
Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 i

E-Quarium
A fully automated, remotely-accessible

aquarium controller

Mark Robinton and Brandon Balkind
Senior Design Project

Tufts University Department of
Electrical and Computer Engineering

April 29, 2005

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 ii

Table of Contents

1. Overview …1

1.1 Design Team …1
1.2 Scope, Context …1
1.3 Problem Statement …1
1.4 Contact Information …1

2. Design and Implementation …2
2.1 Performance Requirements …2
2.2 Design Methods …5
2.3 Systems …6
2.4 Form Factor …16
2.5 Production Considerations …16
2.6 Current Hardware Design …18

3. Operation/Results …19
3.1 Design Performance Successes/Failures …19
3.2 Other Important Results …21

4. Conclusions …22

Appendix …24

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 1

1. Overview
This is the comprehensive design and operational documentation for the E-Quarium product.

1.1 Design Team

Brandon Balkind (Tufts EN ’05, Comp. Engineer) — Project Lead
Mark Robinton (Tufts EN ’05, Elect. Engineer) — Project Lead

Prof. C. H. Chang, Tufts University Dept. Electrical and Computer Engineering — Advisor
Prof. Ron Lasser — Project Management Advisor

1.2 Scope, Context
The design of the E-Quarium was conducted as part of the undergraduate engineering curriculum
requirement in the Tufts University Department of Electrical and Computer Engineering. In the
fall of 2004, the project team was formed and the project framework was developed under
Professor Ron Lasser. In the spring of 2005, the design and implementation were carried out
under Prof. C. H. Chang’s advisement.

The product design is for the E-Quarium, a commercially viable prototype of an automated,
remotely controllable aquarium. Intellectual property rights for the prototype are reserved to the
students unless explicitly stated otherwise.

1.3 Problem Statement
It is common for inexperienced caretakers to accidentally poison, starve, overheat, or overstress
aquatic life, despite efforts to the contrary. Common problems include, but are not limited to:
feeding frequency/portions, adequate filtration, ammonia/nitrate buildup, water salinity/hardness,
and maintaining proper heat and light cycles. All of these issues can be addressed with automated
control systems via sensor feedback and scheduling. A self-sustaining aquatic environment may
be difficult to achieve, but progress can be made by controlling several environmental variables.

Integrating existing technology to accomplish this goal is the greatest challenge. Commercial-off-
the-shelf products are available to address single-need environment quality issues, such as:
thermometers, heaters, automatic feeders, and lighting systems. The goal of this project will be to
incorporate such sensors and stimuli mechanisms into a digitally integrated network environment
suitable for automation.

The exploration of this problem will be of particular commercial interest to companies in the pet
product industry and to those who work in aquatic biology. For researchers, the issue of tight
environmental control must be addressed in any serious study. For pet owners, a less labor
intensive way of caring for a home aquarium is appealing. In either case, those who are concerned
with aquatic environment management will always seek to make their work easier via
automation.

1.4 Contact Information
Mark Robinton Brandon Balkind
Mark.Robinton@alumni.tufts.edu Brandon.Balkind@alumni.tufts.edu

Tufts University Department of Electrical and Computer Engineering
161 College Avenue
Medford, MA 02155

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 2

2. Design and Implementation
This section details the concept and design procedures.

2.1 Performance Requirements
There are several key performance factors which must be met to satisfy the problem statement.
While the E-Quarium needs not be entirely “hands-free” in its operation, it must automate several
critical tasks in a user-friendly manner. The goal is to simplify aquarium maintenance for the
novice (or experienced) aquarium user, not necessarily for the novice electronics user. Thus,
understanding of RJ-45 Ethernet connections and web browser use are reasonable expectations of
client.

2.1.1 Life Support Systems
The E-Quarium must implement and (to whatever extent possible) integrate the basic functions of
an aquarium. The systems and their functional requirements are listed in Table 2–1.

Life Support System Performance Requirements

Function Requirements
Feeding Must be able to deliver adjustable

portions of food in regularly scheduled
intervals. The food can be stored in small
reservoir for up to several days supply.

Lighting Min. 25 W Fluorescent lights must be
controllable for feeding cycles and
day/night cycles.

Filtration Normal independent filtration system
(many varieties exist). Must be able to
filter waste products in 10 gallon tank.
Nitrite and ammonia will be consumed in
biological nitrate cycle.

Chemical This feature reserved for future
implementation.

Air Supply Maintain positive pressure through under
gravel air stone. Must have valve to
prevent moisture returning into air pump.

Temperature Manage temperature within 3 degree F
range of user defined setting. Range 40-
104 degrees F.

Table 2–1

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 3

2.1.2 Hardware Interface
The hardware interface systems and their functional requirements are listed in Table 2–2.

Hardware Interface System Performance Requirements

Function Requirements
Control Panel 16x2 Character LCD with 6 momentary

buttons

Button Group 1: Up/Down, OK, Back
These buttons drive the menu along with
LCD.

Button Group 2: Feed (now), Light
On/Off

Clear labeling of control hardware

Ethernet RJ-45 Connector, clearly labeled
Power Multiple AC plugs and adapters are

permissible for prototype. On production
model, these should be integrated into a
single plug.

In the production model only, a backup
battery might be used to prevent failure of
computer systems and data loss. A small
battery would allow for graceful
shutdown in power failure.

There entire system should draw under 10
Amperes.

Table 2–2

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 4

2.1.3 Software interface
The software interface systems and their functional requirements are listed in Table 2–3.

Software Interface System Performance Requirements

Function Requirements
Panel Menu Easy to understand button-driven menu

system with OK, Back, Up, Down
options.

Should be capable of viewing IP address
manually for initial access, as well as
controlling all tank features like temp,
feeding

Can display temp and next feeding time

Web Interface Able to use HTML web form to change
lamp status, feed fish, schedule daily
feeding, and set desired tank temperature.

Table 2–3

2.1.4 Cost
The functional prototype had a budget of no more than $500, with some supplemental
reimbursement from the EECS department. The approximate spending guidelines are listed below
in Table 2–4.

Expenditures

Part Qty Budget
TS-3300 Single Board

Computer 1 200.00

Liquid Crystal 2x16 Display
w/ RS-232 Input 1 20.00

5v DC, 125 VAC 2A SPDT
Relays 3 9.00

Enclosure 1 10.00
256 MB Compact Flash 1 40.00

Momentary Buttons 4 5.00
Power Supply, TS-330 1 20.00

MOSFETs 3 9.00
Total 313.00

Table 2–4

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 5

2.2 Design Methods
2.2.1 Initial Design Approach
The project had flexibility as to which subsystems were implemented, but the central control and
integration of multiple systems remained essential to the product design. Here were the initial
objectives:

1. Combine and alter COTS components to provide digital response/feedback. This will at the

least involve overriding the control of a light source, a feeder, and an aquatic heater. At the
sensor level, digital feedback will be drawn from a thermometer, and potentially a pH sensor.
Additional sensor/control components are contingent on available time and budget
constraints.

2. Establish common interface and communication among devices (centralized control system).
3. Develop custom automation systems on an embedded microcomputer system. This will

include either an HC12 or Intel-based architecture and a running OS which will provide
Ethernet connectivity to the aquatic environment’s caretaker.

As is noted in the conclusion section, some of the initial design goals were reviewed and altered,
but the overall spirit of the three objectives was fulfilled entirely.

2.2.2 In-Progress Design Methods
The most significant time investment in the project design was fully understanding the operation
and capabilities of all the COTS parts. This might have been a project on its own (understanding
the HC12 evaluation board and the TS-3300 single board computer for example).

General system parameters and expectations were clearly established before building the
prototype, but the medium-level decisions about how to make the systems communicate or
perform were in constant flux due to lack of understanding. After gaining experience with the
components in a laboratory setting over the semester, it is expected a more optimal
comprehensive design might be achievable at a future date.

The challenges faced by the steep learning curve are discussed in more detail in the conclusion
section.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 6

2.3 Systems
The control and aquarium systems are defined as follows in the system outline of figure 2–5. This
representation defines the necessary components, but does not clearly define how the pieces
operate with one another. As mentioned in the design approach section, the means of system
interaction were subject to significant deliberation in this design, as the designer became more
familiar with the COTS components used. The best way to understand the interaction of the
components is to examine the connections between the control devices in the diagram at the end
of section 2.

Simple System Outline for E-Quarium

Figure 2–5

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 7

2.3.1 Control Systems
2.3.1.1 Operating System
The operating system in this design encompasses the general purpose hardware and
software at the heart of the control system. TS Linux was used as the base software in this
design, running on a TS-3300 single board computer from Technologic Systems. TS
Linux is like Redhat Linux and is extremely space effective (fits into 32MB if necessary).
Table 2–6a shows a brief list of the SBC characteristics. Table 2–7 describes TS Linux.

TS 3300 Single Board Computer
(Technologic Systems)

Parameter Description

General PC compatible Single Board Computer
with 33 MHz Intel 386EX cpu

Memory 8 MB SDRAM
1 MB Integrated Flash Disk
1 IDE Compact Flash Socket

Peripheral I/O 2 Serial COM ports (RS-232)
1 RJ-45 Ethernet port with controller
40 Digital I/O pins
PC 104 expansion bus

Table 2–6a

TS 3300 Single Board Computer
Picture

Figure 2–6b

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 8

TS Linux
(Technologic Systems)

Parameter Description

General Many applications implemented by the
“BusyBox” memory efficient Unix suite

License Public Domain
Table 2–7

The following procedure was used to prepare the TS-3300 Single Board Computer from
receiving to completion (disregarding integration and assembly):

Linux Boot Image Phase
Using the 256 MB Compact Flash card in SanDisk media reader on host Fedora Linux
system, download unzip and untar the file system image from the Technologic Systems
website (there is a specific image for a 256 MB card). Format the partitions as
appropriate.

Mount the various partitions as sda1 (boot, FAT16), sda2 (OS, ext2) on the host
computer and expand the partition images into the appropriate drives.

Install the compact flash card in the IDE socket on the TS-3300 SBC. Mount serial COM
header on COM2 terminal, with JP2 installed. Open minicom with 9600 8N1 on host
Linux machine.

Apply power to the +5v and Gnd terminals to boot the system. Press Ctrl-C in minicom
connection (the console redirection for BIOS startup should be visible) to enter CMOS
setup mode. In CMOS setup, use the TAB, Ctrl-e, and Ctrl-X keys to navigate the menus.

In CMOS setup, change drive assignments to make drive C the IDE0 device. Change
boot order to make drive C boot first. In the IDE detection settings, choose IDE0 as an
“autoconfig physical” device.

Save CMOS settings and exit; the system will reboot into Linux.

Linux Configuration Phase
A file was added in the /etc/init.d/ folder called “custom.script” which launches all of the
background services and initialization processes. Here is how that shell script reads:

#!/bin/sh

cd /dev
ln –s /dev/ttyS0 lcd # creates symbolic link for LCD
cd /
/var/www/bin/httpd –X & # start apache in single ps mode
/usr/local/bin/perl /bgps.pl & # runs monitor process
/usr/local/bin/perl /menu_driver.pl & #runs menu driver

The /etc/init.d/rc3.d/ folder was then amended to include a symbolic link to the
/init.d/custom.script. This ensured automatic execution of the commands in run level 3 of
the init process. It should also be noted that the symbolic link of the Apache startup script

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 9

was removed from the rc3.d folder to allow for a custom startup in single process mode.
Single process mode is important in this design because of limited memory availability.

Other notes on Linux configuration
The system should be set to DHCP for address configuration on interface eth0 and the
system time should be set via the “date” command (and preferably maintained).

System software
There are three main processes which are integral to the function of the control unit (in
addition to normal operating system programs).

 1. The maintenance background process (bgps.pl)
 A Perl script responsible for polling the current temperature
 every 25 seconds, checking if the heater should be on, and checking
 if it is time for a daily feeding. The current temperature is obtained from
 the HC12 via another Perl script “copy_s19.pl” which transfers an s19
 bytecode program to sample the chips ADC (attached to a thermistor).
 This program then executes the code on the HC12. The sub-process
 “copy_s19.pl” reads the 8-bit raw result over a serial connection and
 calls a C program to convert the value to a Fahrenheit temperate (as
 shown in section 2.3.2.4). This conversion program is called “tempconv”
 and is included in the appendix along with all other user-software. The
 current temperate is stored in a file “/curTemp” which is used by
 many processes. The desired temperature lies in /var/www/cgi-bin/ and
 can only be set via the web interface (along with feeding times). Daily
 feeding is managed by a timer comparison and a flag file. The flag
 is reset at 1am and is set after the daily feeding completes.
 2. The webserver (httpd)
 This is an Apache webserver which must be booted in “-X” or single-
 process mode to conserve memory. Otherwise, the processes which
 it executes do not have enough memory to run properly. Permissions
 are generously set with “sticky” bits to make sure the webserver
 is allowed to access the DIO memory space. This is potentially
 insecure and better methods should be developed in a future design.

 The actual webserver CGI is described in a section dedicated to the
 remote interface.
 3. The menu driver (menu_driver.pl)
 The menu driver polls for button input and sends data to the 2x16 LCD
 display via COM2 on the SBC (this is /dev/ttyS1). This is described
 more fully in the section on the manual interface.

Much of the system software interacts with the DIO1 port of the TS-3300. This is done
through memory mapped I/O which requires super-user privileges. Specifically, memory
address 0x7A controls the direction and operation of the DIO1 pins, while 0x7B and
0x7C reflect the output and input data itself. This memory map is compatible with the
x86 architecture, but these addresses only have meaning on the TS-3300.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 10

2.3.1.2 Control Signal Generation
Digital I/O ports on the Technologic Systems TS-3300 Single Board Computer act as
logic drivers for secondary control signal circuits in this design.

DIO Output Electrical/Logical Detail

Figure 2-8

SBC DIO1
Pins 3, 5, and 7 of DIO1 on the TS-3300 are used to control external aquarium elements.
Each of these is connected to a 7408 2input AND gate in order to increase the output
voltage level from 3.3—0v to 5—0v (the driving voltage for the relays). These amplified
signals feed into MOSFETs which amplify current. The DIO port itself can only source
4mA.

MOSFET Circuitry
Three N-channel MOSFETs are used as current amplifiers in the circuit shown in figure
2-8. These MOSFETs are configured as inverters with a resistor tied to power on the
drain and the source grounded. This was done because an N-channel MOSFET (the only
kind available for this project) can transmit a “0” better than a “1”. With this inverter
setup, the MOSFET need only transmit “0”s and not “1”s. This inversion is accounted for
in the DIO software running on the SBC.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 11

Motorola HC12
The HC12 depicted in Figure 2-8 is used only for its Analog to Digital Conversion
properties. A voltage divider between the 10K thermistor and 10K resistor is created
when the thermistor is plugged into the stereo jack. Pin PAD6 of the HC12 is then used
to sample this voltage in 8-bit mode and it is output the byte over a serial link to the SBC.
On the SBC a program is running to convert the measured voltage into a Fahrenheit
temperature that can be displayed or used in temperature relation calculations. The code
for these operations can be found in the appendix.

I/O Stereo Jacks
As shown in figure 2-8, the control box contains 4 stereo jacks used for centralized
input/output to the system. Facing the front of the box, the right box jack is used to
connect the external thermistor to Analog Digital Converter of the HC12 inside the
control box. The other 3 jacks are identical high current outputs. These can be used
interchangeable to control the light, feeder, or heater and each uses a SPDT relay that
requires up to 90ma to switch.

2.3.1.3 Manual Control, Access
For manual control of the aquarium, an LCD menu driven system with push buttons is
necessary. The menus are arranged as follows:

HOME:
 1. Info
 1. IP Address = display current IP address on eth0
 2. Temp = get current temp and desired temp
 3. Feed = display next feeding time
 4. Time = display current date and time
 2. Actions
 1. Toggle light = toggle lamp on/off
 2. Feed = feed the fish now
 3. Shutdown = shutdown the board (soft)
 4. Reserved = saved for future use

The left red button acts as an ‘OK’ button, while the right red button acts as a ‘Back’
button in menu navigation. The user can move up and down the menus via the vertical
imposed black buttons.

The buttons are separately connected to ground at their output terminal via 470 ohm
resistors. Their input terminals are +5v, with a series 47 ohm resistor to the 4 of them.
This design allows a correct voltage reading at the DIO1 input pins as shown in the
routing diagram at the end of section 2.

As mentioned in section “2.3.1.1 Operating System”, under the header “System
Software”, the LCD menu is driven by a background process called “menu_driver.pl”.
This is a Perl script which polls the user buttons approximately every tenth of a second
for input, and acts accordingly to drive the menus.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 12

2.3.1.4 Remote Control, Automation
The hardware for this system is the RJ-45 Ethernet port driven by Crystal control logic.
The operating system runs an Apache web server and “dropbear” ssh daemon over IP
interface eth0. The webserver is considered the standard user interface, while ssh is
available for command line access. This should not be necessary for the user of a
production model, but it would be very useful for field assistance and debugging.

The webserver runs a Perl CGI in the /var/www/cgi-bin/ directory implementing CGI.pm.
The script is called “default.pl” and can be accessed via http://IPADDR/cgi-bin/default.pl
Perl however, is memory intensive and extremely slow. A future design should consider
replacing this implementation with a standard compiled C program. The website allows
the user to turn the light on and off, feed immediately or schedule a feeding, and also
allows viewing and setting the desired temperate of the tank. These are accomplish via
memory-mapped i/o programs or simple shell scripts.

2.3.1.5 Debug
The RS-232 COM2 port of the TS-3300 is shared between the LCD and the external
DB-9 debug port. The debug port was included to allow easier diagnosis of file-system
and crash-related problems on the TS-3300. It is a feature which would not be necessary
on a production implementation, but is very useful for the prototype. The LCD and the
debug port display the same information, but at boot the LCD cannot be used to fully
understand the errors and warnings. This is where a host PC with minicom or hyperterm
is useful.

2.3.2 Electromechanical, Sensor Systems
 2.3.2.1 Feeding
 Original Item

Peen Plax Daily Double Automatic Fish Feeder
 Original Operation

Device feeds twice daily using internal oscillator circuit and gear train to spin a
barrel of fish food.

Modifications
Original oscillator circuit removed.
3V DC motor attached to central gear assembly to spin food barrel.
5V SPST relay added
Plastic casing cut to accommodate motor and relay assembly.

Feeding Circuit Diagram

Figure 2-9

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 13

 Picture of Feeder

Figure 2-10

 2.3.2.2 Light
 Original Item

10 gallon “Perfect a Light” hood assembly and dual 25W incandescent light
fixture.

 Original Operation
Light toggled by means of a button on the back of the assembly

Modifications
Original toggle button removed and replaced by short circuit.

 5V relay placed into the power cord.

 Light Circuit Diagram

Figure 2-10

 Picture of Lamp

Figure 2-11

 2.3.2.3 Chemical
 Not included in this prototype.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 14

 2.3.2.4 Temperature Measurement
 Original Items

10K Thermistor, Resistor
Motorola HC12 Evaluation Board

 Original Operation
Voltage divider circuit built using the thermistor and the resistor. The output of
this circuit was then fed into the Analog to Digital conversion input of the HC12
board. A program is run on the HC12 to sample the ADC port, compute the
temperature, and output it over the serial port to the Single Board Computer.

 Thermistor Circuit Diagram

Figure 2-12

Modifications

The thermistor was attached to longer lead wires so it could reach from the inside
of the tank to the control until. The thermistor was also dipped several times in
clear nail polish to waterproof it and the solder joints on it.

51
ADCVoltage =

5
1

*2000tanRe Voltage
Voltagecesis

−
=

 Picture of Thermistor

Figure 2-13

 2.3.2.5 Filtration

Standard Whisper power filter unit with active carbon will be used.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 15

2.3.2.6 Heater
 Original Items

75W 8” TOPFIN Aquarium Heater
Original Operation

Internal thermostat would turn heater on and off when a malleable piece of
metal open and closed a circuit. The “Set point” was controlled by a knob
on top of the device that added spring pressure to the metal to facilitate or
impede movement.

Modifications
A wire was soldered between the malleable metal strip and the contact
point, so as to always close the circuit.
A 5V 1A relay was added to the power chord so the heater could be turned
on and off at will. (When given power, it’s always heating vs. the old self
regulation)

 Heater Circuit Diagram

Figure 2-14

Picture of Heater

Figure 2-15

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 16

2.4 Form Factor
The control unit is built into a relatively plain black box which was adapted to the
system’s needs. Holes were drilled for LCD mounting, stereo jacks, buttons, an Ethernet
port, power connections, and a debug DB-9 port. The front view of the control unit is
drawn in figure 2-16. This was chosen as a prototype form factor because it provided
(barely) adequate room for the components while shielding them from water and the
environment. The box is 8” x 6” x 3”. (it is 3 inches deep)

Basic Front View of Control Unit

 Figure 2-16

2.5 Production Considerations
In order for this prototype to be realized as a product, there must be several phases of
design revision. They are listed according to their scope below.

Reproduction/Simplification Phase

The next phase of the design would essentially redraft the current functions and
systems as simply and efficiently as possible. The original prototype would seem
very unreliable and weary when compared to prototype using the same design
built after the first. Instead of “hacking” components brutally to get them to work,
a second prototype could be made from a recipe of only needed parts and
precision assembly. This prototype would not necessarily address the potential
need for platform changes (like moving from x86 to ARM). It would just be a
way to demonstrate a reliable product to a potential investor. For example, instead
of many loose wire connections and custom-modified cables, a second prototype
would use PCB’s for auxillary circuitry and secure, manufactured connectors and
cables.

Feature Development / Platform Phase

After demonstrating a prototype confidently to potential investors or customers, a
list of additional features for the final product would be developed, as well as
performance criteria. To assist in meeting these criteria in a cost effective manner,
a new platform would be chosen. This would likely be the ARM platform. The
software must move away from runtime compiled languages like Perl, and into
space and speed efficient languages like C. The operating system would have to
be reevaluated and optimized for production. Some functions might be

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 17

implemented in hardware (most likely FPGA’s). All hardware would be
miniaturized and designed onto a single board (ADC, microprocessor, memory,
flash storage, relay drivers, transformers, power supply, etc). This is in contrast
with the current system where many COTS parts as simply wired together (HC12
for ADC, SBC for DIO and uProc, separate relay drivers, etc). Production cost
evaluation in this phase would be crucial. The design must also consider the
eventual integration plan for the electronic controls into the electromechanical
systems. (there should be a better solution than stereo jack connections). Wireless
internet should be considered.

Integration Phase
The control platform would be built into an aquarium directly. Peripheral sensors
and devices would need to have reliable and easy to understand method of
interfacing with the control unit. The control unit would become a standard part of
the aquarium much as a computer is now standard in most automobiles.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 18

2.6 Current Hardware Design
The diagram below represents the integration of the COTS control systems in the current
design, so that another designer could reproduce the hardware systems.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 19

3. Operation/Results
This section details the operational performance and user documentation of the E-Quarium
product.

3.1 Design Performance Successes/Failures
This section gives a brief overview of how the final design met the initial requirements. Detailed
analysis of these results is provided in section 4.

Life Support System Performance

Function Requirements Results
Feeding Must be able to deliver adjustable portions

of food in regularly scheduled intervals.
The food can be stored in small reservoir
for up to several days supply.

SUCCESS

Lighting Min. 25 W Fluorescent lights must be
controllable for feeding cycles and
day/night cycles.

PARTIAL SUCCESS
Lights not on schedule, but are
controllable

Filtration Normal independent filtration system
(many varieties exist). Must be able to
filter waste products in 10 gallon tank.
Nitrite and ammonia will be consumed in
biological nitrate cycle.

SUCCESS

Chemical This feature reserved for future
implementation.

N/A

Air Supply Maintain positive pressure through under
gravel air stone. Must have valve to
prevent moisture returning into air pump.

SUCCESS

Temperature Manage temperature within 3 degree F
range of user defined setting. Range 40-
104 degrees F.

PARTIAL SUCCESS
Temperature measurement
software is unreliable

Table 3–1

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 20

Hardware Interface System Performance

Function Requirements Results
Control
Panel

16x2 Character LCD with 6 momentary
buttons

Button Group 1: Up/Down, OK, Back
These buttons drive the menu along with
LCD.

Button Group 2: Feed (now), Light On/Off

Clear labeling of control hardware

PARTIAL SUCCESS
Only four buttons
implemented, but all
functions are still
possible via the menu
(see software
requirements)

Ethernet RJ-45 Connector, clearly labeled SUCCESS
Power Multiple AC plugs and adapters are

permissible for prototype. On production
model, these should be integrated into a
single plug.

In the production model only, a backup
battery might be used to prevent failure of
computer systems and data loss. A small
battery would allow for graceful shutdown in
power failure.

There entire system should draw under 10
Amperes.

SUCCESS

Table 3–2

Software Interface System Performance Requirements

Function Requirements Results
Panel
Menu

Easy to understand button-driven menu
system with OK, Back, Up, Down options.

Should be capable of viewing IP address
manually for initial access, as well as
controlling all tank features like temp, feeding

Can display temp and next feeding time

PARTIAL SUCCESS
Not always easy to use:
sometimes errors are
reported to LCD and
user can lose menu.
Temperature display not
always accurate

Web
Interface

Able to use HTML web form to change lamp
status, feed fish, schedule daily feeding, and
set desired tank temperature.

PARTIAL SUCCESS
Very slow

Table 3–3

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 21

3.2 Other Important Results
Overall, the board performs all the basic functions that were essential to solving the initial
problem. The reliability of its performance however, leaves something to be desired. There are
still software errors related to memory use, multiple process I/O issues, and occasional hardware
mishaps (like loose alligator clips on power cord etc). The prototype is only that, and cannot
compete with a production-quality device.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 22

4. Conclusions
This section will discuss lessons learned from the design and implementation.

The greatest lesson learned in this design project was the appreciation for the value of
experimentation. Most facets of the design process were specifically detailed in the project
proposal of fall 2004. The experimentation process was nearly entirely neglected in this proposal
however. While time was allocated for “research” and “implementation,” the majority of the time
was actually spent in between the two phases, trying to determine how the physical materials we
obtained fit into the design we originally researched. If structured experiments had been planned
ahead of time with elements like the LCD, we would have learned that cheap displays often
correlate to faulty displays. Because we were largely unfamiliar with the operation of the LCD’s,
we spent a great deal of time trying to debug multiple systems which used them. The LCD issue
was eventually resolved by using higher quality parts, only after significant time had been spent
with trying to understand how the actual device worked. This was not necessarily time wasted,
but it was time that was not considered in the original plan, and is something that should be
considered for all future work.

The need for experimentation was evident in all aspects of the prototype. The undocumented
voltage levels of the DIO ports of the TS-3300 for example, became a significant surprise after
they were expected to operate in conjunction with other systems. Only after having stepped back
and experimented with the DIO pins in isolation, were we able to learn how to solve the problem.
The modified components and relays also presented unique learning experiences. For example,
Reed relays, though they were initially capable of operating the peripheral devices, miraculously
and irreversibly stopped working half way through the project. They weren’t well constructed for
the needs of the design. In mid-stream, the Reed relays were abandoned in favor of
electromechanical SPDT switches. Since then, they have operated fine.

Indeed, the design of a simple web-enabled control system is not very difficult. Having learned
about the operation of low-current DIO, relay driving circuits, relays, LCD’s, ADC sampling, RS-
232, and small resource computing, we might honestly claim that a digital web-enabled control
system for any series of 110 VAC or DC-powered devices could be designed and assembled in a
week (providing all parts were available). The design patterns and software structure would be
readily understandable for many devices—now that the basic elements are familiar.

The E-Quarium design should be recognized in a broader context. Though it has been applied to a
rather light-hearted scenario of managing fish, the control systems demonstrated in this project, as
mentioned above, could be used to manage just about any system. While the ability of the
controller to quickly integrate with peripheral 110 VAC devices does not compete with products
like X10 (which has controllable wall outlets), the X10 system also does not provide the level of
control that can be achieved with an embedded computing and sensing device.

That being said, the value and marketability of the E-Quarium product idea deserves serious
consideration. We feel the features developed in the prototype only scratch the surface of what
might be in need. In biological laboratories for example, there is a large demand for tedious labor
in maintaining multiple experimental variables. A controller like what is used in the E-Quarium
prototype would be able to use chemical, thermal, and other sensors in conjunction with control
mechanisms to fully automate the process. It could profile and graph temperature variations, pH
fluctuations, and even light intensity very easily on a 24-hour schedule. This would ordinarily be
a significant undertaking for laboratory technicians.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 23

As for the actual performance of the prototype created in this design, the results were deemed an
overall success by the group. The evaluation criteria were clearly laid out in terms of user
functionality in section 2. These criteria were then compared with the results in section 3. It is
evident that many key objectives were met with “partial success.”

The use of four buttons instead of six does not represent a major violation of the hardware
interface criteria, because the functions of the additional buttons were redundant when one
considers the purpose of the software menu. The user can feed the fish and toggle the hood light
via the menu, and special, separate buttons are not entirely necessary.

The LCD menu itself however, is the least completely debugged feature of the prototype, because
it is the top layer in a stack of dependent systems. The menu depends on the Perl menu driver, the
operating system’s driver for ttyS1, the background management process, the HC12, the
thermistor circuit, the ADC, the driver for ttyS0, the webserver, and just about every system in
the entire device down to the memory and CPU itself. This chain of dependency is responsible for
increasing the complexity of debugging attempts. The biggest problem is the reliability of the
period driver which loads the HC12 and samples the thermistor. For some reason, the HC12
periodically fails and the current temperature is corrupted. Temporary fixes to this problem do not
address the real cause of the problem, which as of April 2005, is unknown.

The only other feature deemed “partial” in its success that does not relate to the temperature
measurement systems is the lamp system. The scheduling of the light according to day/night
rhythms was not implemented in time for the first demonstration. The light is controllable via the
web or the control panel however, which fulfills some, but not all of the design criteria.

With design improvements largely suggested in the section entitled “Production Considerations,”
(2.5), it is important at this point to recognize that this project was not just an exercise in
electrical or computer engineering, but also an endeavor in systems engineering and project
management. Pursuing the E-Quarium project resulted in success not only from the technical
standpoint, but from the perspective of continuing education.

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 24

Appendix

bgps.pl PERL SCRIPT
Background process to maintain temp, heat, check for feeding time

#!/usr/bin/perl -w
use strict;

sub checkFeed{
 my @rawdat;
 my $curfeed=0;
 my $nextfeed;
 my $feedSemaphore;
 my @curtime;
 my @tempvar;

 open(mtempfile,"/var/www/cgi-bin/feedTime");
 @rawdat = <mtempfile>;
 $nextfeed = $rawdat[0];
 close(mtempfile);

 open(mtempfile,"/feedsemaphore");
 @rawdat = <mtempfile>;
 $feedSemaphore = $rawdat[0];
 close(mtempfile);

 #print "trying";
 @curtime = split(/ /,`date`);
 @tempvar = split(/:/, $curtime[3]);
 #if($curtime[5] eq "PM"){
 # $curfeed = $tempvar[0] + 12;
 #}
 #else{
 #if($tempvar[0] < 12){
 $curfeed = $tempvar[0];
 #}else{
 # $curfeed = 0;
 # }
 #}

 if($feedSemaphore == 0){
 if($curfeed > $nextfeed){
 open(mtempfile,">/feedsemaphore");
 print mtempfile "1";
 close(mtempfile);

 `./dio_mask_off 8`;
 sleep(1.5); #1.5 rotations
 `./dio_mask_on 8`;

 }
 }
 if($curfeed == 1){
 open(mtempfile,">/feedsemaphore");
 print mtempfile "0";
 close(mtempfile);
 }

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 25

}

sub updateTarTemp{
 # grab it from the website directory
 `cp /var/www/cgi-bin/tarTemp /`;
}

sub updateCurTemp{
 my $curTemp;
 open(mtempfile,">/curTemp");
 print mtempfile `/usr/local/bin/perl /copy_s19.pl`;
 close(mtempfile);
}

sub checkTemp{
 my @rawdat;
 my $curtemp;
 my $tartemp;
 open(mtempfile,"/curTemp");
 @rawdat = <mtempfile>;
 $curtemp = $rawdat[0];
 close(mtempfile);
 open(mtempfile,"/tarTemp");
 @rawdat = <mtempfile>;
 $tartemp = $rawdat[0];
 close(mtempfile);

 if($curtemp < ($tartemp - 1)){
 `/dio_mask_off 4`;
 }
 if($curtemp > ($tartemp + 1)){
 `/dio_mask_on 4`;
 }
}

while(1){
 updateCurTemp();
 updateTarTemp();
 checkTemp();
 checkFeed();
 sleep(25);
}

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 26

menu_driver.pl PERL SCRIPT
Drives the LCD menu and controls many tank functions

#!/usr/bin/perl -w

open(LCD,">/dev/lcd")||die "ERROR: cannot write to /dev/lcd\n";

sub init_display{
 print LCD chr(0xfe), chr(0x01); # clear the display
 sleep(0.1);
 print LCD chr(0xfe), chr(0x02);
 sleep(0.1);
 print LCD chr(0xfe), chr(13);
}

sub goto_line2{
 print LCD chr(0xfe), chr(192);
}

sub goto_line1{
 print LCD chr(0xfe), chr(128);
}

sub poll_buttons{
 my $button_reg = `./dio_input`;
 my $button_pushed = 0;
 if(ord(pack("H2",substr($button_reg,1,2))) & 0x04){
 $button_pushed = 1;
 }
 if(ord(pack("H2",substr($button_reg,1,2))) & 0x02){
 $button_pushed = 2;
 }
 if(ord(pack("H2",substr($button_reg,1,2))) & 0x01){
 $button_pushed = 4;
 }
 if(ord(pack("H2",substr($button_reg,1,2))) & 0x20){
 init_display();
 $button_pushed = 3;
 }
 return $button_pushed;
}

sub info_menu
{
 #init_display();
 #goto_line1();

 my $buttonp=0;
 my $curline_main=1;

 while($buttonp != 3){
 init_display();
 if(($curline_main==1)||($curline_main==2)){

 goto_line1();
 print LCD " 1. IP Address";
 goto_line2();
 print LCD " 2. Temp";
 if($curline_main==1){
 goto_line1();
 }
 else{
 goto_line2();

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 27

 }
 }
 if(($curline_main==3)||($curline_main==4)){

 goto_line1();
 print LCD " 3. Feeding";
 goto_line2();
 print LCD " 4. Time";
 if($curline_main==3){
 goto_line1();
 }
 else{
 goto_line2();
 }
 }

 $buttonp = poll_buttons();
 if($buttonp == 1){
 # 'OK' BUTTON
 if($curline_main==1){
 # print the IP address

 init_display();
 goto_line1();
 my @comResult = `ifconfig eth0`;
 foreach(@comResult){
 if(/inet addr:([\d.]+)/){
 print LCD "$1";
 }
 }
 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }elsif($curline_main==2){
 # print temperature
 my $curTemp;
 my $tarTemp;
 my @rawdat;
 open(tempfile,"/curTemp");
 @rawdat = <tempfile>;
 close(tempfile);
 $curTemp = $rawdat[0];
 open(tempfile,"/tarTemp");
 @rawdat = <tempfile>;
 close(tempfile);
 $tarTemp = $rawdat[0];

 init_display();
 goto_line1();

 print LCD "Cur: ".$curTemp;
 goto_line2();
 print LCD "Target:".$tarTemp;

 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }elsif($curline_main==3){
 # print feeding time
 init_display();
 goto_line1();
 my @nextfeed = `cat /var/www/cgi-bin/feedTime`;
 if($nextfeed[0] eq "10"){

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 28

 print LCD "10:00 AM";
 }
 else{
 print LCD "2:00 PM";
 }
 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }elsif($curline_main==4){
 init_display();
 goto_line1();
 print `date`;
 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }
 }
 elsif($buttonp == 2){
 # 'UP' BUTTON
 goto_line1();
 $curline_main-=1;
 }
 elsif($buttonp == 4){
 # 'DOWN' BUTTON
 goto_line2();
 $curline_main+=1;
 }
 elsif($buttonp == 3){
 # 'BACK' BUTTON
 return;
 }

 if($curline_main>4){
 $curline_main=4;
 }
 if($curline_main<1){
 $curline_main=1;
 }
 sleep(0.1);
 }

}

sub action_menu
{
 #init_display();
 #goto_line1();

 my $buttonp=0;
 my $curline_main=1;

 while($buttonp != 3){
 init_display();
 if(($curline_main==1)||($curline_main==2)){

 goto_line1();
 print LCD " 1. Toggle Light";
 goto_line2();
 print LCD " 2. Feed";
 if($curline_main==1){
 goto_line1();
 }
 else{
 goto_line2();

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 29

 }
 }
 if(($curline_main==3)||($curline_main==4)){

 goto_line1();
 print LCD " 3. Shutdown";
 goto_line2();
 print LCD " 4. Reserved";
 if($curline_main==3){
 goto_line1();
 }
 else{
 goto_line2();
 }
 }

 $buttonp = poll_buttons();
 if($buttonp == 1){
 # 'OK' BUTTON
 if($curline_main==1){
 #
 init_display();
 goto_line1();
 if(ord(pack("H2",substr(`/dio_input`,2,2))) & 0x02){
 `/dio_mask_off 2`;
 print LCD "Light is now ON";
 }else{
 `/dio_mask_on 2`;
 print LCD "Light is now OFF";
 }
 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }elsif($curline_main==2){
 `./dio_mask_off 8`;
 sleep(1.5); #1.5 rotations
 `./dio_mask_on 8`;
 init_display();
 goto_line1();
 print LCD "Done Feeding";
 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }elsif($curline_main==3){
 # shutdown
 `shutdown 0 -h`;
 }elsif($curline_main==4){
 # nothing yet
 while(poll_buttons()!=3){
 sleep(0.1);
 }
 }
 }
 elsif($buttonp == 2){
 # 'UP' BUTTON
 goto_line1();
 $curline_main-=1;
 }
 elsif($buttonp == 4){
 # 'DOWN' BUTTON
 goto_line2();
 $curline_main+=1;
 }
 elsif($buttonp == 3){

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 30

 # 'BACK' BUTTON
 return;
 }

 if($curline_main>4){
 $curline_main=4;
 }
 if($curline_main<1){
 $curline_main=1;
 }
 sleep(0.1);
 }

}

MAIN **

init_display();
goto_line1();
print LCD "E-Quarium";
sleep(5);
goto_line2();

while(1){
 my $buttonp=0;
 my $curline_main=1;
 init_display();
 goto_line1();
 print LCD " 1. Info";
 goto_line2();
 print LCD " 2. Actions";
 goto_line1();
 while($buttonp != 1){
 $buttonp = poll_buttons();
 if($buttonp == 1){
 # 'OK' BUTTON
 if($curline_main==1){
 info_menu();
 }
 else{
 action_menu();
 }
 }
 elsif($buttonp == 2){
 # 'UP' BUTTON
 goto_line1();
 $curline_main=1;
 }
 elsif($buttonp == 4){
 # 'DOWN' BUTTON
 goto_line2();
 $curline_main=2;
 }
 elsif($buttonp == 3){
 # 'BACK' BUTTON
 }
 }
}

close LCD;

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 31

default.pl PERL SCRIPT
Web page code

#!/usr/local/bin/perl -w
use lib '/usr/local/lib/perl5/5.8.0/';
use CGI::Carp qw(fatalsToBrowser);
use CGI qw(standard);
use strict;
package eqaweb;

print "Content-type: text/html\r\n\r\n";
print "<html>";

print "<head>";
print "<title>Control Panel</title>";
print "</head>";

print "<body>";
print "<form action=\"default.pl\" method=\"GET\">";
print "<table>";
print "<tr><td>E-Quarium Web Control Panel</td></tr>";

form processing actions

print "<tr><td>";

if(CGI::param('toggle1off') eq "off"){
 print "Light turned OFF";
}
if(CGI::param('toggle1on') eq "on"){
 print "Light turned ON";
}
if(CGI::param('feed') eq "Feed"){
 print "Fish have been fed";
}
if(CGI::param('changeTemp') eq "Change"){
 open(tempfile,">tarTemp") || print "Permissions problem";
 print tempfile CGI::param('desiredTemp');
 close(tempfile);
 print "Changed desired temp";
}
if(CGI::param('setFeed') eq "Set"){
 print "Changed desired feed time";
}
print "</td></tr>";

form

print "<tr><td colspan=\"2\">Aquarium Light:</td></tr>";
print "<tr><td><input name=\"toggle1on\" type=\"submit\"
value=\"on\"></td>";
print "<td><input name=\"toggle1off\" type=\"submit\"
value=\"off\"></td></tr>";
my $curTemp;
my $tarTemp;
my $feedTime;

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 32

my @rawdat;
my @rawdat2;
open(tempfile,"tarTemp");
open(tempfile2,"/curTemp");
@rawdat = <tempfile>;
@rawdat2 = <tempfile2>;
close(tempfile);
close(tempfile2);
$tarTemp = $rawdat[0];
$curTemp = $rawdat2[0];

open(tempfile,"feedTime");
@rawdat = <tempfile>;
$feedTime = $rawdat[0];
close(tempfile);

print "<tr><td colspan=\"2\">Feeding:</td></tr>";
print "<tr><td>Currently set to feed at: ".$feedTime."-hour</td></tr>";
print "<tr><td><select name=\"feedTime\">";
print "<option value=\"10\">10am";
print "<option value=\"14\">2pm";
print "</select></td></tr>";
print "<tr><td><input name=\"setFeed\" type=\"submit\"
value=\"Set\"></td></tr>";
print "<tr><td><input name=\"feed\" type=\"submit\"
value=\"Feed\"></td></tr>";

print "<tr><td colspan=\"2\">Temperature:</td></tr>";
print "<tr><td colspan=\"2\">Cur: ".$curTemp."
Target:<input
width=\"5\" name=\"desiredTemp\" value=\"".$tarTemp."\"></td>";
print "<td><input name=\"changeTemp\" type=\"submit\"
value=\"Change\"></td></tr>";

print "</table>";
print "</form>";
print "</body>";
print "</html>";

#close STDIN;
#close STDOUT;
#close STDERR;

if(CGI::param('toggle1off') eq "off"){
 `./dio_mask_on 2`;
}
if(CGI::param('toggle1on') eq "on"){
 `./dio_mask_off 2`;
}
if(CGI::param('feed') eq "Feed"){
 `./dio_mask_off 8`;
 sleep(1.5); #1.5 rotations
 `./dio_mask_on 8`;
}
if(CGI::param('setFeed') eq "Set"){
 open(tempfile,">feedTime") || print "Permissions problem";

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 33

 print tempfile CGI::param('feedTime');
 close(tempfile);

}
if(CGI::param('changeTemp') eq "Change"){

}

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 34

copy_s19.pl PERL SCRIPT
Load the HC12 via ttys0 with ADC sampling program, get result, save
This program is used to sample the current tank temperature

#!/usr/bin/perl -w
Brandon Balkind 4-12-05
use strict;
my $mfhandle;
`stty 9600 -F /dev/ttyS0`;
open($mfhandle, "/adc.s19") or
 die("Error");
my $line;
open(ttyS0,">/dev/ttyS0")||die "ERROR: can not write to /dev/ttyS0\n";
print ttyS0 "load\r";
close ttyS0;
open(ttyS0,">/dev/ttyS0")||die "ERROR: can not write to /dev/ttyS0\n";
copy the s19 file
while ($line=<$mfhandle>){
 chomp($line);
 #print "$line\n";
 print ttyS0 "$line\n";
}
close ttyS0;

open(ttyS0,">/dev/ttyS0")||die "ERROR: can not write to /dev/ttyS0\n";
print ttyS0 "g 800\n";
close ttyS0;

open(ttyS0,">/dev/ttyS0")||die "ERROR: can not write to /dev/ttyS0\n";
print ttyS0 "\r"; # this was found to be the only
 # character which activated the output sequence
close ttyS0;

open(ttyS0,"+</dev/ttyS0") || die "ERROR: can not read from
/dev/ttyS0\n";

#while($line=<ttyS0>){
$line=<ttyS0>;
 chomp($line);
 #$line =~ s/\r//g;
 if($line ne ""){
 #print "ADC Says: $line";
 $line = ord(pack("H2",$line));
 # $line = "0x".$line;
 #open(resultFile,">curTemp") || die "ERROR: ";
 print `./tempconv $line`;
 #print resultFile `./tempconv $line`;
 #close(resultFile);
 }
 $line="";
#}

close ttyS0;
close($mfhandle);

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 35

convert_temp.c COMPILED C
Takes raw HC12 ADC sampling data and turns It into Fahrenheit
temperature according to mathematical approximation

#include <math.h>
#include <stdio.h>

int convert_temp(int adc);

int main(int argc, char** argv) {
 if(argc > 0){
 printf("%d",convert_temp(atoi(argv[1])));
 }
 return 0;
 //debug
 //printf("The temp is %d\n", convert_temp(127));
 //printf("The temp is %d\n", convert_temp(200));
}

int convert_temp(int adc) {
 float voltage;
 float resistance;
 double temp;

 voltage = (float)adc/51; //this may need +0.15 V
 resistance = (2000.0 * voltage) / (1.0-voltage/5.0);

 // debug
 // exp = log((double)voltage);
 // exp = cos((double)voltage);
 //printf("voltage is %2.2f\n", voltage);
 //printf("resistance is %2.2f\n", resistance);
 temp = log(resistance/10000.0);
 temp = temp/4100.0;
 temp = temp + ((double)1/(double)298);
 temp = 1.0/temp;
 temp = temp - 273.0;
 //convert to fahrenheit 2 versions
 //temp = (temp*((float)9/(float)5)) + 32;
 temp = (temp*1.8) + 32.0;
 return((int)temp);
}

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 36

dio_init.c COMPILED C
Sets DIO1 i/o directions and sets initial port values

#include <stdio.h>
#include <sys/io.h>
#include <unistd.h>

#define bank_control1 0x7A
#define io_bank1 0x7B
#define io_bank2 0x7C

int main (int argc, char *argv[])
{
 /* Get access to the ports */

 iopl(3);
 // sets DIO-0 to DIO-3 to out
 // DIO-4 to DIO-7 to out
 // DIO-8 to DIO-11 to IN
 outb(0x01, bank_control1);
 // reverse logic
 outb(0x0f, io_bank1);
 return 0;
}

dio_input.c COMPILED C
Gets value of port (DIO1) used frequently for button polling

#include <stdio.h>
#include <sys/io.h>
#include <unistd.h>

#define bank_control1 0x7A
#define io_bank1 0x7B
#define io_bank2 0x7C

int main (int argc, char *argv[])
{
 /* Get access to the ports */

 iopl(3);
 printf("%02.2x%02.2x", inb(io_bank2), inb(io_bank1));

 return 0;
}

Tufts University Department of Electrical and Computer Engineering Balkind and Robinton
Spring 2005 37

dio_mask_on.c COMPILED C
Sets the bits of arg[0] in the DIO1 port

#include <stdio.h>
#include <sys/io.h>
#include <unistd.h>

#define bank_control1 0x7A
#define io_bank1 0x7B
#define io_bank2 0x7C

int main (int argc, char *argv[])
{
 /* Get access to the ports */

 iopl(3);
 outb((inb(bank_control1) | 0x01), bank_control1);

 if(argc > 1){
 if(!(((inb(io_bank1))==0x00)&&(atoi(argv[1])==0))){
 outb((inb(io_bank1) | atoi(argv[1])), io_bank1);
 }
 }
 return 0;
}

dio_mask_off.c COMPILED C
Clears the bits of arg[0] in the DIO1 port

#include <stdio.h>
#include <sys/io.h>
#include <unistd.h>

#define bank_control1 0x7A
#define io_bank1 0x7B
#define io_bank2 0x7C

int main (int argc, char *argv[])
{
 /* Get access to the ports */

 iopl(3);
 outb((inb(bank_control1) | 0x01), bank_control1);

 if(argc > 1){
 if(!(((inb(io_bank1))==0x00)&&(atoi(argv[1])==0))){
 outb((inb(io_bank1) & (~atoi(argv[1]))), io_bank1);
 }
 }
 return 0;
}

