
EE126

Lab 1 Carry propagation adder

Welcome to ee126 lab1. In this lab, we will investigate carry propagation adders,

as well as VHDL/Verilog programming. We will also design two types of 4-bit

carry propagation adders and implement them on an FPGA device.

Before we start, it is a good idea to review the logic design of 1-bit full adders.

(Check the appendix for the VHDL/Verilog code of a full-bit adder.)

A full adder adds binary numbers and accounts for values carried in as well as

out. A one-bit full adder adds three one-bit numbers, often written as A, B,

and Cin; A and B are the operands, and Cin is a bit carried in from the

previous less significant stage. The full-adder is usually a component in a cascade

of adders, which add 8, 16, 32, etc. bit binary numbers. The circuit produces

an unsigned two-bit output, output carry and sum typically represented by the

signals Cout and S, where SCsum out 2 .

A full adder can be implemented in many different ways such as with a

custom transistor-level circuit or composed of other gates. The Boolean

functions for the full adder in terms of exclusive-OR operations can be expressed

as:

inCBAS

))(()(BACBAC inout

http://en.wikipedia.org/wiki/Transistor

In this implementation, the final OR gate before the carry-out output may be

replaced by an XOR gate without altering the resulting logic. The logic diagram

for this multiple-level implementation consists of two half adders and an OR

gate. It is shown below:

SUM

CARRY OUT

CARRY IN

INPUT A

INPUT B

Half adder

Full adder

Q1. Write down the 1-bit full adder’s truth table.

N-bit adders take inputs {AN, …, A1}, {BN, …, B1}, and carry-in Cin, and

compute the sum {SN, …, S1} and the carry-out of the most significant bit Cout.

They are called carry-propagate adders (CPAs) because the carry into each bit

can influence the carry into all subsequent bits.

It is easy to do a simple design in which the carry-out of one bit is simply

connected as the carry-in to the next. This is called the carry-ripple adder, since

each carry bit "ripples" to the next full adder.

http://en.wikipedia.org/wiki/OR_gate
http://en.wikipedia.org/wiki/XOR_gate

Q2. Design a 4-bit carry-ripple adder using 4 one-bit full adders in

VHDL/Verilog. Following restrictions apply:

 All the numbers are signed 4 bit numbers. Use 2's complement to represent

the numbers.

 Use a one bit output overflow to indicate overflow in the addition.

 Use inputs cin and cout to indicate carry-in and carry-out.

 DO NOT use arithmetic operators in VHDL/Verilog. The adder should be

implemented using only logic gates.

Q3. Implement your 4-bit carry-ripple adder on a FPGA using the following Pin

assignment table.

Register Pin Board Component

a[0] PIN_N25 SW[0]

a[1] PIN_N26 SW[1]

a[2] PIN_P25 SW[2]

a[3] PIN_AE14 SW[3]

b[0] PIN_AF14 SW[4]

b[1] PIN_AD13 SW[5]

b[2] PIN_AC13 SW[6]

b[3] PIN_C13 SW[7]

cin PIN_B13 SW[8]

sum[0] PIN_AE23 LEDR[0]

sum[1] PIN_AF23 LEDR[1]

sum[2] PIN_AB21 LEDR[2]

sum[3] PIN_AC22 LEDR[3]

cout PIN_AE22 LEDG[0]

overflow PIN_AF22 LEDG[1]

The layout of a ripple-carry adder is simple, which allows for fast design time;

however, the ripple-carry adder is relatively slow, since each full adder must

wait for the carry bit to be calculated from the previous full adder.

To reduce the computation time, engineers devised faster ways to add two

binary numbers by using carry-lookahead adders.

We begin by introducing two new functions from which we will construct the

lookahead carry. These are called carry generate, written as Gi, and carry

propagate, written as Pi. They are defined as

iii BAG

iii BAP

When Ai and Bi are both 1, a carry-out must be asserted, independently of the

carry-in. Hence, we call the function a carry generate. If one of Ai and Bi is 1

while the other is 0, then the carry-out will be identical to the carry-in. In other

words, when the XOR is true, we pass or propagate the carry across that stage.

The sum and carry-out can be expressed in terms of the carry-generate and

carry-propagate functions:

iiiiii CPCBAS

http://en.wikipedia.org/wiki/Carry-lookahead_adder

iii

iiiii

iiiii

iiiiiii

PCG

BACBA

BACBA

CBCABAC

)(

)(

1

When the carry-out is 1, either the carry is generated internally within the

stage (Gi) or the carry-in is 1 (Ci) and it is propagated (Pi) through the stage.

Expressed in terms of carry propagate and generate, we can rewrite the

carry-out logic as follows:

0001 CPGC

0010111112 CPPGPGCPGC

00120121222223 CPPPGPPGPGCPGC

0012301231232333334 CPPPPGPPPGPPGPGCPGC

The ith carry signal is the OR of i+1 product terms, the most complex of which

has i+1 literals. This places a practical limit on the number of stages across which

the carry lookahead logic can be computed. Four-stage lookahead circuits

commonly are available in parts catalogs and cell libraries.A 4-bit

carry-lookahead adder is given below.

Q4. Design a 4-bit carry-lookahead adder using VHDL/Verilog.

Q5. Compare the delay of carry-ripple adder and carry-lookahead adder.

Explain the reason of shorter delay.

Appendix A: VHDL and Verilog Standard Formats

Standard Structure of a VHDL Design

entity entity_name is

Port(signal0 : in std_logic;

signal1 : out std_logic;

…

signaln : out std_logic_vector (3 downto 0));

end entity_name;

architecture Behavioral of entity_name is

-- component declarations

component comp_name is

Port(a : in std_logic;

…);

end component;

-- signal declarations

signal wire0, wire1 : std_logic;

-- main block

begin

-- behavioral and/or structural code here.

-- module instantiation

instance_name: comp_name

port map(signal0, signal1, …);

-- logical operations

signal3 <= (signal4 and signal5) xor signal8;

end

Standard Structure of a Verilog Design

module module_name(signal0,

signal1,

… ,

signaln);

// module signals

input signal0;

output [15:0] signal1;

…

output signaln;

// internal registers

reg register0;

reg signal1;

// internal signals

wire wire0;

wire wire1;

// behavioral and/or structural code here.

// module instantiation

module_name1 instance_name1 (signal0, signal1);

// logical operations

always @ (signal4 or signal5 or signal8)

begin

signal3 <= (signal4 && signal5) ^^ signal8;

end

endmodule

