
EE201 Midterm Exam

Tufts University

7 March 2019

Name:

Question Points

Numbers 4
Boolean equations and circuits 12

Number circuits 8
What’s in the box? 4

Timing 4
Building proteins 5

VHDL 8

Total 45
Bonus 1

Instructions:

1. This examination contains 11 pages, including this page and the VHDL reference sheet.

2. The VHDL reference sheet is on the last 2 pages of this booklet. You may not use any other notes.

3. You may not use a calculator, slide rule, abacus, or other calculating devices besides your brain, your
fingers, and this paper.

4. You have seventy-five (75) minutes to complete the examination. As a courtesy to your classmates,
we ask that you not leave during the last ten minutes.

5. Write your answers in this booklet. If you have scratch work on another piece of paper which you’d
like counted for partial credit, please make a note on the appropriate place in the booklet, and make
sure to hand in the scratch work.

1

Question 1: Numbers

(a) [1 pt] Write 1110 0011 in hex.

(b) [1 pt] Write 1110 0011 in decimal, assuming it is an unsigned number.

(c) [2 pts] Write 1110 0011 in decimal, assuming it is a 2’s complement signed number.

Question 2: Boolean equations and circuits

(a) [4 pts] Write a minimal boolean equation for this truth table.

A B C D Y
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 X
1 0 0 0 X
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 X
1 1 1 1 X

2

(b) [4 pts] Implement the boolean equation AB + AC using only NAND gates. Assume only A, B, and C
are available, not their complements (i.e., A can be an input to your circuit, but A cannot).

[4 pts] Re-implement the same boolean equation using a 4:1 multiplexer and an inverter.

3

Question 3: Number circuits

[8 pts] Draw a circuit below that analyzes the 8-bit signed 2’s complement input N and produces three
results:

(a) Output A should be high if the input number is negative, and low otherwise.

(b) Output B should be high if the input number is zero, and low otherwise.

(c) Output C should be high if the input number is greater than +31, and low otherwise.

N7 is the most significant bit. You may use gates with as many inputs as you need (e.g., 4-input AND,
9-input NOR).

N6

N7

N4

N5

N2

N3

N0

N1

Negative

Zero

> 31

A

B

C

4

Question 4: What’s in the box?

[5 pts] For each of the four waveforms below, identify what is in the box. It could be an SR latch, a D latch,
a D flip-flop, or a single combinational logic gate (NAND, XOR, etc).

M
N

a

b

c

d

M
N

mystery
box Output (a-d)

5

Question 5: Timing

[5 pts] Given the timing specifications below, what is the maximum clock speed (in Hz) that this circuit can
run at? Assume the input can keep up with whatever rate you choose. Leave your answer as a fraction if
necessary.

Gate tpd (ns) tcd (ps)

2-input XOR 23 12
D flip-flop Clock-Q 15 8

D flip-flop setup time 12 ns
D flip-flop hold time 7 ns

D Q
in out

clk

6

Question 6: Protein decoder

Once a “start codon” is found in a DNA strand, a ribosome begins matching codons to amino acids to build
the protein. Two such amino acids are Asparagine (coded by either AAT or AAC) and Lysine (coded by
either AAA or AAG).

(a) [4 pts] Draw the state diagram for an FSM which detects Asparagine and Lysine.

• There should be two outputs, one for each amino acid.

• The output should go high for one cycle when the third nucleotide is received (i.e., not delayed)
and a matching sequence is detected.

• Note that a repeated sequence (e.g., AAAAAAA) should only produce a Lysine once every third
nucleotide.

(b) [1 pt] How many flip-flops do you need to implement this FSM?

7

Question 7: VHDL

(a) [6 pts] Write VHDL code to implement the circuit from question 5 (shown below).

D Q
in out

clk

You’ll need to fill in the appropriate port declarations as well as the architecture in the code skeleton
below.

library IEEE;
use IEEE.std_logic_1164.all;

entity parity is
port (
-- Add your declarations for the inputs and outputs here

);
end parity;

architecture synth of parity is

begin
-- Implement the circuit functionality

end architecture;

8

(b) [2 pts] Circle the VHDL constructs below which can be used in synthesizeable logic.

• and

• case

• report

• unsigned

• wait

Question 8: Bonus

[1 pt] Many 64-bit systems actually only use 48 bits in certain parts of the processor. Approximately what
is the largest unsigned number that can be represented with 48 bits? Express your answer in decimal, using
scientific notation if it’s helpful.

9

ES 4 VHDL reference sheet r.2019.02.19

-- This is a comment
/* Multi-line comment
 (VHDL 2008 only) */
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity ENTITY_NAME is
 port(
 PORT_NAME : in std_logic; -- Single bit input
 ANOTHER : out std_logic_vector(3 downto 0) -- 4-bit output
);
end;

architecture ARCH_NAME of ENTITY_NAME is
 -- Component declarations, if using submodules
 component SUB_ENTITY is
 port(
 -- Port list for the entity you're including
);
 end component;

 -- Signal declarations, if using intermediate signals
 signal NAME : TYPE;
begin
 -- Architecture definition goes here
end;

Types

No semicolon on the last one!

Type conversion

Literals

Just replace `entity` with `component`
and put `end component` at the end.

You almost always need these libraries;
just put this at the top of every file.

Continuous assignments
Also works for or, not, nand, nor, xor

Note '=' for comparison (not '==')

RESULT_SIGNAL <= SIGNAL1 and SIGNAL2;

RESULT_SIGNAL <= '1' when (SIGNAL1 = x"5") else '0';

TWO_BIT_VEC <= EIGHT_BIT_VEC(3 downto 2);

std_logic

std_logic_vector (n downto m)

unsigned (n downto m)

signed (n downto m)

Basic logic type, can take values 0, 1, X, Z (and others)

Ordered group of std_logic

Like std_logic_vector, but preferred
for numerically meaningful signals

'0', '1', 'X', 'Z'

"00001010", x"0c" 8-bit binary, hex

www.ece.tufts.edu/es/4

to_unsigned(INTEGER, WIDTH)

integer Can't be synthesized, but constants are integers by default 5, 38, 2e10

std_logic_vector(UNSIGNED)

unsigned(LOGIC_VECTOR) (Same things for signed)

INSTANCE_NAME : MODULE_NAME
 generic map (
 GENERIC => CONSTANT,
);
 port map(
 PORT => VALUE,
 ANOTHER => LOCAL_SIGNAL
);

Instantiate a submodule

Don't forget these semicolons!

9x"101"

Purple constructs are only available in VHDL 2008.
GRAY_ITALICS represent user-defined names or operations keywords

literals (constants)

HIGHEST_BIT <= EIGHT_BIT_VEC(7); Extract a single bit (7 is MSB, 0 is LSB)

Extract multiple bits

SIX_BIT_VEC <= "000" & EIGHT_BIT_VEC(3 downto 2) & SINGLE_BYTE; Concatenate

3b"101" 7d"101"
9-bit hex 3-bit binary 7-bit decimal

Use to_unsigned for unsigned constants before VHDL 2008.

Process blocks

Reporting stuff

Writing to files (or stdout)

for INDEXVAR in MIN to MAX loop
 -- loop body here
end loop;

Sequential logic
process (CLOCK) is
begin
 if rising_edge(CLOCK) then
 -- Clocked assignments go here
 end if;
end process;

if CONDITION then
 SIGNAL <= VALUE1;
elsif OTHER_CONDITION then
 SIGNAL <= VALUE2;
else
 SIGNAL <= VALUE3;
end if;

Case

process (SENSITIVITY) is

begin

-- if/case/print go here

end process;

If sensitivity includes:
all↕

clk↑

clk↑ + data↕

Nothing

Something else

Combinational logic

Flip-flop / register

Latch

Testbench (repeated evaluation)

Bad things you probably didn't want

Specify all signals by name prior to
VHDL 2008

concatenation conversion to string

report "MESSAGE" severity error; Severity can be NOTE, WARNING, ERROR, FATAL
"FATAL" ends the simulation

report "A is " & to_string(a);

report "A in hex is " & to_hstring(a);

Use image function prior to VHDL 2008

assert CONDITION report "MESSAGE" severity error; Print message if condition is false

Declare buffer in process block

Write buffer to stdout (like report, but just the text)
write(BUF, string'("MESSAGE"));
writeline(output, BUF);

variable BUF : line;

Append message to buffer

If/else

For loop

case INPUT_SIGNAL is
 when VALUE1 => OPERATION1;
 when VALUE2 => OPERATION2;
 when others => DEFAULT;
end case;

Declare file handle in process blockfile RESULTS : text;

file_open(RESULTS, "FILENAME", WRITE_MODE);
writeline(RESULTS, BUF);

Note spelling
of "elsif"!

for INDEXVAR in MAX downto MIN loop

To count down:

Enumerated types
type TYPENAME is (VAL1, VAL2, VAL3);

signal NAME : TYPENAME; Just like any other type

