EE26 Digital Logic Systems

Spring Semester 2011
Notes 16(4/13/11)
Project 5: Microprocessor Design
Implementation Due on April 29. Report due on May 2.
SUMMARY

A complete 4-bit microprocessor will be built in this laboratory experiment. The ALU designed in the previous Project 4 will be used as part of the final design, perhaps with some minor modifications. This microprocessor will have a 4-bit Address bus (16 lines of code addressable) and a 4-bit data bus. It must be capable of executing the following 16 commands:

From Project 4:

LD

A
<

M [
]

ADD

A,
B

DEC

A

LD

A
<

Value

SUB

A,
B

INC

A

LD

A
<

B

AND

A,
B

SHL

A

LD

B
<

A

OR

A,
B

SHR

A

New Instructions:

LD

M[
]

<

A

-
Loads the contents of the accumulator into memory.

JMP
EQ

address

-
Branches out to the instruction at address (operand)

if the contents of A and B are equal

JMP
address

-
Branches to instruction at address (operand).

HALT

-
Stops the sequencer.

BASIC MICRPROCESSOR COMPONENTS

ALU: Project 4

The ALU and register array (register A (accumulator) and B) designed in Lab 4 will be used as the main Arithmetic Logic Unit for this lab. Note that most of the control logic for lab 4 will still be useful for this design.

Memory: ROM and RAM

The microprocessor will have two memory cells: A ROM to store programs, and a RAM for data storage. The ROM will have a 4-bit Address bus (16 lines addressable) and an 8-bit data bus: a 16×8 ROM. The RAM will be 16×4 bits (4-bit address, 4-bit data).

Registers:

In addition to the accumulator and auxiliary registers in the ALU, we will need two more registers. An Instruction Register (IR) to latch the instruction from the ROM, before decoding it. A Program Counter (PC) to keep track of the current line of code being executed. Note that one should be able to increment and load the PC register for normal sequencing, and JMP instructions.

Sequencer:

The sequencer is a device that synchronizes the microprocessor operation. It generates

Sub-sequent clock pulses from a single clock in the following fashion:

CLK

T0

T1

T2

The number of timing signals will vary for different systems. These timing schemes can be achieved in one of several ways. Some of these are: A shift register shifting a logic high, a counter attached directly to a decoder, etc. Pick the one that best suits your timing requirements.

Design Procedure:

The first task should be to figure out how many timing signals each of the 16 instructions will require. We must then consider what happens during the instruction cycle for each instruction. Each instruction cycle has four basic steps:

1.
Fetch the instruction from memory (ROM) and load it into the IR.

2.
Decode the instruction (no timing cycle required!).

3.
Execute the instruction.

4. Write the result back to register.

Each instruction should only take one clock cycle to execute, although some designs may take more than one. You will need to hand in the timing analysis for all instructions.
Once the number of timing sequences has been determined, and a sequencer designed, the rest of the logic can be laid out, and the ALU integrated into the design. The memory can also be implemented.

The following figure shows a basic block diagram of the complete Microprocessor. Note that some elements are already part of the ALU in Lab 4.

Instruction Format (ROM)

7

4
3

0

4

Opcode

Operand

Program Counter

4

4

Operand

4

Data

Program

8

Memory

Memory

RAM

ROM

4

Opcode

Immediate

Value

Instruction Register

4

4

4

Instruction Decoder

4

4

Sequencer

CONTROL

LINES

Input Selector

4

Register B

Register A

4

4

ALU

1

4

A=B
Design Requirements:

Make full use of hierarchical design capabilities (i.e. follow the block diagram, and group appropriate components into your own sub-circuits and symbols; minimum of two components inside each custom symbol).

All clock inputs must be tied to a single master clock. For testing, the clock input can be rerouted to the spare push-button switch on DE2 boards. Simply tie an input to any pin labeled I/O on your handout. A very low frequency clock (~1Hz) can also be used.

All control signals must manipulate clock-enable, or load inputs (i.e. do not tie control signals to clock inputs; this is a synchronous circuit). No asynchronous clears are allowed, and you must have an external global reset on your board. Use either another external pin, for your own or wire up the STARTUP network.

Output the contents of registers A and B to the LED’s on the demo board to see the data transitions.

Programming Assignment:

A sample program will be prepared in order to test the microprocessor’s functionality.

Write a program that loads an immediate value of your choice into the accumulator, and then multiplies it by 2 if it is odd. The result (value or value × 2) should be left in the accumulator. Remember that you have a maximum of 16 instructions to accomplish this, and the last one is HALT. Once the program is written, hand-assemble it according to your instruction-control lines scheme, and come up with the data for the ROM.

Hand in:
The formal report should include:

1.
Standard cover page: Title, Name, Partner’s name, Date.

2.
Purpose of the lab

3.
Block diagram representing the entire circuit in one simplified picture.

4.
Design specifications: How design requirements were met. What are the limitations?

5.
All Circuit and Symbol schematics.

6.
A brief description of all the instructions implemented. Include the op-codes and control signals, and also what happens on each clock cycle of each instruction.

7.
All simulations and the methods used to test the circuit. Pay particular attention to the JMP EQ, ADD, and LDA immediate (LDA < Value) instructions.

8.
The assembly program. That includes the assembly listing, and the assembled machine code. Must have TA’s signature as proof of successful downloading and operation.

9. Conclusion: Discuss the design; its strengths and weaknesses. List any changes you would make if you had to do it all over again. This is the most important part of the report. Even if your design didn’t work, state what you think the problem was, and how you would correct it. A non-functional circuit with an excellent explanation of the problems and solutions will get an excellent grade. Point out at least one specification change that could make this a better microprocessor, and state what impact any changes would have on the design.

Example for instruction control lines assignments
	OPERATION

	CONTROL
	
DATA

	MOV

B,

A
	0000

	XXXX

	MOV

A,

B
	0001
	XXXX

	MOV

A,
Value

	0010
	VALUE

	MOV

A,

M[x]
	0011

	XXXX

	JMP

Address
	0100
	XXXX

	JMP
EQ Address
	0101
	XXXX

	HALT

	0110
	XXXX

	MOV

M[x],

A

	0111
	XXXX

	SHL

A

	1000
	XXXX

	SHR

A

	1001
	XXXX

	AND

A,

B

	1010
	XXXX

	OR

A,

B

	1011
	XXXX

	SUB

A,

B
	1100
	XXXX

	ADD

A,

B
	1101
	XXXX

	DEC

A

	1110

	XXXX

	INC

A

	1111
	XXXX

