
EN 1: Engineering in the Kitchen

Steven Bell
27 September 2023

Wire up a switch

ESP32

Any digital input

What's the
voltage here?

(Ground - "GND" pin in ESP32)

An analogy for an input pin

LOW (0)

HIGH (1)

GND (0V)

VCC (3.3V)

An input pin just reads whether the voltage (level) is above a threshold.

Pin

An analogy for an input pin

LOW (0)

HIGH (1)

GND (0V)

VCC (3.3V)

Switch to ground
connected

By reading the level, we can tell if the switch is making a connection to ground

Pin

An analogy for an input pin

LOW (0)

HIGH (1)

GND (0V)

VCC (3.3V)

Switch to ground
disconnected

Except that when the switch is disconnected, we have no control over
the level! We're at the mercy of the environment.

Pin

An analogy for an input pin

LOW (0)

HIGH (1)

GND (0V)

VCC (3.3V)
Pullup resistor

(a small trickle from Vcc)

Vcc

Pin

10kΩ

Wire up a switch

ESP32

Any digital input

What's the
voltage here?

(Ground - "GND" pin in ESP32)

Wire up a switch

ESP32

Any digital input

What's the
voltage here?

(Ground - "GND" pin in ESP32)

3.3V

Internal pullups

ESP32

Digital input

(Ground - "GND" pin in ESP32)

3.3V

Reading a switch

from machine import Pin # import necessary library

switch = Pin(12, Pin.IN, Pin.PULL_UP)

print(switch.value())

Challenge: What happens if you leave out the Pin.PULL_UP part?

Challenge: Figure out how you can read the state of the switch if it is
connected to 3.3V instead of GND.

A "normal" program:

Do thing 1.
If X, then

Do thing 2.
Repeat 10 times:

Do thing 3.
Do thing 4.

Executes in sequence,
top to bottom.

An embedded program:

Repeat forever:
Check some inputs
if X, then

Do thing 1
Do thing 2
if repetitions < 10:

Do thing 4

Runs forever in a loop!

(go back to top!)
(all done!)

An event loop in Python

Stuff that should happen once

from machine import Pin

switch = Pin(12, Pin.INPUT, Pin.PULL_UP)

while True:

Stuff that should happen repeatedly

print(switch.value())

sleep(1)

Constants in Python

We often have "special numbers" in our code

It helps to give them descriptive names instead of reusing
the number everywhere.

PRESSED = 1

DELAY_TIME = 3000 # milliseconds

HELLO_MESSAGE = "Hello, microPython!"

if statements
if CONDITION:
Stuff to do if CONDITION is true
This is specified using indentation

else:
Stuff to do if CONDITION is false

Stuff that is outside of the if-statement (un-indented)

CONDITION can be lots of things:
a == 3 # Check if a is equal to 3
x > y # Check if x is greater than y
button.value() == 1

if/elif statements

if FIRST_CONDITION:
Stuff to do if FIRST_CONDITION is true

elif SECOND_CONDITION:
Stuff to do if SECOND_CONDITION is true

else:
Stuff to do if neither condition is true

"elif" is a contraction of "else if"

Write a program that turns on
an LED when a switch is pressed.

(The ESP32 should read the switch and control the
LED, don't just put the switch in series with the LED)

Challenge: Make the LED blink while the switch is pressed.

How do we toggle the LED when the switch is pressed?

How do we toggle the LED when the switch is pressed?

Challenge: Make the LED turn on for 2 seconds when the switch is
pressed. It should go off after 2 seconds, even if the button is held down.

Challenge: The above, but you can't sleep() for more than 0.1 second.

set LED state off

set switch state not pushed

while True:

read the current state of the switch

if the switch is pressed (and wasn't pressed last time):

toggle the state of the LED

set the LED to the new state

save the current state as the last state

OLED display

from s2pico_oled import OLED

from machine import Pin, I2C

i2c = I2C(0, sda=Pin(8), scl=Pin(9))

oled = OLED(i2c, Pin(18))

oled.test()

Course website has link for more functions!

oled.text("Yay MicroPython!", 0, 0, 1)

oled.show()

Draw some text at (0, 0):

