Each line below is a letter in ASCII code. Decode the letters.

\[
\begin{array}{c}
0100 0101 \\
0101 0011 \\
0011 0100 \\
\end{array}
\]

Ans = []

Find the Hamming distance between the two binary words

\[
\begin{array}{c}
W_1 = 10110110 \\
W_2 = 11110111 \\
\end{array}
\]

Choose the parity bit \(p \) in the word \(Q = 11010010p \) so that the word has odd parity

\(p = \)

Write the decimal number \(N_D = 73 \)

In 8 bit binary format \(N_B = \)

In hexadecimal format \(N_H = \)

In octal format \(N_8 = \)

Convert the binary number \(K_B = 011010 \) to a decimal number

\(K_D = \)

Convert the hexadecimal number \(R_H = EC \) to a decimal number

\(R_D = \)

Write the decimal number \(G_D = -54 \) as an 8 bit signed binary number

\(G_B = \)

Write \(G_D \) as an 8 bit two’s compliment binary number

\(G(2s \ comp) = \)

Convert the binary number \(M_B = 01101.011 \) to a decimal number.

\(M_D = \)