Each line below is a letter in ASCII code. Decode the letters.

$$
\begin{aligned}
& 01000101 \\
& 01010011 \\
& 00110100
\end{aligned}
$$

\square

Ans $=$| | | |
| :--- | :--- | :--- |

Find the Hamming distance between the two binary words

$$
\begin{aligned}
& \mathrm{W}_{1}=10110110 \\
& \mathrm{~W}_{2}=11110111
\end{aligned}
$$

Choose the parity bit p in the word $\mathrm{Q}=11010010 \mathrm{p}$ so that the word has odd parity

$$
\mathrm{p}=
$$

Write the decimal number $\mathrm{N}_{\mathrm{D}}=73$
In 8 bit binary format $\quad \mathrm{N}_{\mathrm{B}}=$
In hexadecimal format
$\mathrm{N}_{\mathrm{H}}=$
In octal format $\mathrm{N}_{8}=$

Convert the binary number $\mathrm{K}_{\mathrm{B}}=011010$ to a decimal number

$$
K_{D}=
$$

Convert the hexadecimal number $\mathrm{R}_{\mathrm{H}}=\mathrm{EC}$ to a decimal number

$$
R_{D}=
$$

Write the decimal number $G_{D}=-54$ as an 8 bit signed binary number

$$
\mathrm{G}_{\mathrm{B}}=
$$

Write Gd as an 8 bit two's compliment binary number

$$
G(2 s \text { comp })=
$$

Convert the binary number $\mathrm{M}_{\mathrm{B}}=01101.011$ to a decimal number.

$$
M_{D}=
$$

