Home           People     Research Facility Publications Educational Tools

 

Recent Publications

·         “Internal structure of 0.9 GHz microplasma,” Naoto Miura and Jeffrey Hopwood, Journal of Applied Physics 109, 113303 (2011). doi:10.1063/1.3592269

 

·         “Stable linear plasma array at atmospheric pressure,” Chen Wu, Alan R Hoskinson, Jeffrey Hopwood, Plasma Sources Science and Technology 20, 045022 (2011).  doi:10.1088/0963-0252/20/4/045022

 

·         “Rapid transfer-based micro patterning and dry etching of silk microstructures,” Konstantinos Tsioris, Hu Tao, Mengkun Liu, Jeffrey A. Hopwood, David L. Kaplan, Richard D. Averitt, and Fiorenzo G. Omenetto, Advanced Materials 23(17), 2015–2019 ( 2011) DOI: 10.1002/adma.201004771

 

·         “Low-power microwave-generated helium microplasma for molecular and atomic spectroscopy,” Alan Hoskinson,  Jeffrey Hopwood, Neil W. Bostrom,  Jeffrey A. Crank and Christopher Harrison, Journal of Analytical Atomic Spectrometry 26(6), 1258 – 1264  (2011)  DOI: 10.1039/c0ja00239a

 

·         “Spatially resolved argon microplasma diagnostics by diode laser absorption,” Naoto Miura and J. Hopwood, Journal of Applied Physics 109(1) 013304 (2011). doi:10.1063/1.3531557

 

·         “Microplasmas: scientific challenges & technological opportunities,” K. H. Becker, H. Kersten, J. Hopwood and J. L. Lopez, The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, editorial,  60(3) 437-439, (2010). DOI: 10.1140/epjd/e2010-00231-4

 

·         “Circular array of stable atmospheric pressure microplasmas,” C. Wu, Z.-B. Zhang, A. R. Hoskinson, J. Hopwood, European Physical Journal D, 60(3), 621-625 (2010). DOI: 10.1140/epjd/e2010-00211-8

 

·         “Argon microplasma diagnostics by diode laser absorption,” N. Miura, J. Xue, and J. Hopwood, IEEE Trans. Plasma Science 38, 2458-64 (2010).

 

·         "Linear arrays of stable atmospheric pressure microplasmas," Zhi-Bo Zhang and Jeffrey Hopwood, Appl. Phys. Lett. 95, 161502 (2009).

 

·         “Metastable Helium Density Probe for Remote Plasmas,” Naoto Miura and Jeffrey Hopwood, Rev. Sci. Instruments 80(11), 113502 (2009).

 

·         “Microwave Frequency Effects on Microplasma,” J. Xue and J. Hopwood, IEEE Transactions on Plasma Science, Vol. 37(6), 816-822 (2009).

 

·         “Microplasma Trapping of Particles,” J. Xue and J. Hopwood, IEEE Transactions on Plasma Science, Vol. 35(5), 1574-1579 (2007).

·         On-wafer Tunable Deposition Rates using Ionized Physical Vapor Deposition,” D. Mao, L. Peng, and J. Hopwood, Plasma Processes and Polymers Vol. 4, 19-26 (2007).

·         J. Hopwood, F. Iza, S. Coy, and D. Fenner, A microfabricated atmospheric-pressure microplasma source operating in air, Journal of Physics D: Applied Physics, Vol. 38, 1698-1703 (2005).

·         Felipe Iza and Jeffrey A. Hopwood, Split-ring Resonator Microplasma: Microwave Model, Plasma Impedance and Power Efficiency, Plasma Sources - Science and Technology (Institute of Physics), Vol.14, 397-406 (2005).

·         Felipe Iza and Jeffrey A. Hopwood, Self-organized filaments, striations and other non-uniformities in non-thermal atmospheric microwave excited microdischarges, IEEE Transactions on Plasma Science, Vol. 33(2) 306-307 (2005).

·         Xiaoji Yang and Jeffrey A. Hopwood, Physical mechanisms for anisotropic plasma etching of cesium iodide, Journal of Applied Physics, Vol. 96(9), 4800-4806 (2004).

·         J. Hopwood and F. Iza, Ultrahigh frequency microplasmas from 1 Pascal to 1 Atmosphere, Journal of Analytical Atomic Spectrometry, Vol. 19, 1145-1150 (2004).

·         D. Mao and J. Hopwood, Ionized Physical Vapor Deposition of Titanium Nitride: A Deposition Model, Journal of Applied Physics, Vol. 96(1), 820-828 (2004).

·         F. Iza and J. Hopwood, Rotational, vibrational and excitation temperatures of a microwave-frequency microplasma, IEEE Trans. Plasma Sci. 32(2), (2004) (to appear)

·         J. Hopwood and T. Mantei, Application-driven development of plasma source technology, J. Vac. Sci. Technol. A 21, S139 (2003).

·         O. Minayeva and J. Hopwood, Langmuir probe diagnostics of a microfabricated inductively coupled plasma-on-a-chip, J. Appl. Phys. 94, 2821 (2003).

·         O. Minayeva and J. Hopwood, Microfabricated inductively coupled plasma on a chip for molecular SO2 detection: a comparison between global model and optical emission spectrometry, J. Anal. At. Spectr. 18, 856 (2003).

·         F. Iza and J. Hopwood, Low-power microwave plasma source based on a microstrip split-ring resonator, IEEE Trans. Plasma Sci. 31 782 (2003).

·         O. Minayeva and J. Hopwood Emission spectroscopy using a microfabricated inductively coupled plasma on a chip, J. Anal. At. Spect. 17, 1103 (2002).

·         F. Iza and J. Hopwood, Influence of operating frequency and coupling coefficient on the efficiency of microfabricated inductively coupled plasma sources, Plasma Sources Science and Technology 11, 229 (2002).

·         X. Yang and J. Hopwood, et al., Plasma Etching of Cesium Iodide, J. Vac. Sci. Technol. A, 20(1) 132-137 (2002).

·         K. Tao, D. Mao, and J. Hopwood, Ionized Physical Vapor Deposition of Titanium Nitride: A Global Plasma Model, J. Appl. Phys., 91(7), 4040-4048 (2002).

·         D. Mao, K. Tao, and J. Hopwood, Ionized Physical Vapor Deposition of Titanium Nitride: Plasma and Film Characterization, J. Vac. Sci. Technol. A 20(2) 379-387 (2002).

·         An SOI-based three-dimensional integrated circuit technology, J. Burns, L. McIlrath, J. Hopwood, C. Keast, D.P. Vu, K. Warner, and P. Wyatt, Proceedings of the IEEE International SOI Conference (2000), p. 20.

·         J. Hopwood, O. Minayeva, and Y. Yin, Fabrication and characterization of a 5-mm inductively coupled plasma generator, Journal of Vacuum Science and Technology B, 18(5), 2446-2451, (2000).

·         J. Hopwood, A Microfabricated Inductively Coupled Plasma Generator, Journal of Microelectromechanical Systems, 9(3), 309-313, (2000).

·         Ionized Physical Vapor Deposition, J. Hopwood, ed., Thin Film Series Vol. 27, (Academic Press, San Diego, 2000). ISBN 0-12-533027-8

·         Y. Yin, J. Messier, and J. Hopwood, Miniaturized inductively coupled plasma sources, IEEE Transactions on Plasma Science, 27(5), 1516-1524, 1999.

·         G. Zhong and J. Hopwood, Ionized titanium deposition into high aspect ratio vias and trenches, Journal of Vacuum Science and Technology, B 17(2), 405-409 (1999).

·         J. Hopwood, Ionized physical vapor deposition of integrated circuit interconnects, invited tutorial, Physics of Plasmas 5(5) 1624 (1998).

·         M. Dickson, G. Zhong, and J. Hopwood, Radial uniformity of an external-coil ionized physical vapor deposition source, Journal of Vacuum Science and Technology A 16(2), 523 (1998).

·         P. Sailer, P. Singhal, J. Hopwood, D. Kaeli, P.M. Zavracky, K. Warner and D.P. Vu, Creating 3D circuits using transferred films, IEEE Circuits and Devices Magazine 13(6), 27-30(1997).

·         J. Hopwood, "Plasma Assisted Deposition," in The Handbook of Nanophase Materials, A. Goldstein, Ed., pp. 141-198 (Marcel-Dekker, New York, 1997). ISBN 0-8247-9469-9

·         M. Dickson and J. Hopwood, Axially-resolved study of highly ionized physical vapor deposition, J. Vac. Sci. Technol. A 15(4), 2307 (1997).

·         M. Dickson, F. Qian, and J. Hopwood, Quenching of electron temperature and electron density in ionized physical vapor deposition, J. Vac. Sci. Technol. A 15(2), 340 (1997).

·         N. Forgotson, V. Khemka, and J. Hopwood, Inductively coupled plasma for polymer etching of 200 mm wafers, J. Vac. Sci. Technol. B 14(2), 732 (1996).

·         J. Hopwood and F. Qian, Mechanisms for highly ionized magnetron sputtering, J. Appl. Phys. 78(2), 758 (1995).

·         J. Hopwood, Planar rf induction plasma coupling efficiency, Plasma Sources Sci. Technol. 3, 460 (1994).

·         D. L. Pappas and J. Hopwood, Deposition of diamond-like carbon in a planar inductively coupled plasma, J. Vac. Sci. Technol. A 12(4), 1576 (1994).

·         S.M. Rossnagel and J. Hopwood, Metal ion deposition from ionized magnetron sputtering discharge, J. Vac. Sci. Technol. B 12(1), 449 (1994).

·         S.M. Rossnagel and J. Hopwood, Magnetron sputter deposition with high levels of metal ionization, Appl. Phys. Lett. 63, 3285 (1993).

·         J. Hopwood, Ion bombardment energy distributions in a low pressure rf induction plasma, Appl. Phys. Lett. 62, 940 (1993).

·         J. Hopwood, C.R. Guarnieri, S. J. Whitehair, and J. J. Cuomo, Electromagnetic fields in an rf induction plasma, J. Vac. Sci. Technol. A 11, 147 (1993).

·         J. Hopwood, C.R. Guarnieri, S.J. Whitehair, and J.J. Cuomo, Langmuir probe measurements in an rf induction plasma, J. Vac. Sci. Technol. A 11(1), 152 (1993).

·         J. Hopwood, Review of inductively coupled plasmas for plasma processing, invited, Plasma Sources Sci. Technol. 1, 109 (1992).

·         J. Hopwood and J. Asmussen, Neutral gas temperatures in a multipolar electron cyclotron resonance plasma, Appl. Phys. Lett. 58, 2473 (1991).

·         J. Hopwood, D.K. Reinhard, and J. Asmussen, Charged particle densities and energy distributions in a multipolar ECR microwave plasma etching source, J. Vac. Sci. Technol. A 8(4), 3103 (1990).

·         J. Hopwood, R. Wagner, D.K. Reinhard, and J. Asmussen, Electric fields in a microwave-cavity electron-cyclotron-resonant plasma source, J. Vac. Sci. Technol. A 8(3), 2904 (1990).

·         J. Asmussen, J. Hopwood and F.C. Sze, A 915 MHz/2.45 GHz ECR plasma source for large area ion beam and plasma processing, Rev. Sci. Instrum. 61(1), 250 (1990).

·         J. Hopwood, D.K. Reinhard and J. Asmussen, Experimental conditions for uniform anisotropic etching of silicon with a microwave ECR plasma, J. Vac Sci. Technol. B 6(6), 1896 (1988).

·         J. Hopwood, D.K. Reinhard, and J. Asmussen, Plasma etching with a microwave cavity plasma disk source, J. Vac. Sci. Technol. B 6(1), 268 (1988).

Patents

·         Resonant radio frequency wave coupler apparatus using higher modes, J. Asmussen and J. Hopwood, U.S. Patent 5,081,398 (January 12, 1992)

·         Radio frequency induction plasma processing system utilizing a uniform-field coil, J. Hopwood, C.R. Guarnieri, S.J. Whitehair, and J.J. Cuomo, U.S. Patent 5,280,154 (January 18, 1994).

·         Apparatus for enhanced inductive coupling to plasmas with reduced sputter contamination, J. Hopwood, C.R. Guarnieri, and J.J. Cuomo, U.S. Patent 5,433,812 (July 18, 1995).

·         Method for enhanced inductive coupling to plasmas with reduced sputter contamination, J.J. Cuomo, C.R. Guarnieri, and J. Hopwood, U.S. Patent 5,622,635 (April 22, 1997).

·         Radio frequency induction plasma processing system utilizing a uniform-field coil, J.J.Cuomo, C.R. Guarnieri, J. Hopwood, and S.J. Whitehair, European Patent EP 0 553 704 B1 (April 3, 1996).

·         Apparatus and method for enhanced inductive coupling to plasmas with reduced sputter contaminaton, J.J. Cuomo, C.R. Guarnieri, and J. Hopwood, European Patent EP 0 607 797 B1 (June 18, 1997).

·         Monolithic miniaturized inductively coupled plasma source, J. Hopwood , U.S. Patent No. 5,942,855 (August 24, 1999).

·         Method of Coating Edges with Diamond-like carbon, J. Hopwood and D. L. Pappas, U.S. Patent No. 6,077,542 (June 20, 2000).

·         Low power plasma generator, J. Hopwood and F. Iza, US Patent 6,917,165, (July 12, 2005).

·         Nano-Particle Trap Using a Microplasma, J. Hopwood, U.S. Patent 7,728,253 (June 1, 2010).

·         Microplasma Generator and Methods Therefor, Patent Application filed April 27, 2010. PCT/US2010/032571