Warmup

Use a k-map to find a minimal implementation of this truth table:

EE 201: Multiplexers and FPGAs

Steven Bell
30 January 2024

By the end of class today, you should be able to:

- Explain what a multiplexer is
- Draw a logic diagram using a 2^{N}-input multiplexer to implement an N -variable boolean equation
- Describe the basic structure of an FPGA

Both [multiplexers and decoders] seem like obscure ways to implement things we already have. Why use them?

Some schematic terminology

$$
\frac{\mathrm{V}_{\mathrm{dd}}}{\mathrm{~T}} \text { T YD } 5 \mathrm{~V} \quad \mathrm{HIGH}
$$

$$
\frac{1}{=} \quad \frac{1}{\square} \text { Ground OV LOW } \mathbf{0}
$$

It Earth ground

What is a multiplexer?

bricklink.com/v2/catalog/catalogitem.page?P=2859\#T=C

What is a multiplexer?

[^0]A 4:1 multiplexer
N selects $\Rightarrow z^{h}$ dats $A B C$

More than 4:1?

If we have N select lines, we can choose from 2^{N} inputs:

What good are multiplexers?

1) Allow you to select one signal out of many

3
if (case 1)

$$
y=5
$$

else if (case 2)

$$
y=8
$$

else

$$
y=0
$$

What good are multiplexers?

1) Allow you to select one signal out of many

1B) Allow you to make a choice based on a control value It's like an if or case statement in software

Another multiplexer example

1B) Like an if statement in hardware

And back in the old days...

1) Allow you to select one signal out of many

1B) Allow you to make a choice based on a control value It's like an if or case statement in software
2) Make it easy to implement arbitrary logic functions

Implementing XOR

Using a mux to implement a logic function

Look-up tables (LUTs)

A look-up-table is basically a mux where the inputs are little memory boxes statically configured to be 0 or 1 .

With a LUT

Look-up table practice
Use a 3-input LUT to implement $A \oplus B \oplus C$

A	B	$A \oplus B$	C	Y
0	0	0	0	0
0	0	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1

Look-up table practice
Use a 3-input LUT to implement a 2:1 multiplexer

Introducing FPGAs

An FPGA is like a big chip full of logic gates that can be wired together by "programming" it.

iCE40UP block diagram

Clock stuff

Fixed-function multipliers

Memory
Logic "fabric"

Fixed-function I/O modules

iCE40UP logic element

Figure 3.2. PLB Block Diagram

A better definition

An FPGA is a chip full of configurable look-up-tables with configurable interconnections and storage.

Decoders

Take a binary number as an input, and set the corresponding output high.

Building a decoder

$$
=9 D-\Leftrightarrow \square O
$$

Building a decoder with fewer transistors

What could you use a decoder for?

You have a whole bunch of things to activate one at a time (say, memory cells)

For Thursday

1. Read the book (2.9) and complete the reading check

[^0]: bricklink.com/v2/catalog/catalogitem.page?P=2859\#T=C

