
ECE790 Masters Research - Project Report

Localization in Sensor Networks using Message Passing Algorithm

Advisor: James Bucklew Written by: Usman Khan

1 Abstract

We describe a powerful and different approach to solve the localization problem of sensor networks with a
very few anchor nodes (we define anchor nodes as those sensors that are equipped with GPS receivers so that
they are fully aware of their location). The triangulation procedure (employed usually to solve this problem)
fails when we don’t have the anchor nodes lying close to each other, since it requires for any sensor node, at
least three anchor nodes in its neighborhood to find its exact position estimate. Our algorithm finds out the
position estimates of these sensor nodes. The sensor nodes then act as anchor nodes (for the sensor nodes
whose positions are still unknown) increasing the number of anchor nodes in the network, making it possible
to carry out the triangulation procedure. The algorithm is based upon the two dimensional distance matrix
computed for all the nodes present in the network and a simple message passing scheme. The network is
converted into a graph (a dense graph if the number of nodes is large) and subsequently random spanning
trees are generated from it. Working on the spanning trees is beneficial since we avoid getting caught in the
cyclic nature of the graph. The algorithm takes into account the random nature of the different spanning
trees selected. The message is then passed on these spanning trees one by one, their order selected at random.
The message propagates from the root of the tree to the succeeding levels/generations. The algorithm then
updates the position of the current node by minimizing a two dimensional equation based on distance matrix
and the information contained in the message1. We further use a cross validation procedure to verify our
estimates.

2 Introduction and Motivation

Sensors networks have numerous possible applications e.g., measuring the temperature in a given field,
measuring the velocity of some vehicle etc. They are used in many scenarios where remote access is the
only possible way to explore an area and physical measurements taken by humans are out of question.
The reason for no human access could be that the area is enemy territory or is contaminated with some
environmental hazard. For many applications the number of sensors present in a field is large. Large
networks with thousands of inexpensive, battery operated, wireless sensors are becoming a reality [2]. The
exact geographical position of the sensors is often an important piece of information required to organize
the results they provide. It is inefficient to put a lot of computation power, memory and smart processors in
these sensors. What often desirable is to have many inexpensive sensors in the field so that even if a number
of them fail, it would not affect the overall goal and performance.

Consider a battlefield where a number of sensors are deployed to discover the movement/presence of
enemy vehicles. These sensors could communicate to a central node which can process information from
all the sensors to achieve some result. If we were to find the position of some target in the field, it would
be desirable to know the exact position of these sensors. The position of these sensors could not be known
beforehand since all of them are deployed randomly. For this localization problem, it is highly expensive if
we put a GPS receiver in each sensor. So an algorithm that can use a small amount of local information and
give us the position estimate of these sensor nodes would prove very useful.

In this paper, we present a method of computing the position estimates of the sensors with taking into
account only the distance matrix of the network and a very few number of anchor nodes ( i.e., the sensors
equipped with GPS receivers ).

1The idea of message passing is similar to the one presented by Wainwright et. al. in [1].

1



Localization in Sensor Networks using Message Passing Algorithm 2

3 Related Work

Shang et al. [2] based their algorithm on multi-dimensional scaling yielding coordinates that provide the
best fit to estimated pairwise distances lying in an arbitrary rotation and translation. Then they use some
anchor nodes to find the absolute positions for all the nodes in the network. This technique works well
with reasonably few anchor nodes and high connectivity. Patrick Biswas et al. [3] describes an SDP (Semi
Definite Programming) relaxation based method for this problem. The basic idea behind their technique is
to convert the non-convex quadratic distance constraints into linear constraints by introducing a relaxation
to remove the quadratic term in the formulation. Niculescu et al. [4] describe a ’DV Hop’ approach in
which the anchor nodes disseminate their positions throughout the network and then each node performs a
triangulation using three or more anchor nodes.

Bahl et al. [5] suggest estimating distance between the nodes in the network based on the signal strength
by applying a wall attenuation factor (WAF) based signal propagation model. This distance information
is then used to locate a user by triangulation. This approach, however, yielded lower accuracy than RF
mapping of signal strengths corresponding to various locations for their system. Their RF-mapping-based
approach is quite effective indoors but requires extensive infrastructural effort.

Another localization method is the proprietary Location Pattern Matching technology, used in U.S.
Wireless Corporation’s RadioCamera system [6]. They employ a signal structure database generated by
a vehicle that drives through the coverage area. This vehicle transmits signals to a monitoring site which
compiles a unique signature for each square in the location grid. To determine the position the RadioCamera
system matches the the transmitter’s signal to an entry in the database. The major drawback of this
approach, as with RADAR[5], is the substantial effort needed for generation of the signal structure database
[7]. Another drawback of this system is its non-feasibility in a battle field or a remote area where access is
not possible.

Mazzini [8] has based his localization procedure by fixing two anchor nodes at the corner of a rectangle.
From there triangulation is done to get the estimates. Some other approaches also place a similar kind of
constraint on the anchor nodes that they should be placed at some fixed positions in the setting. We describe
a setting where anchor nodes can be placed randomly anywhere in the field.

Most of the approaches presented above rely on the triangulation of the nodes to get the position esti-
mates but this could only be done once we can find at least three anchor nodes with known positions in
the communication radius of all the sensors with unknown positions. Problems also lie with distributed
approaches, mainly due to the coherency and synchronization issues. In our approach we rely heavily on the
estimates of the sensors at the previous time step since we move iteratively. In distributed environment we
need to make sure the availability of the information before we can proceed to the next iteration.

4 Some Graph Theory Basics

A graph is a collection of points and lines connecting some subset of them. A graph G can be defined to be
a pair of (V (G), E(G)), where V (G) is a non-empty finite set of elements called vertices and E(G) is a finite
set of unordered pairs of distinct elements of V (G) called edges. V (G) is sometimes called the vertex set and
E(G) is the edge set. The edges of graphs may also be imbued with directedness. A normal graph in which
edges are undirected is said to be undirected. Otherwise, if arrows may be placed on one or both endpoints
of the edges of a graph to indicate directedness, the graph is said to be directed. Formally, a digraph D, (or
a directed graph) is defined to be a pair (V (D), A(D)), where V (D) is a non-empty finite set of elements
called vertices, and A(D) is a finite family of ordered pairs of elements V (D) called arcs. A(D) is called the
arc family of D. An arc whose first element is v and whose second element is w is called an arc form v to w;
which is different from an arc from w to v [9]. In this problem, we only deal with undirected graphs.

A tree can be defined to be a graph which contains no circuits or cycles. Given any connected graph
G, we can choose a circuit and remove one of its edges, the resulting graph remains connected. We repeat
this process with one of the remaining circuits, continuing until there are no circuits left. The graph which
remains will be a tree which connects all the vertices of G; it is called a spanning tree. The depth or
generation or level of a node n, in its tree T , is the length of the path from n to T ’s root. The path is the
unique shortest sequence of edges from a node n to an ancestor [9, 10].



Localization in Sensor Networks using Message Passing Algorithm 3

5 Algorithm

We employ the usual two dimensional Euclidean metric space. The distance dxy between any two points x
and y in this space is given by

dxy =

√√√√ 2∑
n=1

(xn − yn)2.

Euclidean distance matrix, D in RNxN+ is an exhaustive table of distances between points taken by pair from
a list of any N points {x1, x2, . . . , xN}. Each point is labeled ordinarily, hence the row or column index of
the distance matrix i or j = 1 . . . N , individually addresses all the points in the list. This distance matrix, D
has N2 entries but only N(N − 1)/2 pieces of information. The distance matrix, D satisfy all the axiomatic
requirements imposed by any metric space.

Let’s consider an ideal version of the problem. For now assume there are no sensors but N points in an
arbitrary flat rectangular grid, lying in the two dimensional Euclidean space. These N points are placed
randomly in this plane. We claim no information about the exact position for all these N points. We
further assume M more points in the same setup as above. These points are also placed randomly in this
plane. These points are different than the previously defined N points. We claim that for these M points
we precisely know their exact location in 2-dimensional Euclidean space. For now assume that somehow
we know the distances between all these N + M points and we have a Euclidean distance matrix, D with
dimensions (N + M) x (N + M) for these N + M points. There are several references in literature to find
this distance information based received signal strength [5], time of arrival, time difference of arrival and
direction of arrival [11, 12, 13].

Using the graph theory described above, we consider these N +M points as the vertices of an undirected
graph, G. In other words V (G) = {x1, . . . , xN , y1, . . . , yM}. We further impose one more restriction which
takes us one step away from the idealized situation. There is a minimum communication radius, R, which
restricts the communication among the nodes. We now say that any point x in the above setup can talk to
all those points which lie in a radius, R around it. For x, we place an edge from x to all those points which
lie in its communication radius, R. Mathematically, ordered pair (x, y) ∈ E(G)iffdxy <= R, and this holds
for all the pair of vertices lying in the vertex set V (G) of G. The edge between x and y is weighted by the
distance dxy between x and y. This weight dxy is also the (x, y)th entry in D. This holds true for all the
edges lying in E(G).

We are now in a position to describe the problem. We wish to find out the position estimates of all the
N points (whose positions are unknown) based on only the graph G and the distance matrix, D.

Let X = {x1, x2, . . . , xn} is a set of sensor nodes and Y = {y1, y2, . . . , ym} be a set of anchor nodes ( by
anchor nodes we refer to those sensors which are equipped with GPS receivers and hence, they in addition to
perform all the tasks of a sensor, also know their exact positions ), such that |X| = N and |Y | = M . These
(N +M) nodes correspond to (N +M) points described in the idealized setup above. So, we can construct
a graph, G, and then have V (G), E(G) and D on G, in the same way we did in the idealized setup.

Fixing every element of Yp−1 as the root, we grow a spanning tree and add it into Sp. The subscript p
refers to the phase. Notice that we would have different roots and hence different spanning trees in every
phase. Although, there is an exception to this2.

Now we would randomly select one element, ti from Sp at every iteration, i. The subscript i shows the
dependance of the spanning tree picked on each iteration(recall we randomly pick a tree at each iteration).
The message is propagated on this randomly picked tree. For each node, ng, in each generation, gt, for this
tree, ti, we pass the following message to all it’s children. If there are J generations, we go until J − 1
generations since the Jth generation has no children.

For the node, q in ti ∈ Sp, the message is

pnew = argmin||pnew − pold||2 +
∣∣||pnew − pparent||2 − d2

parent,node

∣∣
where pnew is the new estimate of the position of node q that minimizes the the above equation

pold is the old estimate of the position of node q, i.e., at the last iteration
2



Localization in Sensor Networks using Message Passing Algorithm 4

pparent is the current position estimate for the parent of node q which was updated at the previous step
dparent,node is the distance between the node q and its parent taken from the D.

We present the pseudo code for the algorithm as an attempt to make it more clear. We define two
methods TriProc and CrossValidation which will help us in writing the pseudo code. TriProc is a routine
which updates the position of all those sensor nodes which have at least three or more anchor nodes (or the
sensors whose position estimates are known) lying in their communication radius, R.

——ALGORITHM——
phase, p = 0
Yp = Y
TriProc(X, Y)
while X is nonempty do
p = p+ 1
Sp = {spanning trees with elements of Yp−1 as roots (one tree per root)}
for i = 1 . . . I do

randomly pick a tree, ti from Sp
propagate message on ti

end for
CrossValidation() 2

add ’good’ sensors to Yp3

Y = Y
⋃
Yp

X = X − Yp
TriProc(X, Y)

end while
——ALGORITHM——

We continue by randomly picking a tree, ti, from Sp at every iteration and propagate the message until
we see the variance of estimates going down. In this way, we exploit all we can get from the set, Sp of
spanning trees. At every step in each iteration, we work down the generation of the trees. We start from a
generation and based on the above message update the estimate of the position of all the nodes in the next
generation. We keep on working all the generations out and hence all the nodes in each generation.

At the end of phase one, we get some sensor nodes which have converged to their actual position due
to message passing. After Cross Validation1, we add these sensor nodes to our anchor nodes set. In other
words, the set X gets smaller and the set Y gets larger, since we add those sensor nodes whose actual position
is now known, to Y and remove them from X. We use the TriProc routine to update all the sensor nodes
based on the triangulation, since we have a larger set Y and it is more likely that some sensor nodes will
now find at least three or more anchor nodes in their communication radius, R. It is observed that at this
point we have almost all the network converged to the correct position estimates.

In case, we still have a non-empty X we would proceed to the next phase of the algorithm. We generate
Sp from Yp−1, which now contains the roots for the newly converged sensor nodes. The way we select the
roots, makes sure that the same anchor node is not picked as the root which was included in Sp−1. We
can proceed on to more phases in the same manner until we have computed the actual positions of all the
sensor nodes. It is conceivable to be able to resolve positions of some sensors with fewer than three neighbors
(depending on geometry) but we do not attempt that here.

6 Cross Validation

One of the problems unaddressed in the above algorithm is how to know that a particular sensor node has
converged to its original position estimate, converged to a wrong position estimate or hasn’t converged at

2The CrossValidation procedure is discussed in the next section.
3If Yp = φ or contains only one element, we would randomly choose some elements from Yp−1, so that we have enough

spanning trees for the next phase.
1



Localization in Sensor Networks using Message Passing Algorithm 5

all. We can answer one of the questions posed above by looking at the variance of the estimate. If the
variance is less than some particular threshold we can easily conclude that we have convergence. The choice
of the threshold depends on the noise in the environment. The other question is how would we know that a
particular node that has converged to some estimate has actually converged to its exact position estimate.
We need some sort of Cross Validation procedure to solve this problem.

The Cross Validation procedure would help us to rule out those ”bad” sensors which show us that they
have converged to some estimate but in fact they converge to a wrong one. The convergence to a wrong
estimate can easily be justified by the fact that based solely on the distance information, if we don’t have
at least three nodes around some node we would end up getting the estimate anywhere on a circle (in case
of one node around it) or it could be two points lying opposite to each other, as reflections across the line
connecting the two nodes around it. The Cross Validation procedure is as follows:

If we have k unknown nodes converged to some estimate. We can compute a kxk distance matrix,
K for these converged nodes based on their converged estimates. This distance matrix, K can then be
compared with the original distance matrix, D at the corresponding entries to see which sensor pairs have
the unmatched entries. We can remove the one which has most unmatched entries and then compute K
again. In this way, all the ”bad” sensors are removed one by one. This Cross Validation procedure removes
all the ”bad” sensors at the expense of at most two ”good” sensors.

7 Example

Example 1 An example demonstrating the algorithm on a network with fifty sensor nodes and only four
anchor nodes.

Note that in Figure 1(a), the anchor nodes are present in such a way that no three of them lie in the
communication radius of any sensor node. Hence, the triangulation procedure cannot be carried out. An
easy way to find out whether this condition holds is to find the radius of the circumscribed circle of the
triangles formed by taking three anchors nodes as the vertices. If, for all the triangles, the radius of the
circumscribed circle is greater then the communication radius the triangulation procedure would not be a
solution. Figure 1(c) is a spanning tree with ’♦’ as its root. Notice that the root is one of the anchor nodes.
Figure 1(d) shows the network after the algorithm is run. As we mentioned before there would be some
”bad” sensors which would converge to a wrong estimate and the answer to this problem was the Cross
Validation procedure. The ”bad” sensors which are marked by ’×’ can easily be seen to be bad since they
are not lying over any ’©’. The ”good” sensors ’∗’ are lying over ’©’. Also note that, the cross validation
procedure has ruled out the ’bad’ sensors at the expense of only one ”good” sensor. With all the ’∗’ and ’+’
in hand, we can now use the triangulation procedure to find the position estimates for the remaining sensor
nodes. The ’∇s’ are the result of this triangulation procedure shown in Figure 1(e).

8 References

[1] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Tree-Based Reparameterization Framework for
Analysis of Sum-Product and related Algorithms. In IEEE Transactions on Information Theory, pages
1120-1146, May 2003.

[2] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz. Localization for Mere Connectivity. In
Proceedings of the 4th ACM international symposium on Mobile Ad Hoc Networking and Computing, pages
201-212. ACM press. 2003.

[3] P. Biswas and Y. Ye. Semidefinite Programming for Ad Hoc Wireless Sensor Network Localization.
Technical report, Dept of Management Sciences and Engineering, Stanford University, Oct. 2003.

[4] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS). In IEEE GLOBECOM (1), pages
2926-2931, 2001.

[5] P. Bahl and V. N. Padmanabhan. Radar: An In-Building RF-Based User Location and Tracking
System. In Proc. IEEE INFOCOM 2000, pages 775-784, Mar. 2000.

[6] http://www.uswcorp.com/USWCmainpages/our.htm



Localization in Sensor Networks using Message Passing Algorithm 6

[7] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost Outdoor Localization for very small
devices. In IEEE Personal Communications, pages 28-34, Oct. 2000.

[8] P. Bergamo and G. Mazzini. Localization in Sensor Networks with Fading and Mobility. In IEEE
PIMRC, pages 750-754, Sept. 2002.

[9] R. J. Wilson, Introduction to graph theory. New York Academic Press, 1979.
[10] D. A. Bailey, JAVA Structures. McGraw-Hill Education, 1997.
[11] J. Elson and K. Romer. Wireless sensor networks: A new regime for time synchronization. In

Proceedings of the FirstWorkshop on Hot Topics In Networks (HotNets-I), Oct. 2002.
[12] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using reference broad-

casts. Tech. Rep. UCLA-CS-020008, University of California Los Angeles, May 2002.
[13] D. Krishnamurthy. Self-calibration techniques for acoustic sensor arrays. Masters thesis, The Ohio

State University, January 2002.



Localization in Sensor Networks using Message Passing Algorithm 7

(a) (b)

(c) (d)

(e)

Figure 1: (a)The Network. (b)Graph of the Network. (c)A Spanning Tree with ’♦’ denoting the root of the
tree. (d)Network after Algorithm is run. (e)Network after triangulation is performed. For all figures ’©’
denote the sensor nodes, ’+’ denote the anchor nodes, ’∗’ denotes the ”good” sensor when the algorithm is
run, ’×’ denotes the ”bad” sensors removed after Cross Validation and ’∇’ denotes the sensor whose position
estimate is known by triangulation.


	Abstract
	Introduction and Motivation
	Related Work
	Some Graph Theory Basics
	Algorithm
	Cross Validation
	Example
	References

