Hint:
one clean way to do this is with a recursive function that modifies a pointer – meaning you’ll need to
pass a pointer to a pointer. Hint 2: Don’t get so caught up in the binary search tree details that you
forget to do the assignment operator details correctly.

void copy_helper(BTree::Node** dst, BTree::Node* src)
{

if(src){
*dst = new BTree::Node(src->value); // Pointers are null by default
copy_helper(&((*dst)->left), src->left);
copy_helper(&((*dst)->right), src->right);

}
}

const BTree& BTree::operator=(const BTree& rhs)
{

// Prevent self-assignment
if(this == &rhs){

return *this;
}

// Free the current tree, if it exists
delete_helper(mRoot);
mRoot = nullptr; // Not strictly necessary, but a good idea

copy_helper(&mRoot, rhs.mRoot);

// Finally, copy the size over
mSize = rhs.mSize;
return *this; // So that multiple assignment works

}

Question 5: Threading and mutexes

You are writing a multithreaded web server, with the skeleton code shown below:

typedef struct
{

std::queue<PageRequest> requestQ; // Queue of page requests to be handled

int requestsServed; // Count of the number of requests we’ve served

} ServerState;

void* serve_pages(void* s)
{

ServerState* server = (ServerState*)s;

while(1){

5

if(server->requestQ.empty()){ // No requests at the moment

sched_yield(); // Tell the OS to let another thread run

}
else{ // There is some request to handle

PageRequest req = server->requestQ.front(); // Get the next request

server->requestQ.pop(); // Remove it from the queue

if(serve_web_page(req)){ // Try to serve the request

// If the web page was successfully served, increment the total
server->requestsServed++;

}

} // END else

} // END while(1)
}

int main(int argc, char* argv[])
{

ServerState state; // Shared data for all the server threads
pthread_t threads[16];

for(int i = 0; i < 16; i++){
pthread_create(threads+i, NULL, serve_pages, (void *)&state);

}

// Watch the network and put requests into the queue.
get_requests(&state); // Like the serve_pages threads, this never returns.

}

(a) [2 pts] Circle any lines or sections of code that could cause problems with multithreading.

See above. We need to protect both requestQ and requestsServed.

(b) [4 pts] Write code between the lines to make sure that multiple serve pages threads don’t cause
problems. Assume that someone else fixes get requests to use the same locks you do.

You can use the std::mutex class, which is unlocked by default, and has three methods: void
lock(), void unlock() and bool try lock() (which attempts to lock the mutex and immedi-
ately returns false if it could not).

See above.

(c) Bonus [2 pts] Assuming that the bulk of the time is spent in the serve web page() function, optimize
your mutex code to get as much advantage from multithreading as possible.

6

To maximize performance, we need to make sure serve web page() is not part of the critical
section. Otherwise only one thread could be serving a web page at a time, which would defeat the
whole point of multithreading!

Since requestQ and requestsServed are independent, we can also use separate mutexes for them
to reduce contention.

Question 6: Middle-pointer lists

Sorted linked lists have fairly poor performance for insertion and retrieval, so your friend proposes an
improvement: a singly-linked list with a “middle pointer”, which is like a tail pointer but points to somewhere
in the middle of the list.

When searching for items in the sorted list, the “middle-pointer list” can check the search key against the
middle item. If the key is less, the search begins at the beginning of the list; if it is more, the search begins
in the middle, saving a significant fraction of the search time.

What is the Big-O for the following operations on a sorted “middle-pointer list”?

(a) [2 pts] Insertion into the sorted list

We have to search through up to half the list, assuming the middle pointer is really in the middle. This
is O(N/2), which without the constant factor is just O(N).

(b) [2 pts] Checking whether an item is in the list

Just like above, we half to linearly scan half the list, so this is also O(N).

(c) [2 pts] Retrieving the smallest item

The list is sorted, so the smallest item is as the head, with O(1) access.

Question 7: Bonus

Write a poem or joke about any topic in the course. [2 pts]

Deadlock

Each of two threads got a lock;
The OS noticed the clock.
It switched the thread,
and now we’re dead,
Because both threads are blocked.

7

