EN 1: Engineering in the Kitchen

Steven Bell 27 November 2023

Logistics

Continue working on project 4

Plan to have data collected by Wednesday Figure + writeup in OneDrive by Friday

There will be streamlined options for the final project

Plan for "technical interviews" during the last week (in person or via zoom)

Objectives

By the end of class today, you should be able to:

Describe the functionality of a web server

Write Python/microdot code to serve web pages from your ESP32

The old web

Servers have files

http://www.ece.tufts.edu/en/1EK/esp32.html

Browser

Can I have file?

Sure, here it is!

Server

The new web

Servers have "endpoints"

https://vhdlweb.com/problem/count5

Browser

Can I have file?

Sure, here it is!

Server

Microdot

Is a ultra-lightweight web server framework

Flask is similar but more full-featured for "real servers"

```
app = Microdot()

@app.route('/')
def index(request):
    return "Look, this is my web server! Isn't it cool?!"

app.run(port=80, debug=True)
```

Running Microdot

Copy microdot.py and simpletemplate.py to your ESP32

Download webstarter.py and open it in Thonny

Connect your ESP32 to WiFi (just like previous classes)

Run webstarter.py

Open a web browser and type in the ESP32's IP address

Challenge: add another endpoint (or two!)

Challenge: Include a count on the page of how many times it has been accessed (this was super cool in the late 90s)