
EE 201 SystemVerilog reference sheet r.2024.2.9

// This is a comment
/* Multi-line
 comment */

module MODULE_NAME (
 input logic PORT_NAME, // Single bit input
 output logic[3:0] ANOTHER // 4-bit output
);
 // Body of your module goes here

endmodule

Types

Separated by commas

Literals

Continuous assignments
Also works for or, xor, not, nand, nor, xnor (|, ^, ~, ~&, ~|, ~^)

Ternary operator: CONDITION ? TRUE : FALSE

assign RESULT_SIGNAL = SIGNAL1 & SIGNAL2;

assign RESULT_SIGNAL = (SIGNAL1 == 2'b11) ? SIGNAL2 : 0;

assign TWO_BIT_VEC = EIGHT_BIT_VEC[3:2];

logic ONE_BIT

logic[N:0] MY_VECTOR

Basic logic type, can take values 0, 1, X, Z

Vector of bits, can hold numeric values

0, 1, 1'bx, 1'bz

www.ece.tufts.edu/ee/201

reg and wire should not be used in your code. 5, 38, 10000000

9'h101

GRAY_ITALICS represent user-defined names or operations keywords
literals (constants)

assign HIGHEST_BIT = EIGHT_BIT_VEC[7]; Extract a single bit (7 is MSB, 0 is LSB)

Extract multiple bits

assign SIX_BIT_VEC = {3'b000, EIGHT_BIT_VEC[3:2], SINGLE_BIT}; Concatenate bits and vectors

3'b101 7'd101
9-bit hex 3-bit binary 7-bit decimallogic SOME_BITS[N:0] Array of single bits (not a vector!)

decimal by default

Always blocks
always_comb

begin

// Combinational logic with if/case/print goes here

// Use blocking assignments (=) only

end;

always_ff @(posedge CLK)

begin

// Sequential logic goes here

// Use non-blocking assignments (<=) only

end;

Other patterns with always blocks are generally problematic!

Clock signal for flip-flops

if CONDITION begin
SIGNAL <= VALUE1;

end else if OTHER_CONDITION begin
SIGNAL <= VALUE2;

end else begin
SIGNAL <= VALUE3;

end;

If/else
Only inside an always or initial

block, use tenary operator otherwise.

No semicolon!

Choose blocking/non-blocking

assignments as appropriate!

Case
case (INPUT_SIGNAL)

VALUE1 : OPERATION1;
VALUE2 : OPERATION2;
default: DEFAULT_OPERATION;

endcase

assign REDUCTION = &VECTOR; AND all bits of a vector together; also works for |, ^, ~&, ~|, ~^)

Purple constructs are only for simulation (at least in this course)

