
EE 200

Steven Bell
2 November 2023

Lecture 16:
Exceptions

UnluckyNumber demo

Throw an unnamed temporary

Throw an unnamed temporary

If you allocate memory on the heap, all possible
exception handlers will have to know to free it.

Catch by reference

Catch by reference

If you catch by value, the exception will have to be copied.
This is a) wasteful, and b) might cause another exception.

Declare handlers from most to least specific

Declare handlers from most to least specific

The code will use the first one that matches, so any specific
ones have to come first, or else they will be "hidden" by
the generic handlers.

Inherit from std::exception

Inherit from std::exception

This makes it possible to reasonably catch everything:

try{

somethingDangerous();

} catch (std::exception e){

cout << e.what() << endl;

}

Destructors should never throw exceptions

Destructors should never throw exceptions

The destructor may get called while handling another
exception, and throwing a second exception will cause the
program to crash immediately.

Levels of guarantees

None: carnage and chaos may result

Strong: nothing is broken and the object wasn't modified
No-throw: Strong, plus we won't ever throw an exception

Weak: at least you didn't break anything

Classwork 13 is in your Github repo

Upgrade your Array class to:
1) Throw a BoundsException when the user tries to access

elements out of bounds
2) Provide the best exception guarantees you can.
 We will make malloc and new fail, and you should handle this.

"While such code would get by fine in an introductory course..."

