
High dimensional consensus in large-scale networks:

Theory and applications

Usman Ahmed Khan

August 28, 2009

Dissertation submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Electrical and Computer Engineering

Thesis Advisor: Professor José Manuel Fonseca de Moura

Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213

Copyright c© August 2009, Usman A. Khan

All Rights Reserved

ii

Dedicated to my parents,

Khalid and Aroona

iii

iv

Abstract

In this thesis, we develop the theory of High Dimensional Consensus (HDC), a general
class of distributed algorithms in large-scale networks. HDC relies only on (i) local
information, (ii) local communication, and (iii) low-order computation, and, hence, is
ideally suited to implement network tasks under resource constraints, e.g., in sparse
networks with a limited computation budget. HDC, in general, is iterative because the
underlying sparsity of the network limits the information flow. Each HDC iteration
is a simple (linear or non-linear) update at each node in the network. In this context,
HDC partitions the network nodes into two classes: (i) sensors, nodes that update
their state as some function of their neighboring nodes; and (ii) anchors, nodes whose
states are fixed. HDC includes as special cases several existing well-known algorithms,
for example, average-consensus and the Jacobi algorithm. We show also how to cast
a banded matrix inversion algorithm in the HDC framework.
Using HDC, we derive a novel sensor localization algorithm that is distributed, iter-
ative, and linear. With this algorithm, each sensor (with unknown location) updates
its location estimate as a convex combination of its neighbors, where the coefficients of
the convex combination are the barycentric coordinates computed locally by Cayley-
Menger determinants. We show that this localization algorithm converges to exact
sensor locations, if all the sensors lie in the convex hull of a minimal number, m+ 1,
of anchors (with known locations), where m is the dimension of the space.
We divide our theoretical contributions regarding HDC into two parts: (i) analysis of
HDC; and (ii) synthesis of HDC. The analysis part studies the convergence of HDC,
establishes the conditions under which HDC converges, and derives its convergence
rate. It shows that the HDC converges under very general conditions, in particular,
linear non-convex updates, where the updating coefficients may be negative. The
synthesis part designs the HDC, for example, its parameters and weights, under
network constraints, such that it converges to a pre-specified state. The thesis presents
practical applications of HDC to very diverse areas including: (i) average-consensus
with non-linear updates; (ii) distributed sensor localization; (iii) distributed banded
matrix inversion; (iv) distributed estimation in complex dynamical systems; and (v)
modeling, estimation, and inference in electrical power grids.

v

Contents

Abstract v

1 Introduction 1

1.1 Contributions . 4

1.2 Notation . 6

1.3 Problem statement . 9

1.4 Summary . 10

2 Nonlinear average-consensus algorithm 13

2.1 Introduction . 14

2.2 NLDAC: Problem formulation . 15

2.3 NLDAC algorithm: Analysis problem 17

2.4 NLDAC algorithm: Synthesis problem 19

2.4.1 Theorem 1 for sinusoidal updating functions 20

2.4.2 Error analysis . 24

2.4.3 Main result . 26

2.5 Simulations . 29

2.6 Conclusions . 31

3 High dimensional consensus (Linear case) 32

3.1 Introduction . 33

3.2 Problem formulation . 35

3.3 Analysis problem: High dimensional consensus 37

3.3.1 No anchors: B = 0 . 37

vi

3.3.2 With anchors: B 6= 0 . 38

3.3.3 Consensus subspace . 41

3.3.4 Practical applications of the HDC 42

3.4 Distributed Jacobi algorithm . 43

3.4.1 Design of the iteration matrix, Υ 43

3.4.2 Convergence . 44

3.4.3 Remarks . 44

3.5 Robustness of the HDC . 45

3.5.1 HDC in random environments 46

3.6 Synthesis problem: Learning in large-scale networks 47

3.6.1 Practical applications of the synthesis problem 47

3.6.2 Revisiting the spectral radius constraint 51

3.6.3 Revisiting the sparsity constraint 51

3.6.4 Feasible solutions . 52

3.6.5 Learning Problem: An upper bound on the objective 53

3.6.6 Solution to the Learning Problem: MOP formulation 55

3.7 Multi-objective optimization: Pareto front 56

3.7.1 Pareto-optimal solutions . 57

3.7.2 Properties of the Pareto front 60

3.7.3 Proof of Theorem 5 . 63

3.8 Minimization of the utility function 63

3.8.1 Properties of the utility function 64

3.8.2 Graphical representation of the analytical results 66

3.8.3 Performance-speed tradeoff: εexact = +∞ 68

3.8.4 Exact solution: εexact < 1 . 69

3.9 Simulations . 69

3.10 Conclusions . 70

4 Localization in sensor networks 73

4.1 Introduction . 74

4.2 Distributed sensor localization: DILOC 78

vii

4.2.1 Notation . 78

4.2.2 Distributed iterative localization algorithm. 79

4.2.3 Example . 83

4.2.4 Random Poisson deployment 85

4.2.5 Complexity of DILOC . 89

4.3 Convergence of DILOC . 89

4.4 DILOC with relaxation . 94

4.5 Enhancements to DILOC . 96

4.5.1 Dynamic network topology . 96

4.5.2 More than m+ 1 anchors . 99

4.5.3 More than m+ 1 neighbors 100

4.5.4 Remarks . 102

4.6 Distributed localization in mobile networks 102

4.6.1 Motion dynamics of mobile agents 103

4.6.2 Algorithm and assumptions 104

4.6.3 Convergence analysis of MDL 107

4.7 Localization in random environments 110

4.7.1 Received signal strength (RSS) 111

4.7.2 Time-of-arrival (TOA) . 112

4.7.3 Algorithm . 113

4.8 Simulations . 114

4.8.1 DILOC . 115

4.8.2 Dynamic network topology . 117

4.8.3 More than m+ 1 anchors . 118

4.8.4 More than m+ 1 neighbors 118

4.8.5 Localization of mobile agents 119

4.9 Conclusions . 123

5 Banded matrix inversion 126

5.1 Introduction . 126

5.2 Properties of banded matrices . 128

viii

5.3 Problem formulation . 129

5.4 Distributed Jacobi algorithm for matrix inversion 129

5.5 Distributed Iterate Collapse Inversion (DICI) Algorithm 131

5.5.1 Convergence of the DICI algorithm 132

5.5.2 Error bound for the DICI algorithm 134

5.6 Sparse matrix inversion . 136

5.7 Conclusions . 137

6 Distributed estimation in large-scale systems 138

6.1 Introduction . 139

6.2 Background . 142

6.2.1 Global model . 142

6.2.2 Centralized Information Filter (CIF) 146

6.2.3 Centralized L-Banded Information Filters (CLBIF) 147

6.3 Spatial decomposition of large-scale systems 149

6.3.1 Reduced model at each Sensor 149

6.3.2 Local Information filters . 154

6.4 Overlapping reduced models . 156

6.4.1 Observation fusion . 156

6.4.2 Implementation . 158

6.5 Distributed matrix inversion with local communication 160

6.6 Local Information filters: Initial conditions and local filter step 161

6.6.1 Initial conditions . 161

6.6.2 Local filter step . 162

6.7 Local Information filters: Local prediction step 163

6.7.1 Computing the local prediction information matrix 163

6.7.2 Computing the local predictor 164

6.7.3 Estimate fusion . 165

6.8 Results . 166

6.8.1 Summary of the Local Information filters (LIFs) 166

6.8.2 Simulations . 167

ix

6.8.3 Complexity . 169

6.9 Conclusions . 171

7 Applications to smart grids 173

7.1 Cyber-physical model of the power system 174

7.1.1 Physics based description of the generator module 174

7.1.2 Sensor based identification of the load module 175

7.1.3 Combined cyber and physical model 176

7.2 Distributed estimation in electric power systems 177

7.2.1 Local models . 179

7.2.2 Remarks . 180

7.2.3 Illustration . 182

7.2.4 Conclusions . 184

7.3 Distributed phase-angle estimation 186

7.3.1 Notation and algorithm . 187

7.3.2 Generalizations . 190

7.3.3 Simulations . 191

8 Epilogue 194

A High dimensional consensus 198

A.1 Important results . 198

A.2 Necessary condition . 199

B Localization in sensor networks 200

B.1 Convex hull inclusion test . 200

B.2 Cayley-Menger determinant . 201

C Distributed estimation 203

C.1 L-banded inversion theorem . 203

Bibliography 205

x

List of Figures

2.1 Figure corresponding to Remark (i). 29

2.2 (a) An N = 100 node network. (b) Comparison of the NLDAC with

LDAC using constant optimal edge weights. (c) The error norm of

NLDAC for different values of µ. 30

3.1 (a) Graphical illustration of Lemma 16. (b) Illustration of case (i) in

performance-speed tradeoff. (c) Illustration of case (ii) in performance-

speed tradeoff. 67

3.2 Typical Pareto front. 69

3.3 (a) Multi-agent system: Network of ground robots ‘◦’, aerial robots

‘×’, and humans ‘∇’. (b) The Pareto-front for the given W and the

underlying communication graph. (c) HDC algorithm implemented for

three different scenarios reflecting the performance-speed tradeoff. . . 71

4.1 Deployment corresponding to the example in Section 4.2.3. 84

4.2 (a) Sensor l identifies its triangulation set, Θl, in the circle of radius, rl,

centered at sensor l. The circle is divided into four disjoint sectors

with equal areas, Q1, . . . , Q4. A sufficient condition for triangulation

is that there exists at least one node in each of these four sectors. (b)

Illustration of Lemma 18. 86

4.3 Deterministic environment: (a) Estimated coordinates of sensor 6 in

Section 4.2.3 as a function of DILOC iterations. (b)Trajectories of the

sensors’ estimates obtained by DILOC. 115

xi

4.4 Deterministic environment: (a) An N = 500 node network and the

respective triangulation sets. (b) Estimated coordinates of two arbi-

trarily chosen sensors as a function of DILOC iterations. (c) Histogram

of normalized inter-node distances over which the DILOC communica-

tions are implemented. 116

4.5 For a fixed sensor, its 3 different neighborhoods are shown. 117

4.6 Performance comparison of the dynamic scheme with T = 20 static

(fixed) topologies. 117

4.7 (a) The overall sensor network with K = 4 > m + 1 anchors such

that C(Ω) ⊂ C(κ). (b) Dividing the overall network into two subprob-

lems where we have m+ 1 = 3 anchors for each of the subproblems. . 118

4.8 Performance comparison between the aggregated performance of the

two subproblems and the scheme with K = 4 anchors. 119

4.9 (a) Adaptively choosing the communication radius, Rl shown for three

arbitrarily chosen sensors. (b) Resulting network where each sensor is

connected to more than m+ 1 = 3 neighbors. 120

4.10 Performance comparison of the fixedm+1 neighbors with more thanm+

1 neighbors. 120

4.11 Coordinated motion with deterministic drift: (a) The horizontal and

(b) vertical coordinates of two randomly chosen sensors and the MDL

estimates. 121

4.12 Coordinated motion with known drift: (a) The motion of the anchors

(shown as nablas) and two randomly chosen sensors (out of N = 50)

shown as gray and black. (b) The normalized mean squared error. . . 122

4.13 Coordinated motion with random drift: (a) The horizontal and (b)

vertical coordinates of two randomly chosen sensors and the MDL es-

timates. 122

4.14 Coordinated motion with random drift: (a) The motion of the anchors

(shown as nablas) and two randomly chosen sensors (out of N = 50)

shown as gray and black. (b) The log-normalized mean squared error. 123

xii

4.15 Uncoordinated motion in a fixed region with random drift: (a) The

horizontal coordinates of two randomly chosen sensors and the MDL

estimates. (b) The vertical coordinates of two randomly chosen sensors

and the MDL estimates. 124

4.16 Uncoordinated motion in a fixed region with random drift: (a) The

motion of two randomly chosen sensors (out of N = 50) shown as gray

and black. (b) The log-normalized mean squared error. 124

5.1 Composition of the L−band of Z from the local matrices, Z(l), shown

in the left figure. Centralized Implementation of S = Z−1, shown in

the right figure. 129

5.2 An example of a 5× 5, L = 1-banded matrix inversion. 131

5.3 Histogram of α. 134

5.4 Simulation for the error bound of the DICI algorithm. 135

5.5 (a) A random sparse SPD matrix, Z, with sparseness density 0.03.

Non-zero elements are shown in black. (b) L = 12−banded reordering

of Z, shown in figure 5.5(a), using RCM algorithm [1]. 137

6.1 System Digraph and cut-point sets: (a) Digraph representation of

the 5 dimensional system, (6.26)−(6.27). The circles represent the

states, x, and the squares represent the input noise sources, u. (b)

The cut-point sets associated to the 3 sub-systems (4) are shown by

the dashed circles. (c) Partitioning of the global model matrix, F,

into local model matrices, F(l), and the local internal input matri-

ces, D(l), shown for sub-system 1 and sub-system 3, from the example

system, (6.26)−(6.27). 151

6.2 Block Diagram for the LIFs: Steps involved in the LIF implementation.

The ovals represent the steps that require local communication. . . . 155

xiii

6.3 Relationship between the global error covariance matrices, S and their

inverses, the global information matrices, Z, with L = 1-banded ap-

proximation on Z. The figure also shows how the local matrices, S(l)

and Z(l), constitute their global counterparts. Since this relation holds

for both the estimation and prediction matrices, we remove the sub-

scripts. 156

6.4 (a) A bipartite Fusion graph, B, is shown for the example system. (b)

Subgraphs, Gj, for observation fusion. 157

6.5 (a & b) Non-zero elements (chosen at random) of 100 × 100, L = 20-

banded (Fig. 6.5(a)) and L = 36-banded (Fig. 6.5(b)) model matri-

ces, F, such that ||F||2 = 1. 167

6.6 Global observation matrix, H. The non-zero elements (chosen at ran-

dom) are shown. There are N = 10 sensors, where the lth row of H

corresponds to the local observation matrix, Hl, at sensor l. The over-

lapping states (for which fusion is required) can be seen as the over-

lapping portion of the rows. 168

6.7 (a & b) Distributed Kalman filter is implemented on the model matri-

ces in Fig. 6.5(a)-6.5(b) and the global observation matrix, H (Fig. 6.6),

in Fig. 6.7(a)-6.7(b). The expectation operator in the trace (on hori-

zontal axis) is simulated over 1000 Monte Carlo trials. 169

6.8 Performance of the DICI algorithm as a function of the number of DICI

iterations, t. 170

7.1 N = 5−bus system with K = 3 generators and M = 2 loads. 182

7.2 Trace of the local error covariance matrices at the sub-systems when

no cooperation is employed with L = 5−banded approximation (on

the information matrices). 184

7.3 Trace of the local error covariance matrices at the sub-systems with

cooperation using the DICI algorithm with L = 5−banded approxima-

tion (on the information matrices). 185

xiv

7.4 Aggregated performance of the sub-systems with L = 5−banded ap-

proximation (on the information matrices) and comparison with opti-

mal Information filter. 185

7.5 (a) IEEE 30-bus system and its (b) graphical representation. 192

7.6 Distributed phase-angel algorithm: Estimates for (a) anchors, (b) non-

anchor boundary nodes, and (c) non-boundary nodes. 193

B.1 Convex Hull Inclusion Test (m = 3): The sensor l is shown by a ‘◦’,
whereas, the anchors in κ are shown by ‘∇’. (a) l ∈ C(κ) ⇒ Aκ =

Aκ∪{l}, (b) l /∈ C(κ)⇒ Aκ < Aκ∪{l}. 201

xv

xvi

Chapter 1

Introduction

Advances in integrated electronics, radio frequency (RF) technologies, and sensing

devices have made it possible to deploy large number of cheap sensors in order to

implement key tasks in complex large-scale dynamical systems, such as, monitoring,

tracking, estimation, and control. A centralized protocol to implement such tasks,

although possibly optimal, is neither robust nor scalable because (i) the large-scale

systems are very high-dimensional, and thus require extensive computations to imple-

ment a centralized protocol; and (ii) the span of the geographical region, over which

the large-scale system is deployed, poses a large communication burden to implement

a centralized procedure. A computationally efficient implementation is to employ a

distributed algorithm that relies only on local communication and low-order compu-

tation. A distributed algorithm views a complex systems as a network of dynamic

agents interacting over a graph. Hence, design and analysis of distributed algorithms

is vital for efficient and scalable operation of large-scale complex infrastructures.

As a motivation, consider a detection problem where the state of the environment

is monitored “locally” by sensors; each sensor makes a measurement, based on which

it may make a local decision—the current state of the sensor. A problem of interest is

how to fuse these local decisions. A centralized detection scheme is to send these states

to a fusion center where the optimal detector is formulated; this has been considered

extensively in the literature since the early work in [2, 3, 4, 5], and, more recently,

[6, 7]. This centralized architecture, which may have several advantages, is neither

1

2 CHAPTER 1. INTRODUCTION

robust (as it has a single point of failure) nor scalable when the size of the system

grows, because of heavy computational burden at the center and resource (bandwidth,

power, etc.) constraints at the sensors. An alternative architecture, under resource

constraints, is a web like network topology equipped with a distributed inference

algorithm, where each sensor updates its own local detector by interacting with its

neighboring sensors, such that the local decisions converge to the optimal centralized

decision.

Distributed algorithms have been studied widely in the literature. Early references

include [3, 8, 9, 10], which provide a generic theory for developing and analyzing

distributed and parallel algorithms. Recently, there has been renewed interest in the

sensor network community on the so called “consensus” problems and its various

generalizations. Consensus can be broadly interpreted as a distributed protocol in

which the sensors collaborate to reach an agreeable state. Agreement and consensus

have been important problems in distributed computing, [11, 12]. The problem of

dynamic load balancing for distributed multiprocessors leads to an algorithm that is

essentially consensus. In the multi-agent and control literature, reference [13] develops

a model for emergent behavior, schooling, and flocking described in [14, 15].

Much research effort has been directed to the average-consensus problem [13, 16,

17, 18]. In average-consensus, the goal is to converge to the average of the initial states

at the sensors. Reference [16] identifies the algebraic connectivity of the underlying

graph as controlling the convergence rate of the continuous-time average-consensus

algorithm. For additional comments and a survey of consensus for multi-agent co-

ordination see [19, 20], and the references there in. Consensus and its generaliza-

tions, [21, 22, 18, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], form the building block of

a large number of distributed protocols, including flocking, [33, 34], multi-vehicle

coordination, [20], and distributed estimation [35, 36, 37, 38, 39].

In this thesis, we consider such distributed algorithms in broad generality and pro-

vide a systematic study of classes of these algorithms. We explore average-consensus

algorithms in a larger context where the sensors may converge to an arbitrary weighted

combination of their initial states (not just their average). We term such distributed

algorithms High Dimensional Consensus (HDC). To capture in the same framework

3

a broader class of algorithms, we consider the notion of anchors. Anchors are the

nodes in the network that maintain a fixed state throughout the algorithm. The an-

chors may play the role of leaders of the system that drive the algorithm in a certain

direction, see also [40]. The sensors1 iteratively update their states as some function

(linear or non-linear) of the states of their neighboring nodes. It is essential that

the updating functions are computed using only local information that is available

at the sensor itself or at the neighboring nodes. This requirement assures that the

algorithms remain decentralized and distributed.

We develop a comprehensive theory of HDC. We divide this development into two

parts: (i) analysis of HDC; and (ii) synthesis of HDC. In the analysis part, we address

the question: given the HDC parameters (i.e., the updating functions at the nodes)

and the underlying connectivity graph, determine: (a) under what conditions does

the HDC converge; (b) to what state does the HDC converge; and (c) what is the

convergence rate. In the synthesis part, we address the question: given the desired

state to which HDC should converge and the sparsity of the underlying communication

graph, learn the HDC parameters, so that HDC converges to the desired state. We

then focus on relevant practical applications where HDC is specialized to perform

several networked tasks. The applications we provide include (i) distributed sensor

localization; (ii) distributed banded matrix inversion; (iii) distributed estimation in

complex dynamical systems; and (iv) modeling, estimation, and inference in electric

power systems.

In the context of electric power systems, we provide a structure-preserving model

that we term as cyber-physical model. In this model, we view the electric power system

as a network of interacting dynamical agents. We divide the nodes in this network into

physics-based modules and cyber-based modules. Physics-based modules, e.g., gener-

ators, are the nodes that can be described completely using their physical descriptions

(e.g., partial differential equations). On the other hand, cyber-based modules are the

nodes that cannot be described using underlying physics because they represent a

diverse mixture of several sub-modules appearing in and/or disappearing from the

1In the sequel, unless specifically stated or obvious from the context, a sensor implies a non-anchor
node.

4 CHAPTER 1. INTRODUCTION

network at random times. We use statistical identification techniques to model these

modules. An example is aggregate electrical load that is a mixture of several house-

hold and commercial appliances/equipments randomly turned on and off; modeled by

an autoregressive process. Such representation of the electric power systems provides

a foundation for distributed and computationally efficient implementation of several

key tasks, such as, load balancing, solving power flows, dynamic estimation, control,

and, inference. Clearly, HDC is fundamental in implementing these tasks.

Parts of this thesis have been partially supported by U.S. National Science Foun-

dation ITR Project Number CNS-0428404. The results in this thesis have been pub-

lished2 in the following journals, book chapters, and proceedings, [35, 41, 42, 43, 44,

45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57].

We now summarize our main contributions in the next section.

1.1 Contributions

We now summarize the main contributions of this thesis.

1. Distributed sensor localization: We introduce a novel distributed localiza-

tion algorithm, DILOC, for sensor localization that requires a minimal num-

ber of anchors. Anchors are the nodes that know their exact locations, thus,

provide an absolute frame of reference to the algorithm. DILOC is a linear,

iterative algorithm, where each sensor updates its location estimate as a con-

vex combination of its carefully chosen neighbors. The weights of the linear

combinations are the barycentric coordinates computed from local distances

and Cayley-Menger determinants. We study several enhancements of the local-

ization problem including dynamic network topologies, localization in mobile

networks, and localization with noisy distance measurements. In addition, we

characterize the qualitative behavior of DILOC in randomly deployed sensor

networks. Since DILOC updates are convex (non-negative weights that sum to

one), the convergence of DILOC can be mapped to the convergence of absorbing

2Some material is in the process of publication.

1.1. CONTRIBUTIONS 5

Markov chains to a steady state distribution.

DILOC provides an interesting setup for distributed algorithms. It splits the

network nodes into sensors (nodes that update their states) and anchors (nodes whose

states are fixed). As the thesis shows, this setup can be extended by generalizing

DILOC to non-convex and non-linear updates to address problems different from

localization. In other words, we can relax the convexity, linearity, and non-negativity

assumptions in DILOC. This leads to a generalized class of distributed algorithms

that we term High Dimensional Consensus (HDC).

2. High Dimensional Consensus (HDC): We introduce HDC that is a unified

framework for distributed algorithms in large-scale networks. HDC updates

the state at each node as a function (linear or non-linear) of the states at the

neighboring nodes. In HDC, the updates can have negative coefficients or be

non-convex. Under appropriate conditions, the network reaches an agreement

or a consensus, i.e., the network reaches a limiting state (a function of the initial

states of the nodes). HDC includes several existing and well-known algorithms

as special cases when we restrict the updating functions to be of a particular

form, for example, the Jacobi algorithm [58], and linear average-consensus [17].

Clearly, the sensor localization algorithm we introduce is a special case of HDC.

In the context of HDC, we address the following issues.

• Analysis: Convergence. We establish appropriate conditions for conver-

gence of the HDC, and derive the limiting state of the network given the

updating functions.

• Synthesis: Design. We design the updating functions in HDC such that

we achieve a desired limiting state.

• Random environments: We study the behavior and performance of HDC

in random environments (communication noise, data packet drops, and

imperfect knowledge of the underlying system).

3. Non-linear average-consensus: To speed the convergence of linear average-

consensus [17], we consider a non-linear version. We define general conditions

6 CHAPTER 1. INTRODUCTION

under which the non-linear HDC converges to average-consensus and study

HDC with sinusoidal updating functions.

4. Distributed Kalman filter: For large-scale sparsely-connected dynamical

systems, we provide a distributed estimation algorithm based on the spatial

decomposition of the dynamical systems into sub-systems. At the heart of our

estimation algorithm lies a distributed banded matrix inversion algorithm that

we term Distributed Iterated Collapse Inversion (DICI) algorithm. DICI is a

special case of HDC (appended with a non-linear collapse operator) that assim-

ilates the local error covariances among the sub-systems in a computationally

efficient and completely decentralized fashion.

5. Applications to electric power grids: We study the following applications

of HDC and in the context of large-scale electric power systems:

• Estimation and modeling: We explore the practical significance of our dis-

tributed Kalman filter in the context of a structure-preserving model of the

electric power system that we term cyber-physical model. We show that co-

operation among the (potentially unobservable) sub-systems, derived from

the cyber-physical model, leads to the observability of the overall system.

• Phase-angle estimation: We provide a distributed inference algorithm for

phase-angle estimation that is based on the HDC algorithm and borrows

some concepts from our distributed localization algorithm. In this context,

we study the minimal number of Phasor Measurement Units (PMUs) and

their optimal placement.

In the next section, we set some standard notation.

1.2 Notation

Consider a network of N nodes described by a communication graph, G = (Θ,A),

where Θ = {1, . . . , N} is the set of vertices. The interconnections among the nodes

1.2. NOTATION 7

are given by the adjacency matrix, A = {alj}, where

alj =

{
1, l← j,

0, otherwise,
(1.1)

and l← j implies that node j can send information to node l. We define K(l) as the

neighbors of node l, i.e.,

K(l) , {j | alj = 1}. (1.2)

We partition this network into K anchors and M sensors, such that N = K + M .

As highlighted before, the anchors are the nodes whose states are fixed, and the

sensors are the nodes that update their states as some functions of the states of

their neighboring nodes. Let κ = {1, . . . , K} be the set of anchors and let Ω =

{K + 1, . . . , N} be the set of sensors. The set of all of the nodes is then denoted

by Θ = κ ∪ Ω. The notion of anchors and sensors induces a natural partitioning on

this neighborhood, i.e., the set of neighbors that are sensors,

KΩ(l) = K(l) ∩ Ω, (1.3)

and the set of neighbors that are anchors,

Kκ(l) = K(l) ∩ κ. (1.4)

Similarly, we define the extended neighborhood at node l,

Dl , {l} ∪ K(l). (1.5)

Let K be the total number of edges in G. Let C = {clk}k=1,...,K
l=1,...,N be the N × K

incidence matrix of G where its kth column represents the kth edge, (i, j) ∈ G, such

that cik = 1 and cjk = −1. The Laplacian, L, of G is then defined as

L = CCT . (1.6)

8 CHAPTER 1. INTRODUCTION

If wk is a weight associated to the kth edge in G, then the weighted Laplacian matrix

is defined as

Lw = CWCT , (1.7)

where W is a K × K diagonal matrix such that the kth element on its diagonal

(that represents the kth edge in G) is wk. Note that the Laplacian, L, is symmetric

and positive-semidefinite. Hence, its eigenvalues are real and non-negative. If W ≥
0 (where ≥ denotes element-wise inequality), then Lw is also symmetric, positive-

semidefinite, see [59] for details. For a connected graph, G, we have, λ2(L) > 0,

where λ2(L) > 0 is the second largest eigenvalue of L. If λ2(L) > 0 and W > 0,

then λ2(Lw) > 0 [59].

As a graph can be characterized by its adjacency matrix, to every matrix we can

associate a graph. For a matrix, Υ = {υlj} ∈ RN×N , we define its associated graph

by GΥ = (V Υ,AΥ), where V Υ = {1, . . . , N} and AΥ = {aΥ
lj } is given by

aΥ
lj =

{
1, υlj 6= 0,

0, υlj = 0.
(1.8)

Let λi(P) denotes the ith eigenvalue of a matrix, P ∈ RM×M . We use ρ(P) to

denote the spectral radius of P, defined as

ρ(P) = max
i
|λi(P)|. (1.9)

For any matrix induced norm, ‖ · ‖, recall that

ρ(P) = lim
q→∞
‖Pq‖1/q. (1.10)

The notation set in this section is, mostly, standard for the rest of the thesis,

unless specifically modified in the appropriate chapter or obvious from the context.

1.3. PROBLEM STATEMENT 9

1.3 Problem statement

For k ∈ κ, let

uk(t) = [uk,1, . . . , uk,m], (1.11)

be an m-dimensional row-vector that denotes the state of the kth anchor at time t.

Similarly, for l ∈ Ω, let

xl(t) = [xl,1, . . . , xl,m], (1.12)

be an m-dimensional row-vector that denotes the state of the lth sensor at time t.

The general form of the HDC is given by

uk(t+ 1) = uk(t), k ∈ κ,
xl,j(t+ 1) = fl (xDl,j (t)) + gl

(
uKκ(l),j (t)

)
, l ∈ Ω, j ∈ {1, . . . ,m},

(1.13)

where xDl,j is the jth component of the sensor states in Dl, uKΩ(l),j is the jth com-

ponent of the anchor states in Kκ(l), and, fl : R|Dl|×1 7→ R and gl : R|Kκ(l)|×1 7→ R
are real-valued linear or non-linear vector functions. Clearly, a single iteration of the

HDC at sensor l and time t, takes the information from its neighboring nodes (sen-

sors and anchors) and uses the updating functions, fl and gl, to compute the state

of sensor l at time t + 1. Furthermore, anchors do not update their state as seen

from the iteration for the anchors states, uk(t), k ∈ κ. Under appropriate conditions,

HDC converges to

lim
t→∞

xl(t+ 1) = wl (x(0),u(0)) , (1.14)

for some appropriate real-valued vector function, wl : RN 7→ R. Two interesting

problems can be considered in this context that we describe in the following.

Analysis (Forward) problem: Given the functions, fl and gl at each sensor,

the network initial conditions, xl(0), ∀ l ∈ Ω and uk(0), ∀ k ∈ κ, and the underlying

communication graph, G, determine (i) the conditions under which the HDC con-

verges; (ii) to what state does the HDC converge; and (iii) what is the convergence

rate.

Synthesis (Inverse) problem: Given the desired state, wl (x(0),u(0)), ∀ l ∈ Ω,

to which HDC should converge and the sparsity of the underlying communication

10 CHAPTER 1. INTRODUCTION

graph, G, design the HDC parameters, so that HDC converges to the desired state.

1.4 Summary

In this section, we summarize the rest of the thesis.

• Chapter 2: In Chapter 2, we provide a novel framework for the analysis and

synthesis of non-linear distributed average-consensus algorithms. In particular,

we consider m = 1-dimensional sensor states (scalars) with no anchors. The

HDC updates are of the form: at each sensor l,

xl(t+ 1) = fl
(
xl(t), xKΩ(l) (t)

)
. (1.15)

In the analysis part, we establish the conditions on the local updating func-

tions, fl, such that (1.15) converges to the average of the initial sensor states,

i.e.,

lim
t→∞

xl(t+ 1) =
1

M

M∑

i=0

xi(0), ∀ l. (1.16)

In the synthesis part, we design the local functions, fl, such that we achieve

the above limiting state. In particular, we choose the local functions as a

weighted sum of sinusoids. In this case, key design questions include designing

the frequency and domain of the sinusoids along with the appropriate bounds

on the weights in the weighted sum.

• Chapter 3: In Chapter 3, we consider the local functions, fl and gl, to be

linear. In particular, the HDC updates are of the form: at each sensor l,

xl(t+ 1) =
∑

j∈Dl

pljxj(t) +
∑

k∈Kκ(l)

blkuk(t). (1.17)

In the analysis part, we establish the conditions on the local updating coeffi-

cients, pljs and blks, such that (1.17) converges to some linear functions of the

1.4. SUMMARY 11

initial anchor states, i.e.,

lim
t→∞

xl(t+ 1) =
K∑

j=0

wljuj(0), ∀ l. (1.18)

As a side note, average-consensus is a special case here by taking bljs to be zero

and3 uj(0) = xj(0).

We then formulate the HDC in random environments, i.e., with communica-

tion link failures, communication noise, and imperfect system knowledge. We

provide a modification to HDC that is robust to such random environments.

In the synthesis part, we fix the wljs in (1.18) and learn the HDC parameters, pljs

and blks, so that HDC converges to (1.18).

• Chapter 4: In Chapter 4, we specialize HDC to distributed sensor localization

in m-dimensional Euclidean spaces (Rm) using a minimal number, K = m+ 1,

of anchors (that know their exact locations and hence, do not update their

state). The m-dimensional sensor state, xl(t), l ∈ Ω, becomes the location

estimate of the sensor l at time t. We choose the HDC parameters, pljs and blks,

to be the barycentric coordinates computed locally from inter-sensor distance

measurements and Cayley-Menger determinants. We show the limiting state

of the distributed localization algorithm (as established in Chapter!3) is the

exact sensors’ locations. We extend our algorithm to networks of mobile agents

and also consider sensor localization in random environments, i.e., under data

packet drops, communication noise, and noisy distance measurements.

• Chapter 5: In Chapter 5, we specialize HDC to provide a distributed algorithm

for banded matrix inversion that we call Distributed Iterate Collapse Inversion

(DICI) algorithm. The DICI algorithm exploits the structure of banded ma-

trices by appending a non-linear collapse step to the HDC. We show that the

computation complexity of the DICI algorithm is independent of the size of the

matrix, at each sensor.

3For precise statements on this comparison, see Chapter 3.

12 CHAPTER 1. INTRODUCTION

• Chapter 6: In Chapter 6, we use the DICI algorithm to implement a dis-

tributed estimation (Kalman filter) algorithm for large-scale complex dynam-

ical systems. Our algorithm spatially decomposes the large-scale system into

several coupled local sub-systems. We implement local Kalman filters at these

sub-systems and use the HDC and DICI algorithms for observation fusion and

covariance assimilation. The resulting distributed estimator is computationally

efficient, scalable, and completely decentralized.

• Chapter 7: In Chapter 7, we consider applications in electric power systems

(smart grids). We provide a novel modeling paradigm that we term as cyber-

physical model. Cyber-physical models are structure-preserving; they provide

the key structure required to implement the distributed Kalman filter of Chap-

ter 6 on electric power systems. Finally, we provide a distributed inference

algorithm for phase-angle estimation in electric power systems.

• Chapter 8: In Chapter 8, we conclude this thesis and recapitulate our contri-

butions.

Note that each chapter contains a detailed set of references, along with compar-

isons and contrasts of the work presented in the chapter with existing work in that

domain.

Chapter 2

Nonlinear average-consensus

algorithm

In this chapter, we specialize HDC to present a distributed average-consensus algo-

rithm with non-linear updates. In average-consensus, there are no anchors (recall that

the anchors do not update their state), since each node in the network should converge

to the average of the network initial conditions. Hence, we use the standard form of

HDC (1.13) without anchors and consider the analysis and the synthesis problems.

In the analysis problem, we establish conditions on the local updating functions, fl,

such that HDC converges to the average of the network initial conditions. In the

synthesis problem, we design one such updating function, along with its appropriate

parameters. In particular, we use the updating functions as a weighted sum of sinu-

soids and derive appropriate bounds on its parameters (frequency, domain) and the

weights (of the weighted sum) to achieve the desired convergence properties. By sim-

ulations, we show that the convergence rate of the non-linear algorithm outperforms

the convergence rate of the conventional linear case.

Parts of this chapter have been presented in [55].

13

14 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

2.1 Introduction

Recently, there has been significant interest in the linear distributed average-consensus

(LDAC) problem [17]. LDAC computes the average of several scalars distributed over

a sensor network. These scalars become the initial conditions of the LDAC algorithm.

LDAC updates the state at each sensor by a linear combination of the states at the

neighboring sensors. Under appropriate conditions [17, 20], the state at each sensor

converges to the average of the initial conditions. So far, the related literature has

focussed on linear updates, where the convergence rate only depends on the algebraic

network connectivity (second largest eigenvalue of the graph Laplacian).

In this chapter, we introduce a distributed average-consensus algorithm with non-

linear updates. Our algorithm is a special case of HDC introduced in (1.13) without

anchors. Average-consensus does not require anchors, since each node in the network

should converge to the average of the network initial conditions. In this context,

we address (i) the analysis problem, and (ii) the synthesis problem. In the analysis

problem, we establish the conditions required for any non-linear updating function

to achieve average-consensus. On the other hand, in the synthesis problem, we fix

a suitable non-linear function and design its parameters such that it satisfies the

aforementioned conditions.

In particular, we select the updating functions as a weighted sum of sinusoids and

show that satisfy the required conditions by appropriately choosing their frequency

and domain. The state update in the non-linear distributed average-consensus (NL-

DAC) consists of the sensor’s previous state added to a linear combination of the

sine of the state differences among the neighboring nodes. Due to the non-linearity

introduced, the convergence rate now depends on the actual states of the nodes. As

will be shown in the chapter, this fact makes the convergence rate of NLDAC faster,

by appropriate tuning of the combining weights.

Our work can be tied to results on networks of coupled oscillators (see, for exam-

ple, [60, 61, 62, 63, 64]). These works are concerned with qualitative properties of

such networks. In contrast, we propose schemes to design algorithms with desirable

convergence properties (in our case, for average-consensus), and our methodology is

2.2. NLDAC: PROBLEM FORMULATION 15

different. The framework presented here goes beyond average-consensus and is likely

to find applications in other areas of distributed signal processing, e.g., distributed

phase-locked loops [65], or large-scale power networks [66], where such form of dy-

namics arise naturally.

For simplicity of the exposition, we assume that each sensor, l, possesses a scalar

quantity, yl, such that yl ∈ [−π/4 + ε, π/4 − ε] ∀ l with ε ∈ R>0. This is needed

because the domain of the sine function should be such that the cos(yl− yj) 6= 0, ∀ l
and j. This condition is on the cosine rather than the sine function because, as will

be shown, the cosine determines the convergence rate as it is the derivative of the

sine. In general, when yl /∈ [−π/4 + ε, π/4 − ε] for some l, we only require the yl’s

to be bounded, i.e., |yl| < M, ∀ l, since we can always choose the frequency, ζ, such

that cos(ζ(yl − yj)) does not vanish. The resulting convergence rate involves the

additional degree of freedom, ζ.

We now describe the rest of the chapter. Section 2.2 discusses the problem for-

mulation and introduces the non-linear distributed average-consensus (NLDAC). We

analyze the algorithm in Section 2.3 and derive the conditions for convergence. We

then address the synthesis of NLDAC and design the non-linear updates in Section 2.4.

In Section 2.5, we present simulations, and finally, Section 2.6 concludes the chapter.

2.2 NLDAC: Problem formulation

Along the lines of the notation described in Chapter 1, consider a network of N nodes

communicating over a graph G, where each node, l, possesses a scalar quantity, yl.

In addition, we assume that the communication graph, G, is undirected, i.e., its

adjacency matrix, A, is symmetric. We consider distributed updates on G of the

following form: at each node l, we have

xl(t+ 1) = fl(xDl(t)), xl(0) = yl, (2.1)

where Dl is the extended neighborhood of sensor l (as defined in (1.5)), xDl(t) denotes

the states at the nodes in Dl, and fl : R|Dl| 7→ R is a non-linear real-valued vector

16 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

function, such that the above algorithm converges to

lim
t→∞

xl(t+ 1) =
1

N

N∑

j=0

xj(0) =
1

N

N∑

j=0

yj, ∀l, (2.2)

i.e., to the average of the scalar quantities, yl, the nodes possess. In the conventional

linear distributed average-consensus (LDAC) algorithm, with constant weight, µ, [17],

we have

fl (xDl) = xl(t)− µ
∑

j∈K(l)

(xl(t)− xj(t)), ∀l. (2.3)

In this chapter, we allow the functions, fl, to be non-linear and address the following

problems:

Analysis problem: Given the NLDAC updates (2.1) on G, establish the condi-

tions on fl such that (2.1) converges to (2.2).

Synthesis problem: Given the desired convergence to (2.2), design the func-

tions, fl, such that the functions satisfy the conditions established in the analysis

problem. In particular, we choose

fl (xDl(t)) = xl(t)− µ
∑

j∈K(l)

sin (ζ (xl(t)− xj(t))) , ∀l, (2.4)

where µ is a weight that is constant across the entire network and ζ is the frequency.

It turns out that choosing ζ = 1 requires the network initial conditions, x(0), to lie in

a certain range. When this is not the case, we provide an appropriate generalization

to choose the frequency, ζ.

Matrix form: We now write (2.1) in matrix form. Define the column vectors,

x(t) , [x1(t), . . . , xN(t)]T , (2.5)

f(x(t)) , [f1(·), . . . , fN(·)]T . (2.6)

Clearly, we have

f : RN 7→ RN . (2.7)

2.3. NLDAC ALGORITHM: ANALYSIS PROBLEM 17

With the above notation, algorithm (2.1) can be written compactly as

x(t+ 1) = f(x(t)). (2.8)

From (2.2), we can now define the error in the iterations (2.8) as the following vector:

e(t+ 1) , x(t+ 1)− xavg1, (2.9)

where

xavg =
1

N

N∑

l=1

xl(0), (2.10)

and 1 is a vector of N 1’s. In the next section, we consider the analysis problem.

2.3 NLDAC algorithm: Analysis problem

In this section, we consider the analysis problem and provide appropriate conditions

on the non-linear updating function, f , required for average-consensus. To this aim,

we give the following theorem. To state our result, we let

J =
11T

N
. (2.11)

Theorem 1: If f is continuously differentiable, such that

(i) the functions, fl, are sum preserving , i.e.,

∑

l

fl(x(t)) =
∑

l

xl(t) =
∑

l

yl; (2.12)

(ii) for any c ∈ R, x∗ = c1 is a fixed point of (2.8), i.e.,

x∗ = f(x∗); (2.13)

18 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

(iii) for some θ(t) ∈ [0, 1] with η(t) = θ(t)x(t) + (1− θ(t))xavg1, we have

‖f ′(η(t))− J‖ < 1, ∀ t, (2.14)

where the N × N matrix, f ′, denotes the derivative of the vector function, f ,

with respect to the vector x;

then (2.8) converges to

lim
t→∞

x(t+ 1) = Jx(0). (2.15)

Proof: Since f is sum preserving, and 1Tx(t) is the sum of all the states at

time t, we have 1Tx(t) = 1Tx(t− 1) = . . . = 1Tx(0). Hence, 1Tx(t)/N = xavg, and

(i) implies

Jx(t) = xavg1. (2.16)

From (ii), we note that xavg1 is the fixed point of (2.8), i.e.,

xavg1 = f(xavg1). (2.17)

We can now write the norm of the error vector in (2.9) as

‖e(t+ 1)‖ = ‖f(x(t))− f(xavg1)− J(x(t)− xavg1)‖,
= ‖g(x(t))− g(xavg1)‖, (2.18)

where g : RN → RN is defined as

g(x) , f(x)− Jx. (2.19)

Since f , and, in turn, g, is continuously differentiable: from the mean-value theorem,

there exists some θ(t) ∈ [0, 1] with η(t) = θ(t)x(t) + (1− θ(t))xavg1, such that

‖e(t+ 1)‖ = ‖g′(η(t))
(
x(t))− xavg1

)
‖,

≤ ‖g′(η(t))‖‖e(t)‖,
= ‖f ′(η(t))− J‖‖e(t)‖. (2.20)

2.4. NLDAC ALGORITHM: SYNTHESIS PROBLEM 19

From (iii), we have

lim
t→∞
‖e(t+ 1)‖ = 0, (2.21)

and (2.15) follows.

Theorem 1 establishes the conditions required for any non-linear updating function, f ,

such that NLDAC reaches average-consensus. Designing such a function lies under

the purview of the synthesis problem that we consider in the following.

2.4 NLDAC algorithm: Synthesis problem

The synthesis problem entails choosing a suitable function and verifying the three

conditions established in Theorem 1. In general, the conditions (i) and (ii) in The-

orem 1 are relatively easy to verify, whereas, condition (iii) may impose additional

design requirements on the network initial condition, x(0), and the parameters of the

selected function. We now define the updating functions, fl, to be of the following

form:

fl(xDl(t)) , xl(t)− µ
∑

j∈K(l)

sin [ζ(xl(t)− xj(t))] , (2.22)

where µ is a weight that is constant across the entire network and ζ is the frequency.

For simplicity of the exposition, we assume that ζ = 1. As we will show in Sec-

tion 2.4.3, this assumption does not lose generality and can be relaxed easily.

In the next subsections, we show that (2.22) satisfy the properties described in

Theorem 1 and subsequently derive the conditions on µ and the network initial con-

ditions, x(0), under which the following update at node l

xl(t+ 1) = xl(t)− µ
∑

j∈K(l)

sin(xl(t)− xj(t)), (2.23)

with xl(0) = yl converges to (2.2).

20 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

2.4.1 Theorem 1 for sinusoidal updating functions

We prove (i) in Theorem 1 for sine functions in the following lemma.

Lemma 1: The functions fl given by (2.22) are sum preserving, i.e.,

∑

l

fl(x(t)) =
∑

l

xl(t) =
∑

l

yl. (2.24)

Proof: We start with the L.H.S of (2.24). We have

∑

l

fl(x(t)) =
∑

l

xl(t)− µ

∑

j∈K(l)

sin(xl(t)− xj(t))

 . (2.25)

In order to establish (2.24), it suffices to show that

∑

l

µ
∑

j∈K(l)

sin(xl(t)− xj(t)) = 0. (2.26)

Since we assumed the communication graph, G, to be undirected, we have

j ∈ K(l)⇒ l ∈ K(j). (2.27)

Fix an l and a j ∈ K(l), then there are two terms in the L.H.S of (2.26) that contain

both l and j. For these two terms, we have

µ sin(xl(t)− xj(t)) + µ sin(xj(t)− xl(t)) = 0, (2.28)

due to the fact that the sine function is odd. The above argument is true ∀l, and (2.24)

follows. Clearly, from (2.24), we also have

∑

l

xl(t+ 1) =
∑

l

xl(t). (2.29)

In the following lemma, we establish (ii) for Theorem 1 for sine functions.

Lemma 2: Let 1 denote an N × 1 column-vector of 1’s. For any c ∈ R, x∗ = c1 is

2.4. NLDAC ALGORITHM: SYNTHESIS PROBLEM 21

a fixed point of (2.8).

Proof: The proof is straightforward and relies on the fact that sin(0) = 0.

Before we proceed to establish (iii) in Theorem 1 for the sine function, we provide

two important lemmas. Lemma 3 proves a result on the range of network initial

conditions, x(0), whereas Lemma 4 computes f ′ when fl is given by (2.22). We then

continue the development in Section 2.4.2 and provide the main result of this chapter

in Section 2.4.3.

Range of the NLDAC initial conditions, x(0)

In the next lemma, we establish a condition under which xl(t) lies in a certain range.

Lemma 3: Let the NLDAC vector of initial conditions, x(0), be such that

xl(0) ∈ [−π/4 + ε, π/4− ε], ∀ l, (2.30)

where ε ∈ R>0 is a sufficiently small real number. Let dmax denote the maximum

degree of the underlying communication graph, G, and let xl(t) denotes the NLDAC

updates (2.23). Then for µ in the range

0 < µ ≤ π

2dmax

, (2.31)

we have

xl(t) ∈ [−π/4 + ε, π/4− ε], ∀ l, t. (2.32)

Proof: We use the following bounds to prove this lemma.

2

π
x ≤ sin(x) ≤ x, 0 ≤ x ≤ π

2
. (2.33)

For any arbitrary node, l, partition its neighbors, K(l), into KL(l, t) and KG(l, t),

where KL(l, t) = {j ∈ K(l) | xl(t) > xj(t)}, and KG(l, t) = {j ∈ K(l) | xl(t) < xj(t)}.

22 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

We can write the NLDAC iterations (2.23) as

xl(t+ 1) = xl(t)− µ
∑

j∈KL(l,t)

sin(xl(t)− xj(t)) + µ
∑

j∈KG(l,t)

sin(xj(t)− xl(t)),

≤ xl(t)− µ
∑

j∈KL(l,t)

2

π
(xl(t)− xj(t)) + µ

∑

j∈KG(l,t)

(xj(t)− xl(t)),

=

(
1− 2µ

π
|KL(l, t)| − µ|KG(l, t)|

)
xl(t)

+
2µ

π

∑

j∈KL(l,t)

xj(t) + µ
∑

j∈KG(l,t)

xj(t), (2.34)

where the inequality follows from (2.32) and the bound in (2.33). Similarly, we can

show

xl(t+ 1) ≥ xl(t)− µ
∑

j∈KL(l,t)

(xl(t)− xj(t)) + µ
∑

j∈KG(l,t)

2

π
(xj(t)− xl(t)),

=

(
1− µ|KL(l, t)| − 2µ

π
|KG(l, t)|

)
xl(t)

+ µ
∑

j∈KL(l,t)

xj(t) +
2µ

π

∑

j∈KG(l,t)

xj(t). (2.35)

Combining (2.34) and (2.35), xl(t+1) remains bounded above and below by a convex

combination of xj(t), j ∈ Dl, when

0 ≤ 2µ

π
|KL(l, t)|+ µ|KG(l, t)| ≤ 1, (2.36)

0 ≤ µ|KL(l, t)|+ 2µ

π
|KG(l, t)| ≤ 1. (2.37)

The L.H.S is trivially satisfied in both of the above equations. When µ is such that

µ ≤ 1
2
π

(|KL(l, t)|+ |KG(l, t)|) , (2.38)

≤ π

2dmax

, (2.39)

2.4. NLDAC ALGORITHM: SYNTHESIS PROBLEM 23

we note that R.H.S is also satisfied for both of the above equations. Hence, with µ

satisfying the above equation, xl(t + 1) is bounded above and below by a convex

combination of xj(t), j ∈ D(l). Hence, if xj(0) ∈ [−π/4 + ε, π/4− ε], for j ∈ D(l), so

does its convex combination and the lemma follows.

Computing f ′

We now compute f ′. Let D(x) be a K×K diagonal matrix such that the kth element

on its diagonal is cos(xi − xj), where i and j are those vertices that represent the

edge described by the kth column of the incidence matrix, C (formally defined in

Section 1.2).

Lemma 4: Let the derivative of the vector function, f(x), with respect to the

vector x be denoted by the matrix, f ′(x), i.e.,

f ′(x) =
∂f(x)

∂x
=

{
∂fi(x)

∂xj

}

i,j=1,...,N

, (2.40)

then

f ′(x) = I− µCD(x)CT . (2.41)

Proof: We have

∂fi(x)

∂xj
=

1− µ∑j∈K(i) cos(xi − xj), i = j,

µ cos(xi − xj), i 6= j, (i, j) ∈ G,
0, i 6= j, (i, j) /∈ G.

(2.42)

With the above, we note that

{
f ′(x)− I

−µ

}

ij

=

∑
j∈K(i) cos(xi − xj), i = j,

− cos(xi − xj) i 6= j, (i, j) ∈ G,
0, i 6= j, (i, j) /∈ G.

(2.43)

is a weighted Laplacian matrix with the corresponding weight for each edge, (i, j) ∈ G,

coming from the matrix D(x).

24 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

2.4.2 Error analysis

In this subsection, we perform the error analysis for the NLDAC iterations (2.23),

(recall that the error is defined in (2.9)). To this aim, the following lemma provides

an upper bound on the norm of e(t).

Lemma 5: For some θ(t) ∈ [0, 1], we have

‖e(t+ 1)‖ ≤ ‖I− µCD(θ(t)e(t))CT − J‖‖e(t)‖. (2.44)

Proof: From (2.20) and Lemma 4, we have

‖e(t+ 1)‖ ≤ ‖I− µCD(η(t))CT − J‖‖e(t)‖. (2.45)

Recall (from Lemma 4) that the elements of D(η(t)) are of the form cos (ηi(t)− ηj(t)).
We have

ηi(t)− ηj(t) = θ(t)xi(t) + (1− θ(t))xavg −
(
θ(t)xj(t) + (1− θ(t))xavg

)
,

= θ(t) (xi(t)− xj(t)) . (2.46)

Hence, we can write D(η(t)) as D(θ(t)e(t)) and (2.44) follows.

The above lemma establishes that if (iii) in Theorem 1 for the sine update holds,

then limt→∞ ‖e(t)‖ = 0. To show that ‖I− µCD(θ(t)e(t))CT − J‖ < 1, we perform

the eigen-analysis of I− µCD(θ(t)e(t))CT − J in the following.

Eigen-analysis of f ′(θ(t)e(t))− J

To proceed, we need the following notation. Let

Lt = CD(θ(t)e(t))CT . (2.47)

Define L as the set of all possible Lt when the algorithm is initialized with the initial

conditions, x0, i.e.,

L = {Lt |x(0) = x0,x(t+ 1) = f(x(t))} . (2.48)

2.4. NLDAC ALGORITHM: SYNTHESIS PROBLEM 25

Recall (from Section 1.2) that the weighted Laplacian, Lt, is symmetric, positive-

semidefinite, when the diagonal matrix, D(θ(t)e(t)), is non-negative. Let

Qt = [q1(t),q2(t), . . . ,qN(t)] (2.49)

be the matrix of N linearly independent eigenvectors of Lt with the corresponding

eigenvalues denoted by λi(Lt), i = 1, . . . , N . Without loss of generality, we assume

that1

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λN , (2.50)

and q1(t) = 1 with the corresponding eigenvalue λ1(Lt) = 0. We further define

p2 , inf
L
λ2(Lt), (2.51)

pN , sup
L
λN(Lt). (2.52)

Lemma 6: The eigenvectors of the matrix I − µLt − J are the column vectors in

the matrix Qt and the corresponding eigenvalues are 0 and 1−µλi(Lt), i = 2, . . . , N .

Proof: The first eigenvector of the matrix I − µLt − J is q1(t) = 1 with the

eigenvalue 0. This can be shown as

(I− µLt − J)q1 = 1− µLt1− J1 = 0. (2.53)

That the rest of the eigenvectors, q2(t), . . . ,qN(t), of Lt, are also the eigenvectors

of I− µLt − J can be established by the fact that J is rank 1 with eigenvector 1 and

the identity matrix can have any set of linearly independent vectors as its eigenvectors.

Using the above lemma, we now have the following result.

Lemma 7: Let (2.32) hold. Let the network communication graph be connected,

i.e., λ2(L) > 0, then p2 > 0, for 0 < µ ≤ π/2dmax.

Proof: Consider Lw as defined in (1.7) with W > 0 (element-wise inequality,

also recall from Section 1.2 that W is a K×K diagonal matrix where the kth element

1Note that Lt is symmetric, positive-semidefinite so its eigenvalues are non-negative reals.

26 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

on its diagonal (that represents the kth edge, (i, j) ∈ G) is wk). We have

zTLwz =
∑

(i,j)∈G

wk(zi − zj)2, (2.54)

for any z ∈ RN . Since wk > 0,∀(i, j) ∈ G, the quadratic form (2.54) is 0 if and only

if z = c1, for any c ∈ R. So Lw has only one eigenvalue of 0 with eigenvector 1.

Hence, λ2(Lw) > 0. Also, note that λ2(Lw) is a continuous function of wk’s [67]. So

the infimum of λ2(Lw) is attainable if the elements of W lie in a compact set. To

this end, define

C = {W ∈ RK×K | wii ∈ [cos(π/2− 2ε), 1], wij = 0(i 6= j)}, (2.55)

where ε ∈ R>0, and note that D(θ(t)e(t)) ∈ C from Lemma 4. Since

Lt = CD(θ(t)e(t))CT (2.56)

and D(θ(t)e(t)) ∈ C, we note that

p2 = inf
L
λ2(Lt) ≥ inf

W∈C
λ2(Lw). (2.57)

We now use a contradiction argument to show p2 > 0. Assume on the contrary

that p2 = 0. Then infW∈C λ2(Lw) = 0 and there exists some W ∈ C such that λ2(Lw) =

0. But, since W > 0 and G is connected, i.e., λ2(L) > 0, for all W ∈ C, we

have λ2(Lw) > 0 (see Section 1.2), which is a contradiction. Hence, p2 > 0.

2.4.3 Main result

We now present the convergence of NLDAC in (2.23) in the following theorem.

Theorem 2: Let the NLDAC vector of initial conditions be denoted by x(0) such

2.4. NLDAC ALGORITHM: SYNTHESIS PROBLEM 27

that (2.32) holds. Let the network communication graph, G, be connected and undi-

rected, i.e., λ2(L) > 0. If µ is such that

0 < µ <
2

pN
, (2.58)

then

lim
t→∞
‖e(t)‖ = 0. (2.59)

Proof: From (2.52) and (2.58), we have for i = 2, . . . , N

1− µλi(Lt) ≥ 1− µpN > 1− 2

pN
pN = −1. (2.60)

From (2.51), we have for i = 2, . . . , N

1− µλi(Lt) ≤ 1− µp2 < 1, (2.61)

from (2.58) the fact that p2 > 0 from Lemma 7. Combining (2.60) and (2.61), we

have

−1 < 1− µλi(Lt) < 1, i = 2, . . . , N, (2.62)

With the above equation, we have |1− µλi(Lt)| < c < 1, i = 2, . . . , N , for some c ∈
[0, 1). Thus, the error norm is given by

‖e(t+ 1)‖ ≤ max
2≤i≤N

|1− µλi(Lt)|‖e(t)‖ < c‖e(t)‖, (2.63)

and (2.59) follows.

We further note that [59]

pN ≤ 2dmax. (2.64)

Combining (2.64) with (2.58), we have convergence for

0 < µ <
1

dmax

≤ 2

pN
. (2.65)

28 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

Remarks: We state relevant remarks.

(i) We explain our assumption in (2.32) with the help of Fig. 2.1. When the

data, xl(0), ∀ l, lies in the interval [−π/4+ε, π/4−ε], for ε ∈ R>0, then xl(t) also lies

in the same interval ∀ l, t, from Lemma 3. Thus, the state differences, xl(t) − xj(t),
for all l, t, j ∈ D(l) lie in the interval [−π/2 + 2ε, π/2− 2ε].

Hence, cos(xl(t) − xj(t)), ∀ l, t, must lie in the interval [cos(π/2 − 2ε), 1], which

is strictly greater than 0 for ε > 0, as shown in Fig. 2.1. With cos(xl(t) − xj(t)) ∈
[cos(π/2−2ε), 1], ∀ t, we note that Lt does not lose the sparsity (zero-one) pattern of L

and hence, λ2(Lt) > 0, ∀ t, if the underlying communication graph, G, is connected,

i.e., λ2(L) > 0.

Clearly, if (2.32) does not hold but the initial data has a known bound, we can in-

troduce a frequency parameter, ζ, in the sine function such that cos (ζ(xl(t)− xj(t))) ∈
[cos(π/2− 2ε), 1]. Hence, the assumption in (2.32) does not lose generality.

(ii) Note that pN may not be known or easily computable a priori. In such case, one

may work with 0 < µ < 1/dmax as established in (2.65), which is readily determined.

(iii) Choosing µ away from the upper bound in (2.65), results into a divergence of

the algorithm, as we also elaborate in the simulations.

(iv) The NLDAC algorithm can also be formulated with non-linear functions other

than sinusoids, under the properties established in Theorem 1. Appropriate conditions

for µ and the network initial conditions can be derived in these cases. For instance,

one such family of functions are

fl(xDl(t)) = xl(t)− µ
∑

j∈K(l)

(xl(t)− xj(t))p, (2.66)

where p > 0 is odd. We may require an additional condition that the functions fl(·)
remain bounded for all time t by taking fl(·) to be the minimum of some constant

and (2.66). Clearly, p = 1 results into LDAC.

(v) Note that the upper bound on µ established in Lemma 3 is subsumed in the

upper bound on µ used in (2.65).

2.5. SIMULATIONS 29

0
−1

0

1

Cosine Range

Data Range

−π/4 + ε π/4 − ε π/2 − 2ε−π/2 + 2ε

Figure 2.1: Figure corresponding to Remark (i).

2.5 Simulations

We consider a network of N = 100 nodes, shown in Fig. 2.2(a). We implement the

conventional linear distributed average-consensus algorithm with optimal constant

weights [17], i.e., we choose

µOPT

LIN =
2

λ2(L) + λN(L)
, (2.67)

in (2.3). The error norm in this case is shown in Fig. 2.2(b) as a red dotted curve.

To show the performance of the NLDAC algorithm (2.23), we choose the following

values of µ

µ =
{

0.99
dmax

,
2

dmax
,

1
2dmax

,
1

3dmax

}
(2.68)

and show the error norm in Fig. 2.2(b) and Fig. 2.2(c). The simulations confirm the

convergence of NLDAC with 0 < µ < 1/dmax and show the divergence of NLDAC

when µ violates the bound. The convergence of NLDAC is faster than LDAC (with

optimal constant weight) as shown in Fig. 2.2(b).

30 CHAPTER 2. NONLINEAR AVERAGE-CONSENSUS ALGORITHM

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iterations, t

‖e
(t

)‖

Linear: Optimal Constant Weights

Non-linear: Constant weights (µ < 1
dmax

)

(b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Iterations, t

‖e
(t

)‖

µ = 2

dmax

µ = 1
2dmax

µ = 1
3dmax

(c)

Figure 2.2: (a) AnN = 100 node network. (b) Comparison of the NLDAC with LDAC
using constant optimal edge weights. (c) The error norm of NLDAC for different
values of µ.

2.6. CONCLUSIONS 31

2.6 Conclusions

In this chapter, we provide a non-linear distributed algorithm for average-consensus,

which is a special case of HDC without anchors. We address the analysis and syn-

thesis problems for this algorithm. In the analysis problem, we establish the condi-

tions required on the non-linear updating functions for the NLDAC to reach average-

consensus. We then study the synthesis problem by choosing a suitable updating

function. In particular, we use a weighted sum of sinusoids as the consensus updating

function. We prove appropriate bounds on the weights, domain, and frequency of this

particular update such that the conditions established in the analysis are satisfied.

With the choice of sine function, the convergence rate of the NLDAC algorithm now

depends on the cosine of the state differences (as cosine is the derivative of the sine)

and, thus, depends on the actual state values. Due to this dependence, the conver-

gence rate has additional degrees of freedom as the convergence rate in LDAC only

depends on the network connectivity. We provide simulations to assert the theoretical

findings. The results can be extended to the any non-linear function as long as it fits

the paradigm of Theorem 1.

Chapter 3

High dimensional consensus

(Linear case)

In this chapter, we present high dimensional consensus (HDC) when the updating

functions are linear. Linear HDC is a general class of linear distributed algorithms for

large-scale networks that generalizes average-consensus and includes other interesting

distributed algorithms, like sensor localization, leader-follower algorithms in multi-

agent systems, or distributed Jacobi algorithm. In HDC1, the network nodes are

partitioned into ‘anchors,’ nodes whose states are fixed over the HDC iterations, and

‘sensors,’ nodes whose states are updated by the algorithm. The chapter considers two

problems in this context: (i) the analysis problem; and, (ii) the synthesis problem. The

analysis problem establishes the conditions under which HDC converges, the limiting

state to which it converges, and what is its convergence rate.

The synthesis or design problem learns the weights or parameters of the HDC

so that the algorithm converges to a desired pre-specified state. This generalizes the

well-known problem of designing the weights in average-consensus. We pose learning

as a constrained non-convex optimization problem that we cast in the framework of

multi-objective optimization (MOP) and to which we apply Pareto optimality. We

derive the solution to the learning problem by proving relevant properties satisfied by

the MOP solutions and by the Pareto front. Finally, the chapter shows how the MOP

1In this chapter, HDC implies the linear case.

32

3.1. INTRODUCTION 33

approach leads to interesting tradeoffs (speed of convergence versus performance)

arising in resource constrained networks. Simulation studies illustrate our approach

for a leader-follower architecture in multi-agent systems.

Parts of this chapter have been presented in [53, 45, 43, 56].

3.1 Introduction

In this chapter, we present the high dimensional consensus (HDC) with linear up-

dates. HDC provides a unified framework for the analysis and design of linear dis-

tributed algorithms for large-scale networks; examples include distributed Jacobi al-

gorithm [58], average-consensus [13, 17, 20], distributed sensor localization [41], dis-

tributed matrix inversion [48], and leader-follower algorithms [53, 45]. These applica-

tions arise in many resource constrained large-scale networks, e.g., sensor networks,

teams of robots, and also in cyber-physical systems like the smart grid in electric

power systems. We view these systems as a collection of nodes interacting over a

sparse communication graph. The nodes, in general, have strict communication and

computation constraints so that only local communication and low-order computation

is feasible at each node.

In HDC, the network nodes are partitioned into anchors and sensors. Anchors

do not update their state over the HDC iterations, while the sensors iteratively up-

date their states by a linear, possibly convex, combination of their neighboring nodes’

states. The weights of this linear combination are the parameters of the HDC. For ex-

ample, in distributed sensor localization, the state at each node is its current position

estimate and the HDC parameters are the collection of barycentric coordinates. An-

chors are the nodes that know their precise locations and the remaining non-anchor

nodes (sensors) do not know their locations. Using HDC, each sensor updates its

state, i.e., its location, in a distributed fashion, which converges to the exact sensor

locations, see Chapter 4 for details.

We pose the following two problems in the context of HDC:

Analysis: (Forward problem) Given the HDC parameters (i.e., the coefficients

of the linear combination) and the underlying connectivity graph, determine: (i) when

34 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

does the HDC converge; (ii) to what state does the HDC converge; and (iii) what is

the convergence rate.

Learning: (Synthesis problem) Given the desired state to which HDC should

converge and the sparsity of the underlying communication graph, learn the HDC

parameters, so that HDC converges to the desired state. A widely studied example

in this context is the average consensus problem where every sensor is an anchor in

itself and the goal is to converge to the average of the initial (anchors’) states. Here

the question of interest is whether there exists a distributed iterative algorithm, i.e.,

is it possible to design the HDC parameters, such that the sensor states converge to

the desired average. This problem of designing link weights for average-consensus has

seen much recent activity, see for example [17, 68].

In this chapter, we take a step further in this direction, i.e., we would like the

sensors to converge to specific linear combinations of the anchors’ states, which may

be different for different sensors and not necessarily a simple average. The goal then is

to design the HDC parameters so that the state of the HDC converges to the desired

linear combinations. Due to the network sparsity constraints, it may not be possible

for HDC to converge exactly to the desired state. Our formulation leads to interesting

tradeoffs between the speed of convergence and the error in the limiting HDC state,

i.e., the final state and the desired state. Clearly, the learning problem is inverse

(synthesis) to the analysis (forward) problem.

We formulate learning as a constrained non-convex optimization problem that we

cast in the framework of a multi-objective optimization problem (MOP) [69]. We

prove that the optimal solution to the HDC learning problem is a Pareto optimal

(P.O.) solution, which we extract from the Pareto front (locus of all P.O. solutions.)

We exploit the structure of our problem to prove smoothness, convexity, strict de-

creasing monotonicity, and differentiability properties of the Pareto front. Although,

in general, it is computationally infeasible to determine the Pareto front as it requires

extensive iterative procedures [69]; with the help of the established properties and

the structure of our problem, we derive an efficient procedure to generate the Pareto

front, and find the solution to the learning problem. This solution is found by a rather

expressive geometric argument. We illustrate our approach by finding the optimal

3.2. PROBLEM FORMULATION 35

HDC parameters for a leader-follower problem in multi-agent systems.

We now describe the rest of the chapter. In Section 3.2, we provide the problem

formulation. We discuss the forward problem (analysis of HDC) in Section 3.3. An

example of the forward problem is the distributed Jacobi algorithm that we present in

Section 3.4. Section 3.5 discusses the robustness of HDC in random environments. We

then present the synthesis problem (learning in large-scale networks) in Sections 3.6–

3.8. We present the simulations in Section 3.9 and finally, Section 3.10 concludes the

chapter.

3.2 Problem formulation

Consider a sensor network with N nodes communicating over a network described

by a directed graph, G = (Θ,A). Let uk ∈ R1×m be the state associated to the kth

anchor, and let xl ∈ R1×m be the state associated to the lth sensor. We are interested

in studying linear iterative algorithms of the form2

uk(t+ 1) = uk(t), k ∈ κ, (3.1)

xl(t+ 1) =
∑

j∈KΩ(l)∪{l}

pljxj(t) +
∑

k∈Kκ(l)

blkuk(0), (3.2)

for l ∈ Ω, where: t ≥ 0 is the discrete-time iteration index; and plj’s and blk’s are the

state updating coefficients. We assume that the updating coefficients are constant

over the components of the m-dimensional state3, xl(t). We term distributed linear

iterative algorithms of the form (3.1)–(3.2) as High Dimensional Consensus (HDC)

algorithms [45, 53].

2In average-consensus [17], m = 1, and there are no anchors. The algorithm takes the form
of (3.2) without the second term in the sum.

3An example when the updating coefficients are constant over the state dimensions is the dis-
tributed sensor localization problem when the updating coefficients are the barycentric coordinates
that are the same over all dimensions (vertical and horizontal coordinates) of a node’s state (loca-
tion estimate). If these coefficients are not constant then there are two HDC algorithms running
side-by-side, one with parameters P1,B1 and the other with parameters P2,B2. In this case, the
two HDC algorithms can be dealt with separately.

36 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

For the purpose of analysis, we write the HDC (3.1)–(3.2) in matrix form. Define

U(t) =
[
uT1 (t), . . . ,uTK(t)

]T
, X(t) =

[
xTK+1(t), . . . ,xTN(t)

]T
, (3.3)

P = {plj} ∈ RM×M , B = {blk} ∈ RM×K . (3.4)

Note that U(t) ∈ RK×m and X(t) ∈ RM×m. With the above notation, we write (3.1)–

(3.2) concisely as

[
U(t+ 1)

X(t+ 1)

]
=

[
I 0

B P

][
U(t)

X(t)

]
, (3.5)

, C(t+ 1) = ΥC(t). (3.6)

Note that the graph, GΥ, associated to the N × N iteration matrix, Υ, must be a

subgraph of G. In other words, the sparsity of Υ is dictated by the sparsity of the

underlying sensor network. In the iteration matrix, Υ: the submatrix, P, collects

the updating coefficients of the M sensors with respect to the M sensors; and the

submatrix, B, collects the updating coefficients of the M sensors with respect to

the K anchors. From (3.5), the matrix form of the HDC in (3.2) is

X(t+ 1) = PX(t) + BU(0), t ≥ 0. (3.7)

We now formally state the analysis and synthesis problems.

Analysis: (Forward problem) Given an N -node sensor network with a com-

munication graph, G, the matrices B, and P, and the network initial conditions, X(0)

and U(0); what are the conditions under which the HDC converges? what is the con-

vergence rate of the HDC? if the HDC converges, what is the limiting state of the

network?

Learning: (Synthesis problem) Given an N -node sensor network with a com-

munication graph, G, and an M ×K weight matrix, W, learn the matrices P and B

3.3. ANALYSIS PROBLEM: HIGH DIMENSIONAL CONSENSUS 37

in (3.7) such that the HDC converges to4

lim
t→∞

X(t+ 1) = WU(0), (3.8)

for every U(0) ∈ RK×m, where W is an arbitrary M×K matrix; if multiple solutions

exist, we are interested in finding a solution that leads to fastest convergence. Fur-

thermore, our solution leads to interesting performance-speed trade-offs as a solution

with faster convergence may be desirable if a certain error can be tolerated in the

limiting state.

3.3 Analysis problem: High dimensional consen-

sus

As discussed in Section 3.2, the HDC algorithm is implemented as (3.1)–(3.2), and

its matrix representation is given by (3.6). We divide the analysis of the HDC in the

following two cases: (A) no anchors; and (B) with anchors. We analyze these two

cases separately and provide, briefly, their practical applications.

3.3.1 No anchors: B = 0

In this case, the HDC reduces to

X(t+ 1) = PX(t),

= Pt+1X(0). (3.9)

An important problem covered by this case is average-consensus. As well known,

when

ρ(P) = 1, (3.10)

4Note that the learning problem is the standard coefficient-design problem in average-consensus
[17], where W = 11T /N and U(0) = X(0).

38 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

and under some minimal assumptions on P and on the network connectivity, (3.9)

converges to the average of the initial sensors’ states. For more precise and general

statements in this regard, see for instance, [17, 20]. Average-consensus, thus, is a

special case of the HDC, when B = 0 and ρ(P) = 1. This problem has been studied

in great detail, a detailed set of references is provided in [45].

The rest of this paper deals entirely with the case ρ(P) < 1 and the term HDC

subsumes the ρ(P) < 1 case, unless explicitly noted. Note that, when B = 0, the

HDC (with ρ(P) < 1) leads to X∞ = 0, which is not interesting.

3.3.2 With anchors: B 6= 0

This extends the average-consensus to “higher dimensions” (as will be explained in

Section 3.3.3.) The following lemma 8 establishes: (i) the conditions under which the

HDC converges; (ii) the limiting state of the network; and (iii) the rate of convergence

of the HDC.

Lemma 8: Let B 6= 0 and U(0) /∈ N (B), where N (B) is the null space of B. If

ρ(P) < 1, (3.11)

then the limiting state of the sensors, X∞, is given by

X∞ , lim
t→∞

X(t+ 1) = (I−P)−1 BU(0), (3.12)

and the error, E(t) = X(t)−X∞, decays exponentially to 0 with exponent ln(ρ(P)),

i.e.,

lim sup
t→∞

1

t
ln‖E(t)‖ ≤ ln(ρ(P)). (3.13)

Proof: From (3.7), we note that

X(t+ 1) = Pt+1X(0) +
t∑

k=0

PkBU(0), (3.14)

⇒ X∞ = lim
t→∞

Pt+1X(0) + lim
t→∞

t∑

k=0

PkBU(0), (3.15)

3.3. ANALYSIS PROBLEM: HIGH DIMENSIONAL CONSENSUS 39

and (3.12) follows from (3.11) and Lemma 25 in Appendix A.1. The error, E(t), is

given by

E(t) = X(t)− (I−P)−1BU(0),

= PtX(0) +
t−1∑

k=0

PkBU(0)−
∞∑

k=0

PkBU(0),

= Pt

[
X(0)−

∞∑

k=0

PkBU(0)

]
.

To go from the first equation to the second, we recall (3.11) and use (A.2) from

Lemma 25 in Appendix A.1. Let R = X(0) −∑∞k=0 PkBU(0). To establish the

convergence rate of ‖E(t)‖, we have

1

t
ln‖E(t)‖ =

1

t
ln‖PtR‖,

≤ 1

t
ln
(
‖Pt‖‖R‖

)
,

≤ ln‖Pt‖1/t +
1

t
ln‖R‖. (3.16)

Now, letting t→∞ on both sides, we get

lim sup
t→∞

1

t
ln‖E(t)‖ ≤ lim sup

t→∞

(
ln‖Pt‖1/t +

1

t
ln‖R‖

)
, (3.17)

= ln lim
t→∞
‖Pt‖1/t, (3.18)

= ln (ρ(P)) . (3.19)

and (3.13) follows. The interchange of lim and ln is permissible because of the conti-

nuity of ln and the last step follows from (1.10).

The above lemma shows that the limiting state of the sensors, X∞, is independent of

the sensors’ initial conditions and is given by (3.12), for any X(0) ∈ RM×m. It is also

straightforward to show that if ρ(P) ≥ 1, then the HDC algorithm (3.7) diverges for

all U(0) /∈ N (B), where N (B) is the null space of B. Clearly, the case U(0) ∈ N (B)

is not interesting as it leads to X∞ = 0.

40 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

Remarks: When we restrict the HDC linear state update (3.1) at each sensor to

be convex, the resulting iteration matrix, Υ, in (3.6) is stochastic. Since we assumed

that B 6= 0 (recall that the matrix B governs the anchor to sensor communication

graph), at least one anchor is connected to at least one sensor. Hence, we can show

that the matrix P (that governs the sensor to sensor communication) is strictly-

substochastic (at least one row sum is strictly less than 1). Under the additional

condition that P is irreducible, which translates to a strongly-connected sensor to

sensor communication graph, the matrix P becomes uniformly substochastic (an ir-

reducible and strictly substochastic matrix). For uniformly substochastic matrices,

we have ρ(P) < 1 [70], as assumed in (3.11). Hence, the limiting state (3.12) and

the convergence rate (3.13) derived in Lemma 8 can be also derived under the as-

sumptions of a strongly-connected sensor to sensor communication graph and convex

updates at the sensors, since they imply (3.11), i.e., ρ(P) < 1.

Furthermore, when we restrict HDC to convex updates, this setup has an absorb-

ing Markov chain [71] interpretation. In this interpretation, the anchors represent the

absorbing states, the sensors represent the transient states, and the coefficient blks

and pljs represent the state-transition probabilities. Clearly, this interpretation holds

only under convex update assumptions, since the coefficients should be non-negative

and should sum to 1 at each sensor. Under the assumption that each transient state

has a path to any absorbing state, the Markov chain almost surely resides in the set

of absorbing states, asymptotically. This is obvious from (3.12), where each sensor

state converges to a linear combination of the anchor states. This parallel has been

studied in detail in our work on distributed localization in Chapter 4, see also [41]. In

this localization problem, the coefficients blks and pljs are the barycentric coordinates

that are non-negative convex at each sensor, hence, the Markov chain theory applies.

Lemma 8 is more general as it does not assume non-negativity and convexity on

the state updating coefficients. Hence, the cases when the state updates are not nec-

essarily convex are also included in the lemma (for instance, in the case of the Jacobi

algorithm that we discuss in Section 3.4) and the lemma statement does not lose gen-

erality. Clearly, additional conditions on the state updates may imply (3.11), as we

discussed above. Another interesting comment here is that Lemma 8 does not impose

3.3. ANALYSIS PROBLEM: HIGH DIMENSIONAL CONSENSUS 41

any restriction on the communication graph. Although, certain restrictions may be

required to ensure (3.11). Further parallels, where random walks and Markov chain

based arguments are used, can also be established with discrete Dirichlet problems

[72], discrete Green’s function [73], and discretized partial difference equations with

boundary conditions.

3.3.3 Consensus subspace

We now define the consensus subspace as follows.

Definition 1 (Consensus subspace): Given the matrices, B ∈ RM×K and P ∈
RM×M , such that ρ(P) < 1, the consensus subspace, Ξ, is defined as

Ξ = {X∞ | X∞ = (I−P)−1 BU(0)}, (3.20)

for all U(0) ∈ RK×m.

The dimension of the consensus subspace, Ξ, is established in the following theorem.

Theorem 3: If K < M and ρ(P) < 1, then the dimension of the consensus sub-

space, Ξ, is

dim(Ξ) = m rank(B) ≤ mK. (3.21)

Proof: The proof follows from Lemma 8, and Lemma 26 in Appendix A.1.

Now, we formally define the dimension of the HDC.

Definition 2 (Dimension): The dimension of the HDC algorithm is the dimension

of the consensus subspace, Ξ, normalized by m, i.e.,

dim(HDC) =
dim(Ξ)

m
= rank(B). (3.22)

This definition is natural because the HDC is a decoupled algorithm, i.e., HDC cor-

responds to m parallel algorithms, one for each column of X(t). So, the number of

columns, m, in X(t) is factored out in the definition of dim(HDC). Each column

of X(t) lies in a subspace that is spanned by exactly rank(B) basis vectors that can

be at most the number of anchors K.

42 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

3.3.4 Practical applications of the HDC

Several interesting applications can be framed in the context of HDC, as for example

the sensor localization problem, banded matrix inversion problem, or the distributed

Jacobi algorithm.

• Distributed Jacobi algorithm: Distributed Jacobi algorithm solves a linear sys-

tem of equations in a distributed fashion. It turns out that the distributed

Jacobi algorithm falls into the category of HDC algorithms by choosing the

HDC parameters P,B, appropriately. We describe this in the next section.

• Sensor localization in m-dimensional Euclidean spaces, Rm: In Chapter 4, we

present an HDC algorithm specialized to sensor localization in Rm, where an

arbitrary number of sensors (with unknown locations) iteratively learn their ex-

act locations given that they lie in the convex hull of a minimal number, m+ 1

of anchors (that know their precise locations). Each sensor updates its m-

dimensional state, xl(t) ∈ Rm (location estimate at time t), as a convex linear

combination of the states of its m+ 1 carefully chosen neighbors. The weights

of this linear combination (plj’s and blk’s) are the barycentric coordinates (com-

puted locally by local distances and Cayley-Menger determinants).

• Distributed banded matrix inversion: In Chapter 5, we specialize HDC to solve

a matrix inversion problem when the sub-matrices in its band are distributed

among several nodes. This distributed inversion algorithm leads to distributed

Kalman filters in sensor networks using Gauss-Markov approximations by not-

ing that the inverse of a Gauss-Markov covariance matrix is banded. The dis-

tributed Kalman filter is the subject of Chapter 6.

In all of the above problems, note that although the HDC parameters, P,B, are

known (i.e., readily determined from local information), the weight matrix, W, is

not given. The applications where the weight matrix, W, is known and the HDC

parameters, P,B are to be designed fall into the learning problem, as discussed in

Section 3.6.1.

3.4. DISTRIBUTED JACOBI ALGORITHM 43

3.4 Distributed Jacobi algorithm

In this section, we show that the well-known Jacobi algorithm [58] is a special case of

HDC. The Jacobi algorithm solves a linear system of equations in a distributed and

iterative fashion. In particular, we are interested in solving

DX = U, (3.23)

where X ∈ RM×m denotes the unknown state of a sensor network that follows (3.23).

The system matrix, D ∈ RM×M , is strict diagonally dominant and sparse, and we

further have GD ⊆ G. The anchors have the fixed state, U ∈ RM×m. In this case, we

note that the number of anchors,K, is equal to the number of sensors,M , i.e.,K = M .

Hence the total number of nodes in the network is N = 2M . Linear systems of

equations appear naturally in sensor networks, for example, power flow equations

in power systems monitored by sensors, [74], or time synchronization algorithms in

sensor networks, [75].

3.4.1 Design of the iteration matrix, Υ

Let M = diag(D). We make the following design choice:

B = M−1, (3.24)

P = M−1(M−D). (3.25)

With the above design choice the iteration matrix, Υ, is given by

Υ =

[
IM 0

M−1 M−1(M−D)

]
. (3.26)

At each sensor, l, we note that the lth row, pl, of the matrix P in (3.25) is a function

of the lth row, dl, of the system matrix, D and the lth diagonal element, mll, of

the diagonal matrix, M−1. With (3.25), the sparsity pattern of P is the same as

the sparsity pattern of the system matrix, D, since M is a diagonal matrix. Hence,

44 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

the underlying sensor communication graph, G, comes directly form the graph, GD

associated to the system matrix, D. The non-zero elements of the system matrix, D,

thus establish the inter-connections among the sensors. The reason for assuming a

sparse system matrix, D, is apparent here since a full system matrix, D, will result

into an all-to-all communication graph among the sensors. Each sensor is, further,

directly connected to exactly one anchor. The anchors in this case can be considered

as dummy anchors with their states being available at each sensor they are connected

to in the graph, GΥ, associated to Υ.

3.4.2 Convergence

To establish the convergence, we give the following lemma.

Lemma 9: Let D be a strict diagonally dominant matrix. Let the matrix P be

given by (3.25). Then

ρ(P) < 1. (3.27)

Proof: The proof is straightforward and relies on Gershgorin’s circle theo-

rem [76].

With Lemma 9, we note that a distributed iterative algorithm with B and P as given

in (3.24) and (3.25), respectively, converges to

lim
t→∞

X(t+ 1) = (IM −P)−1BU,

= (IM −M−1(M−D))−1M−1U,

= D−1U. (3.28)

Hence, the sensors asymptotically reach the solution of (3.23) in a distributed fashion.

3.4.3 Remarks

HDC with the matrices B and P given in (3.24)–(3.25) is the matrix extension of

the well-known Jacobi algorithm [58]. HDC (3.1)–(3.2), when implemented with the

given matrices B and P, thus, gives a sensor network framework for solving the linear

system of equations (3.23). The Jacobi algorithm can be further specialized to sparse

3.5. ROBUSTNESS OF THE HDC 45

symmetric, positive definite matrices, D, see [58]. When these matrices have the

special structure of being banded, we present a distributed inversion algorithm by

specializing HDC with a non-linear collapse operator in 5. The collapse operator

adds a collapse step to the general model in (3.7) that exploits structural properties

of banded matrices to make the algorithm computationally more efficient.

If D is not diagonally dominant (or positive-definite), we cannot guarantee (3.27).

Furthermore, when the sparsity of D does not correspond to the underlying commu-

nication graph, G, the convergence to the exact solution cannot be established. In

such cases, the learning problem can be employed as we show in Section 3.6.1.

3.5 Robustness of the HDC

Robustness is key in the context of HDC, when the information exchange is sub-

ject to data packet drops, communication noise, and imprecise knowledge of system

parameters. These random phenomena can be modeled as follows:

• Data packet drops: We assume that each data packet sent over the communi-

cation link (l← j) is received at node l with a non-zero probability, qlj, at each

iteration, where 0 < qlj ≤ 1. We model this by a binary random variable, elj(t),

such that

elj(t) =

{
1, w.p. qlj,

0, w.p. 1− qlj.
(3.29)

where elj(t) = 1 indicates that the data packet has successfully arrived (l← j)

at time t, and elj(t) = 0 indicates a data packet drop.

• Communication noise: We model the communication noise as additive chan-

nel noise, i.e., at the t-th iteration, sensor l receives only a corrupt version, ylj(t),

of node j’s state, xj(t), given by

ylj(t) = xj(t) + vlj(t), (3.30)

where each component of the noise, vlj(t), belongs to a family of independent

46 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

zero-mean random variables with finite second moments.

• Small perturbation of system matrices: We may also assume that because

of imprecise measurements the matrices P and B are known up to a certain error

computed at each iteration to be P̂(t) = {p̂lj} and B̂(t) = {p̂lj} given by

P̂(t) = P + SP + S̃P(t), B̂(t) =B + SB + S̃B(t), (3.31)

where SP and SB are mean measurement errors, and {S̃P(t)}t≥0 and {S̃B(t)}t≥0

are independent sequence of random matrices with zero-mean and finite second

moments. Here, we assume a small signal perturbation such that

ρ(P + SP) < 1. (3.32)

3.5.1 HDC in random environments

To account for the above random phenomena, we present the following modified HDC

algorithm that writes the iteration for the kth component of the m-dimensional sensor

state, xl(t) at sensor l and time t.

xl,k(t+ 1) = (1− α (t))xl,k(t) + α(t)

 ∑

j∈Kκ(l)

elj(t)̂blj(t)

qlj

(
ukj + vklj(t)

)

+ α(t)

 ∑

j∈KΩ(l)

elj(t)p̂lj(t)

qlj

(
xj,k(t) + vklj(t)

)

 , (3.33)

for l ∈ Ω, 1 ≤ k ≤ m, where α(t) is a weight sequence (elaborated in the next

theorem). The following theorem establishes the convergence of the above algorithm.

Theorem 4: Under the random phenomena described in Section 3.5, the distributed

algorithm given by (3.33) along with (3.1) converges to

lim
t→∞

xk(t+ 1) = (I−P− SP)−1B + SBuk, 1 ≤ k ≤ m, (3.34)

3.6. SYNTHESIS PROBLEM: LEARNING IN LARGE-SCALE NETWORKS 47

where the superscript k denotes the kth column of the appropriate matrix, under the

following persistence conditions on the weight sequence, α(t):

α(t) > 0, (3.35)
∑

t≥0

α(t) = ∞, (3.36)

∑

t≥0

α2(t) < ∞. (3.37)

Proof: The proof relies on the theory of stochastic recursive algorithms and is

provided in [41].

Clearly, when SP = SB = 0, the HDC converges to the exact solution of the deter-

ministic case, as established in Lemma 8, otherwise a steady state error expression

can be formulated [41]. Here, we note that as t → ∞, 1 − α(t) → 1 and the algo-

rithm in (3.33) relies heavily on the past state estimate at each sensor as opposed to

the information arriving from the neighbors. Hence, the algorithm, as time goes on,

suppresses the inclusion of noise that comes due to the random phenomena. The per-

sistence conditions on α(t), commonly assumed in the adaptive control and adaptive

signal processing literature, assumes that the weights decay to zero, but not too fast,

allowing optimal mixing time for the information before suppressing the noise affects.

3.6 Synthesis problem: Learning in large-scale net-

works

As we briefly mentioned before, the synthesis problem learns the parameter matrices

(B and P) of the HDC when the weight matrix, W in (3.8), is given. Before we

proceed with the discussion on the synthesis problem, we briefly sketch some relevant

practical applications.

3.6.1 Practical applications of the synthesis problem

We present the following practical applications of the synthesis problem.

48 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

• Generalization of weight design in average-consensus: A standard problem in

average-consensus is to design the parameters (the matrices B and P in our

notation) to optimize the convergence rate of consensus, subject to the graph

constraints [17, 68]. In particular, average-consensus requires X∞ = WU(0),

where W = 11T/M and U(0) = X(0). The synthesis problem in HDC broadly

generalizes the coefficient design in consensus–it designs the parameters (B

and P) when the weight matrix, W, is arbitrary.

• Solving arbitrary linear system of equations: As provided in Section 3.4, the

HDC algorithm can be specialized to solve linear systems of equations of the

form DX = U, when D is a positive-definite matrix and GD ⊆ G. If D is not

diagonally dominant (or positive-definite), we cannot guarantee (3.27). Further-

more, when the sparsity of D does not correspond to the underlying communi-

cation graph, G, the convergence to the exact solution cannot be established. In

such cases, one may be interested in an approximate distributed solution that

minimizes the norm, ‖X∞ −WU‖, where the weight matrix, W, is D−1. The

HDC synthesis problem, in this case, provides the matrices B and P that give

the optimal distributed solution minimizing ‖X∞ −WU‖ under the network

sparsity, G, and the desired convergence criteria.

In many practical settings, the network parameters, D, remain constant but the

anchors’ state, U, change with time, i.e., we have DXk = Uk, where k denotes

the time-scale of the underlying phenomenon. This is the case, for instance, in

solving power-flow equations in electrical grids [74] where the network parame-

ters, D, are a function of the line impedances (that remain constant) and the

system inputs (power injections), Uk, change because of the system loading.

Hence, once the HDC parameters, B and P, are computed off-line, the HDC

algorithm may be implemented in a distributed way using the same B and P

when the system loading changes.

• Coordination in multi-agent systems (Leader-follower algorithms) [53]: In the

leader-follower algorithm, the state of each sensor converges to a particular

anchor state (or a linear combination). For example, consider a scalar case

3.6. SYNTHESIS PROBLEM: LEARNING IN LARGE-SCALE NETWORKS 49

(m = 1), with one anchor, i.e., K = 1, and let u1 ∈ R be the (one-dimensional5)

anchor state. For the sensors to converge to the state of the anchor, we require

x∞ , lim
t→∞

x(t) = 1u1, (3.38)

where x(t) = [x1(t), . . . , xM(t)]T collects the sensor states at time t and 1 is

the M -dimensional column-vector of 1s. Clearly, in this case, the weight ma-

trix, W, is given to be 1. With the following arguments, we can design the

HDC parameters. Comparing (3.38) with (3.12), we have

(I−P)−1B = 1 ⇒ B + P1 = 1, (3.39)

which results in the following design requirements for the elements of the ma-

trices P and B:

bl +
M∑

j=1

plj = 1, ∀ l, (3.40)

along with (3.11). Specific choices for these elements are considered in [45].

In multi-agent systems, the leader-follower problem mentioned above is general-

ized to more than one leader, K > 1, see for instance [77] and references therein.

In such cases, an important problem is to design an optimal control strategy,

where the state of the leaders remains constant and the state of the followers is

updated using a local control law [78, 40]. Clearly, the synthesis problem fits

in this scenario, where the followers intend to learn the parameters of distinct

leaders using local updates and under specified network constraints.

Further applications include networks of heterogenous robots, for example, con-

sider a network of humans, ground robots, and aerial robots. In many disas-

ter/military applications, humans are unable to access the region of interest

where the robots are deployed [79, 80, 81]. The humans guide the robots to

carry out several tasks and act as anchors whereas the robots act as followers

(sensors). The network has communication constraints as each robot may not

5Similar arguments hold for multi-dimensional anchor state.

50 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

be able to directly access the human who is controlling it. We will revisit this

architecture (with multiple leaders) in Section 3.9.

We now address the learning problem. Recall that for convergence of the HDC, we

require the spectral radius constraint (3.11), and the matrices, B and P, to follow the

underlying communication network, G. In general, due to the spectral norm constraint

and the sparseness (network) constraints, equation (3.8) may not be met with equality.

So, it is natural to relax the learning problem. Using Lemma 8 and (3.8), we restate

the learning problem as follows.

Consider ε ∈ [0, 1). Given an N -node sensor network with a communication

graph, G, and an M ×K weight matrix, W, solve the optimization problem:

inf
B,P
‖ (I−P)−1 B − W‖, (3.41)

subject to: Spectral radius constraint, ρ (P) ≤ ε, (3.42)

Sparsity constraint, GΥ ⊆ G, (3.43)

for some induced matrix norm ‖ · ‖. By Lemma 8, if ρ (P) ≤ ε, the convergence is

exponential with exponent less than or equal to ln(ε). Thus, we may ask, given a

pre-specified convergence rate, ε, what is the minimum error between the limiting

state, limt→∞X(t), and the desired state, WU(0). Formulating the problem in this

way naturally lends itself to a trade-off between the performance and the convergence

rate.

In some cases, it may happen that the learning problem has an exact solution in

the sense that there exist B,P, satisfying (3.42) and (3.43) such that the objective

in (3.41) is zero. In case of multiple such solutions, we seek the one which corresponds

to the fastest convergence. We may still formulate a performance versus convergence

rate trade-off, if faster convergence is desired.

The learning problem stated in (3.41)–(3.43) is, in general, practically infeasible

to solve because both (3.41) and (3.42) are non-convex in P. We reformulate it into

a more tractable framework next.

3.6. SYNTHESIS PROBLEM: LEARNING IN LARGE-SCALE NETWORKS 51

3.6.2 Revisiting the spectral radius constraint

We work with a convex relaxation of the spectral radius constraint. Recall that

the spectral radius can be expressed as (1.10). However, direct use of (1.10) as a

constraint is, in general, not computationally feasible. Hence, instead of using the

spectral radius constraint (3.42) we use a matrix induced norm constraint by realizing

that

ρ(P) ≤ ‖P‖, (3.44)

for any matrix induced norm. The induced norm constraint, thus, becomes

‖P‖ ≤ ε. (3.45)

Clearly, (3.44) implies that any upper bound on ‖P‖ is also an upper bound on ρ(P).

3.6.3 Revisiting the sparsity constraint

In this subsection, we rewrite the sparsity constraint (3.43) as a linear constraint in

the design parameters, B and P. The sparsity constraint ensures that the structure of

the underlying communication network, G, is not violated. To this aim, we introduce

an auxiliary variable, F, defined as

F , [B | P] ∈ RM×N . (3.46)

This auxiliary variable, F, combines the matrices B and P as they correspond to

the adjacency matrix, AG, of the given communication graph, G, see the comments

after (3.6).

To translate the sparsity constraint into linear constraints on F (and, thus, on B

and P), we employ a two-step procedure: (i) First, we identify the elements in the

adjacency matrix, AG, that are zero; these elements correspond to the pairs of nodes

in the network where we do not have a communication link. (ii) We then force the

elements of F = [B | P] corresponding to zeros in the adjacency matrix, AG, to be

zero. Mathematically, (i) and (ii) can be described as follows.

52 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

(i) Let the lower M × N submatrix of the N × N adjacency matrix, A = {alj}
(this lower part corresponds to F = [P | B] as can be noted from (3.6)), be denoted

by A, i.e,

A = {aij} = {alj}, (3.47)

for l = K + 1, . . . , N , j = 1, . . . N , and i = 1, . . . ,M . Let χ contain all pairs (i, j) for

which aij = 0.

(ii) Let {ei}i=1,...,M be a family of 1×M row-vectors such that ei has a 1 as the ith

element and zeros everywhere else. Similarly, let {ej}j=1,...,N be a family of N × 1,

column-vectors such that ej has a 1 as the jth element and zeros everywhere else.

With this notation, the ij-th element, fij, of F can be written as fij = eiFej. The

sparsity constraint (3.43) is explicitly given by

eiFej = 0, ∀ (i, j) ∈ χ. (3.48)

3.6.4 Feasible solutions

Consider ε ∈ [0, 1). We now define a set of matrices, F≤ε ⊆ RM×N , that follow both

the induced norm constraint (3.45) and the sparsity constraint (3.48) of the learning

problem. The set of feasible solutions is given by

F≤ε =
{
F = [B | P]

∣∣ eiFej = 0, ‖FT‖ ≤ ε
}
, (3.49)

∀ (i, j) ∈ χ, where

T ,

[
0K×M

IM

]
∈ RN×M . (3.50)

With the matrix T defined as above, we note that P = FT.

Lemma 10: The set of feasible solutions, F≤ε, is convex.

Proof: Let F1,F2 ∈ F≤ε, then

eiF1e
j = 0, ∀ (i, j) ∈ χ, eiF2e

j = 0, ∀ (i, j) ∈ χ. (3.51)

3.6. SYNTHESIS PROBLEM: LEARNING IN LARGE-SCALE NETWORKS 53

For any 0 ≤ µ ≤ 1, and ∀ (i, j) ∈ χ,

ei (µF1 + (1− µ)F2) ej = µeiF1e
j + (1− µ)eiF2e

j = 0.

Similarly,

‖ (µF1 + (1− µ)F2) T‖ ≤ µ‖F1T‖+ (1− µ)‖F2T‖ ≤ µε+ (1− µ)ε = ε.

The first inequality uses the triangle inequality for matrix induced norms and the

second uses the fact that, for i ∈ {1, 2}, Fi ∈ F and ‖FiT‖ ≤ ε.

Thus, F1,F2 ∈ F≤ε ⇒ µF1 + (1− µ)F2 ∈ F≤ε. Hence, F≤ε is convex.

Similarly, we note that the sets, F<ε and F<1, are also convex.

3.6.5 Learning Problem: An upper bound on the objective

In this section, we simplify the objective function (3.41) and give a tractable upper

bound. We have the following proposition.

Proposition 1: Let ‖P‖ < 1, then

∥∥(I−P)−1 B−W
∥∥ ≤ 1

1− ‖P‖ ‖B + PW −W‖ . (3.52)

Proof: We manipulate (3.41) to obtain successively.

∥∥(I−P)−1 B−W
∥∥ ≤

∥∥(I−P)−1
∥∥ ‖(B− (I−P) W)‖ ,

=

∥∥∥∥∥
∑

k

Pk

∥∥∥∥∥ ‖(B− (I−P) W)‖ ,

≤
∑

k

‖P‖k ‖(B− (I−P) W)‖ ,

=
1

1− ‖P‖ ‖B + PW −W‖ . (3.53)

To go from the first equation to the second, we use (A.2) from Lemma 25 in Ap-

pendix A.1. Lemma 25 is applicable here since (3.44) and given the norm con-

straint ‖P‖ < 1 imply ρ(P) < 1. The last step is the sum of a geometric series

54 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

which converges given ‖P‖ < 1.

We now define the utility function, u(B,P), that we minimize instead of minimiz-

ing ‖ (I−P)−1 B −W‖. This is valid because u(B,P) is an upper bound on (3.41)

and hence minimizing the upper bound leads to a performance guarantee. The utility

function is defined as:

u(B,P) ,
1

1− ‖P‖ ‖B + PW −W‖ . (3.54)

With the help of the previous development, we now formally present the Learning

Problem.

Learning Problem: Given ε ∈ [0, 1), an N -node sensor network with a sparse

communication graph, G, and a possibly full M × K weight matrix, W, design the

matrices B and P (in (3.7)) that minimize (3.54), i.e., solve the optimization problem

inf
[B | P]∈F≤ε

u(B,P). (3.55)

Note that the induced norm constraint (3.45) and the sparsity constraint (3.48) are

implicit in (3.55), as they appear in the set of feasible solutions, F≤ε. Furthermore,

the optimization problem in (3.55) is equivalent to the following problem.

inf
[B | P]∈F≤ε∩{‖B‖≤b}

u(B,P), (3.56)

where b > 0 is a sufficiently large number. Since (3.56) involves the infimum of

a continuous function, u(B,P), over a compact set, Fε ∩ {‖B‖ ≤ b}, the infimum

is attainable and, hence, in the subsequent development, we replace the infimum

in (3.55) by a minimum.

We view the minu(B,P) as the minimization of its two factors, 1/(1 − ‖P‖)
and ‖B + PW −W‖. In general, we need ‖P‖ → 0 to minimize the first fac-

tor, 1/(1 − ‖P‖), and ‖P‖ → 1 to minimize the second factor, ‖B + PW −W‖
(we explicitly prove this statement later.) Hence, these two objectives are conflicting.

Since, the minimization of the non-convex utility function, u(B,P), contains minimiz-

ing two coupled convex objective functions, ‖P‖ and ‖B + PW −W‖, we formulate

3.6. SYNTHESIS PROBLEM: LEARNING IN LARGE-SCALE NETWORKS 55

this minimization as a multi-objective optimization problem (MOP). In the MOP, we

consider separately minimizing these two convex functions. We then couple the MOP

solutions using the utility function.

3.6.6 Solution to the Learning Problem: MOP formulation

To solve the Learning Problem for every ε ∈ [0, 1), we cast it in the context of a multi-

objective optimization problem (MOP). In the MOP formulation, we treat ‖B + PW −W‖
as the first objective function, f1, and ‖P‖ as the second objective function, f2. The

objective vector, f(B,P), is

f(B,P) ,

[
f1(B,P)

f2(B,P)

]
=

[
‖B + PW −W‖

‖P‖

]
. (3.57)

The multi-objective optimization problem (MOP) is given by

min
[B | P]∈F≤1

f(B,P), (3.58)

where6

F≤1 = {F = [B | P] : eiFej = 0, ‖FT‖ ≤ 1}, (3.59)

∀ (i, j) ∈ χ.

We now define Pareto-optimal solutions of an MOP.

Definition 3: [Pareto optimal solutions] A solution, [B∗ | P∗], is said to be a

Pareto optimal (or non-inferior) solution of a MOP, if there exists no other feasi-

ble [B | P] (i.e., there is no [B | P] ∈ F≤1) such that f(B,P) ≤ f(B∗,P∗), meaning

that fk(B,P) ≤ fk(B
∗,P∗), ∀ k, with strict inequality for at least one k.

Before providing one of the main results of this chapter on the equivalence of MOP

and the Learning Problem, we set the following notation. We define

εexact = min{‖P‖ | (I−P)−1B = W, [B |P] ∈ F<1}, (3.60)

6Although the Learning Problem is valid only when ‖P‖ < 1, the MOP is defined at ‖P‖ = 1.
Hence, we consider ‖P‖ ≤ 1 when we seek the MOP solutions.

56 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

where the minimum of an empty set is taken to be +∞. In other words, εexact is

the minimum value of f2 = ‖P‖ at which we may achieve an exact solution7 of the

Learning Problem. A necessary condition for the existence of an exact solution is

studied in Appendix A.2. If the exact solution is infeasible (/∈ F<1), then εexact =

min{∅}, which we defined to be +∞. We let

E = [0, 1) ∩ [0, εexact]. (3.61)

The Learning Problem is interesting if ε ∈ E . We now study the relationship between

the MOP and the Learning Problem (3.55). Recall Definition 3 of Pareto-optimal

solutions of an MOP. We have the following theorem.

Theorem 5: Let Bε,Pε, be an optimal solution of the Learning Problem, where ε ∈
E . Then, Bε,Pε is a Pareto-optimal solution of the MOP (3.58).

The proof relies on analytical properties of the MOP (discussed in Section 3.7)

and is deferred until Section 3.7.3. We discuss here the consequences of Theorem 5.

Theorem 5 says that the optimal solutions to the Learning Problem can be obtained

from the Pareto-optimal solutions of the MOP. In particular, it suffices to generate

the Pareto front (collection of Pareto-optimal solutions of the MOP) for the MOP and

seek the solutions to the Learning Problem from the Pareto front. The subsequent

Section is devoted to constructing the Pareto front for the MOP and studying the

properties of the Pareto front.

3.7 Multi-objective optimization: Pareto front

We consider the MOP (3.58) as an ε-constraint problem, denoted by Pk(ε) [69]. For

a two-objective optimization, n = 2, we denote the ε-constraint problem as P1(ε2)

7An exact solution is given by [B | P] ∈ F such that (I−P)−1B = W or when the infimum
in (3.41) is attainable and is 0.

3.7. MULTI-OBJECTIVE OPTIMIZATION: PARETO FRONT 57

or P2(ε1), where P1(ε2) is given by8

min
[B | P]∈F≤1

f1(B,P) s.t. f2(B,P) ≤ ε2. (3.62)

and P2(ε1) is given by

min
[B | P]∈F≤1

f2(B,P) s.t. f1(B,P) ≤ ε1. (3.63)

In both P1(ε2) and P2(ε1), we are minimizing a real-valued convex function, sub-

ject to a constraint on the real-valued convex function over a convex feasible set.

Hence, either optimization can be solved using a convex program [82]. We can now

write εexact in terms of P2(ε1) as

εexact =

{
P2(0), if there exists a solution to P2(0),

+∞, otherwise.
(3.64)

Using P1(ε2), we find the Pareto-optimal set of solutions of the MOP. We explore

this in Section 3.7.1. The collection of the values of the functions, f1 and f2, at the

Pareto-optimal solutions forms the Pareto front (formally defined in Section 3.7.2).

We explore properties of the Pareto front, in the context of our learning problem, in

Section 3.7.2. These properties will be useful in addressing the minimization in (3.55)

for solving the Learning Problem.

3.7.1 Pareto-optimal solutions

In general, obtaining Pareto-optimal solutions requires iteratively solving ε-constraint

problems [69], but we will show that the optimization problem, P1(ε2), results directly

into a Pareto-optimal solution. To do this, we provide Lemma 11 and its Corollary 1

in the following. Based on these, we then state the Pareto-optimality of the solutions

of P1(ε2) in Theorem 6.

8All the infima can be replaced by minima in a similar way as justified in Section 3.6.5. Further
note that, for technical convenience, we use F≤1 and not F<1, which is permissible because the
MOP objectives are defined for all values of ‖P‖.

58 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

Lemma 11: Let

[B0 | P0] = argmin[B | P]∈F≤1
P1(ε0). (3.65)

If ε0 ∈ E , then the minimum of the optimization, P1(ε0), is attained at ε0, i.e.,

f2(B0,P0) = ε0. (3.66)

Proof: Let the minimum value of the objective, f1, be denoted by δ0, i.e.,

δ0 = f1(B0,P0). (3.67)

We prove this by contradiction. Assume, on the contrary, that ‖P0‖ = ε′ < ε0. Define

α0 ,
1− ε0

1− ε′ . (3.68)

Since, ε′ < ε0 < 1, we have 0 < α0 < 1. For α0 ≤ α < 1, we define another

pair, B1,P1, as

B1 , αB0, P1 , (1− α)I + αP0. (3.69)

Clearly, this choice is feasible, as it does not violate the sparsity constraints of the

problem and further lies in the constraint of the optimization in (3.65), since

‖P1‖ ≤ (1− α) + αε′ ≤ 1− α(1− ε′) ≤ 1− α0(1− ε′) = ε0. (3.70)

With the matrices B1,P1 in (3.69), we have the following value, δ1, of the objective

function, f1,

δ1 = ‖B1 + P1W −W‖,
= ‖αB0 + ((1− α) I + αP0) W −W‖ ,
= ‖αB0 + αP0W − αW‖ ,
= αf1(B0,P0) = αδ0. (3.71)

3.7. MULTI-OBJECTIVE OPTIMIZATION: PARETO FRONT 59

Since, α < 1 and non-negative, we have δ1 < δ0. This shows that the new pair, B1,P1,

constructed from the pair, B0,P0, results in a lower value of the objective function.

Hence, the pair, B0,P0, with ‖P0‖ = ε′ < ε0 is not optimal, which is a contradiction.

Hence, f2(B0,P0) = ε0,.

Lemma 11 shows that if a pair of matrices, B0,P0, solves the optimization prob-

lem P1(ε0) with ε0 ∈ E , then the pair of matrices, B0,P0, meets the constraint on f2

with equality, i.e., f2(B0,P0) = ε0. The following corollary follows from Lemma 11.

Corollary 1: Let ε0 ∈ E , and

[B0 | P0] = argmin[B | P]∈F≤1
P1(ε0), (3.72)

δ0 = f1(B0,P0). (3.73)

Then,

δ0 < δε, (3.74)

for any ε < ε0, where

[Bε | Pε] = argmin[B | P]∈F≤1
P1(ε), (3.75)

δε = f1(Bε,Pε). (3.76)

Proof: Clearly, from Lemma 11 there does not exist any ε < ε0 that results in

a lower value of the objective function, f1.

The above lemma shows that the optimal value of f1 obtained by solving P1(ε) is

strictly greater than the optimal value of f1 obtained by solving P1(ε0) for any ε < ε0.

The following theorem now establishes the Pareto-optimality of the solutions

of P1(ε).

Theorem 6: If ε0 ∈ E , then the solution B0,P0, of the optimization problem, P1(ε0),

is Pareto optimal.

Proof: Since, B0,P0 solves the optimization problem, P1(ε0), we have ‖P0‖ = ε0,

from Lemma 11. Assume, on the contrary that B0,P0, are not Pareto-optimal. Then,

60 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

by definition of Pareto-optimality, there exists a feasible B,P, with

f1(B,P) ≤ f1(B0,P0), (3.77)

f2(B,P) ≤ f2(B0,P0), (3.78)

with strict inequality in at least one of the above equations. Clearly, if f2(B,P) <

f2(B0,P0), then ‖P‖ < ε0 and B,P, are feasible for P1(ε0). By Corollary 1, we

have f1(B,P) > f1(B0,P0). Hence, f2(B,P) < f2(B0,P0) is not possible.

On the other hand, if f1(B,P) < f1(B0,P0) then we contradict the fact that B0,P0,

are optimal for P1(ε0), since by (3.78), B,P, is also feasible for P1(ε0).

Thus, in either way, we have a contradiction and B0,P0 are Pareto-optimal.

3.7.2 Properties of the Pareto front

In this section, we formally introduce the Pareto front and explore some of its prop-

erties in the context of the Learning Problem. The Pareto front and their properties

are essential for the minimization of the utility function, u(B,P) over F≤ε (3.55), as

introduced in Section 3.6.5.

Let E denote the closure of E . The Pareto front is defined as follows.

Definition 4: [Pareto front] Consider ε ∈ E . Let Bε, Pε, be a solution of P1(ε)

then9 ε = f2(Bε,Pε). Let δ = f1(Bε,Pε). The collection of all such (ε, δ) is defined

as the Pareto front.

For a given ε ∈ E , define δ(ε) to be the minimum of f1 in P1(ε). By Theo-

rem 6, (ε, δ(ε)) is a point on the Pareto front. We now view the Pareto front as a

function, δ : E 7−→ R+, which maps every ε ∈ E to the corresponding δ(ε). In the

following development, we use the Pareto front, as defined in Definition 4, and the

function, δ, interchangeably. The following lemmas establish properties of the Pareto

front.

Lemma 12: The Pareto front is strictly decreasing.

Proof: The proof follows from Corollary 1.

9This follows from Lemma 11. Also, note that since Bε, Pε, is a solution of P1(ε), Bε, Pε, is
Pareto optimal from Theorem 6.

3.7. MULTI-OBJECTIVE OPTIMIZATION: PARETO FRONT 61

Lemma 13: The Pareto front is convex, continuous, and, its left and right deriva-

tives10 exist at each point on the Pareto front. Also, when εexact = +∞, we have

δ(1) = lim
ε→1

δ(ε) = 0. (3.79)

Proof: Let ε = f2(·) be the horizontal axis of the Pareto front, and let δ(ε) =

f1(·) be the vertical axis. By definition of the Pareto front, for each pair (ε, δ(ε)) on

the Pareto front, there exists matrices Bε,Pε such that

‖Pε‖ = ε, and ‖Bε + PεW −W‖ = δ(ε). (3.80)

Let (ε1, δ(ε1)) and (ε2, δ(ε2)) be two points on the Pareto front, such that ε1 < ε2.

Then, there exists B1,P1, and B2,P2, such that

‖P1‖ = ε1, and ‖B1 + P1W −W‖ = δ(ε1), (3.81)

‖P2‖ = ε2, and ‖B2 + P2W −W‖ = δ(ε2). (3.82)

For some 0 ≤ µ ≤ 1, define

B3 = µB1 + (1− µ)B2, (3.83)

P3 = µP1 + (1− µ)P2. (3.84)

Clearly, [B3 | P3] ∈ F≤1 as the sparsity constraint is not violated and

‖P3‖ ≤ µ‖P1‖+ (1− µ)‖P2‖ < 1, (3.85)

since ‖P1‖ < 1 and ‖P2‖ < 1. Let

ε3 = ‖P3‖, (3.86)

and let

z(ε3) = ‖B3 + P3W −W‖. (3.87)

10At ε = 0, only the right derivative is defined and at ε = sup E , only the left derivative is defined.

62 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

We have

z(ε3) = ‖µB1 + (1− µ)B2 + (µP1 + (1− µ)P2)W −W‖,
= ‖µB1 + µP1W − µW + (1− µ)B2 + (1− µ)P2W − (1− µ)W‖,
≤ µ‖B1 + P1W −W‖+ (1− µ)‖B2 + P2W −W‖,
= µδ(ε1) + (1− µ)δ(ε2). (3.88)

Since (ε3, z(ε3)) may not be Pareto-optimal, there exists a Pareto optimal point, (ε3, δ(ε3)),

at ε3 (from Lemma 11) and we have

δ(ε3) ≤ z(ε3) ≤ µδ(ε1) + (1− µ)δ(ε2). (3.89)

From (3.85), we have ε3 ≤ µε1 + (1 − µ)ε2, and since the Pareto front is strictly

decreasing (from Lemma 12), we have

δ(µε1 + (1− µ)ε2) ≤ δ(ε3). (3.90)

From (3.90) and (3.89), we have

δ(µε1 + (1− µ)ε2) ≤ µδ(ε1) + (1− µ)δ(ε2), (3.91)

which establishes convexity of the Pareto front. Since, the Pareto front is convex, it

is continuous, and it has left and right derivatives [83].

Clearly, δ(1) = limε→1 δ(ε) by continuity of the Pareto front. By choosing P = I

and B = 0, we have δ(1) = 0. Note that (1, 0) lies on the Pareto front when εexact =

+∞. Indeed, for any B,P satisfying the sparsity constraints, we simultaneously

cannot have

‖P‖ ≤ 1, (3.92)

or ‖B + PW −W‖ ≤ 0, (3.93)

with strict inequality in at least one of the above equations. Thus, the pair B = 0,P = I

3.8. MINIMIZATION OF THE UTILITY FUNCTION 63

is Pareto-optimal leading to δ(1) = 0.

3.7.3 Proof of Theorem 5

With the Pareto-optimal solutions of MOP established in Section 3.7.1 and the prop-

erties of the Pareto front in Section 3.7.2, we now prove Theorem 5.

Proof: We prove the theorem by contradiction. Let ‖Pε‖ = ε′ ≤ ε, and δ′ =

‖Bε+PεW−W‖. Assume, on the contrary, that Bε,Pε is not Pareto-optimal. From

Lemma 11, there exists a Pareto-optimal solution B∗,P∗, at ε′, such that

‖P∗‖ = ε′, and δ(ε′) = ‖B∗ + P∗W −W‖, (3.94)

with δ(ε′) < δ′, since Bε,Pε, is not Pareto-optimal. Since, ‖Pε‖ = ε′ ≤ ε, the Pareto-

optimal solution, B∗,P∗, is feasible for the Learning Problem. In this case, the utility

function for the Pareto-optimal solution, B∗,P∗, is

u(B∗,P∗) =
(ε′)

1− ε′ <
δ′

1− ε′ = u(Bε,Pε). (3.95)

Hence, Bε,Pε is not an optimal solution of the Learning Problem, which is a contra-

diction. Hence, Bε,Pε is Pareto-optimal.

The above theorem suggests that it suffices to find the optimal solutions of the Learn-

ing Problem from the set of Pareto-optimal solutions, i.e., the Pareto front. The next

section addresses the minimization of the utility function, u(B,P), and formulates

the performance-convergence rate trade-offs.

3.8 Minimization of the utility function

In this section, we develop the solution of the Learning Problem from the Pareto

front. The solution of the Learning Problem (3.55) lies on the Pareto front as already

established in Theorem 5. Hence, it suffices to choose a Pareto-optimal solution from

the Pareto front that minimizes (3.55) under the given constraints. In the following,

we study properties of the utility function.

64 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

3.8.1 Properties of the utility function

With the help of Theorem 5, we now restrict the utility function to the Pareto-

optimal solutions11. By Lemma 11, for every ε ∈ E , there exists a Pareto-optimal

solution, Bε,Pε, with

‖Pε‖ = ε, and ‖Bε + PεW −W‖ = δ(ε). (3.96)

Also, we note that, for any Pareto-optimal solution, B,P, the corresponding utility

function is

u(B,P) =
‖B + PW −W‖

1− ‖P‖ =
δ(‖P‖)
1− ‖P‖ . (3.97)

This permits us to redefine the utility function as, u∗ : E 7−→ R+, such that, for any

Pareto-optimal solution, B,P,

u(B,P) = u∗(‖P‖) (3.98)

We establish properties of u∗, which enable determining the solutions of the Learning

Problem.

Lemma 14: The function u∗(ε), for ε ∈ E , is non-increasing, i.e., for ε1, ε2 ∈ E
with ε1 < ε2, we have

u∗(ε2) ≤ u∗(ε1). (3.99)

Hence,

min
[B | P]∈F≤ε

u(B,P) = u∗(ε). (3.100)

Proof: Consider ε1, ε2 ∈ E such that ε1 < ε2, then ε2 is a convex combination

of ε1 and 1, i.e., there exists a 0 < µ < 1 such that

ε2 = µε1 + (1− µ). (3.101)

11Note that when εexact = +∞, the solution B = 0,P = I is Pareto-optimal, but the utility
function is undefined here, although the MOP is well-defined. Hence, for the utility function, we
consider only the Pareto-optimal solutions with ‖P‖ in E .

3.8. MINIMIZATION OF THE UTILITY FUNCTION 65

From Lemma 11, there exist δ(ε1) and δ(ε2) on the Pareto front corresponding to ε1

and ε2, respectively. Since the Pareto front is convex (from Lemma 13), we have

δ(ε2) ≤ µδ(ε1) + (1− µ)δ(1). (3.102)

Recall that δ(1) = 0 ; we have

u∗(ε2) =
δ(ε2)

1− µε1 − (1− µ)
=

δ(ε2)

µ(1− ε1)
≤ µδ(ε1)

µ(1− ε1)
, (3.103)

and (3.99) follows.

We now have

min
[B | P]∈Fε

u(B,P) = min
[B | P]∈Fε, (B,P) is P.O.

u(B,P),

= min
‖P‖≤ε, (B,P) is P.O.

u(B,P),

= min
0≤ε′≤ε

u∗(ε′),

= u∗(ε), (3.104)

where P.O. stands for Pareto-optimal. The first step follows from Theorem 5. The

second step is just a restatement since the sparsity constraints are included in the

MOP. The third step follows from the definition of u∗ and finally, we use the non-

increasing property of u∗ to get the last equation.

We now study the cost of the utility function. From Lemma 14, we note that this

cost is non-increasing as ε increases. When εexact < 1, this cost is 0. When εexact =

+∞, we may be able to decrease the cost as ε→ 1. We now define the limiting cost.

Definition 5: [Infimum cost] The infimum cost, cinf , of the utility function is de-

fined as

cinf ,

{
limε→1 u

∗(ε), if εexact = +∞,
0, otherwise.

(3.105)

Clearly, the cost does not increase as ε → 1 from Lemma 14. If εexact = +∞, it

is not possible for the utility function, u∗(ε), to attain cinf , since u∗(ε) is undefined

at ‖P‖ = 1, instead the utility function can have a value as close as desired to cinf ,

66 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

but it cannot attain cinf . The following lemma establishes the cost of the utility

function, u∗(ε), as ε→ 1.

Lemma 15: If εexact = +∞, then the infimum cost, cinf , is the negative of the

left derivative, D−(δ(ε)), of the Pareto front evaluated at ε = 1.

Proof: Recall that δ(1) = 0. Then cinf is given by

cinf = lim
ε→1

u∗(ε),

= lim
ε→1

δ(ε)

1− ε,

= lim
ε→1

δ(ε)− δ(1)

1− ε ,

= −D−(δ(ε))|ε=1. (3.106)

3.8.2 Graphical representation of the analytical results

In this section, we graphically view the analytical results developed earlier. To this

aim, we establish a graphical procedure using the following lemma.

Lemma 16: Let (ε, δ(ε)) be a point on the Pareto front and g(ε) a straight line

that passes through (ε, δ(ε)) and (1, 0). The cost associated to the Pareto-optimal

solution(s) corresponding to (ε, δ(ε)) is both the (negative) slope and the intercept

(on the vertical axis) of g(ε).

Proof: We define the straight line, g(ε), as

g(ε) = c1ε+ c2, (3.107)

where c1 is its slope and c2 is its intercept on the vertical axis. Since g(ε) passes

through (ε, δ(ε)) and (1, 0), its slope, c1, is given by

c1 =
δ(ε)− 0

ε− 1
= −u∗(ε). (3.108)

3.8. MINIMIZATION OF THE UTILITY FUNCTION 67

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f2 = ‖P‖

f 1
=
‖B

+
P

W
−

W
‖

(ε∗, δ∗)

ε∗

δ∗

c∗

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f2 = ‖P‖

f 1
=
‖B

+
P

W
−

W
‖

co

εo

δo
(εo, δo)

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f2 = ‖P‖

f 1
=
‖B

+
P

W
−

W
‖ ca

(εa, δa)

εa

δa

(c)

Figure 3.1: (a) Graphical illustration of Lemma 16. (b) Illustration of case (i) in
performance-speed tradeoff. (c) Illustration of case (ii) in performance-speed tradeoff.

Since g(ε) passes through (1, 0), at ε = 1 we have

c2 = [g(ε)− c1ε]ε=1 = g(1)− c1 = u∗(ε). (3.109)

Figure 3.1(a) illustrates Lemma 16, graphically. Let (ε∗, δ∗) be a point on the Pareto

front. The cost, c∗, of the utility function, u∗(ε∗), is the intercept of the straight line

passing through (ε∗, δ∗) and (1, 0).

68 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

3.8.3 Performance-speed tradeoff: εexact = +∞

In this case, no matter how large we choose ‖P‖, the HDC does not converge to the

exact solution. By Lemma 8, the convergence rate of the HDC depends on ρ(P) and

thus upper bounding ‖P‖ leads to a guarantee on the convergence rate. Also, from

Lemma 14, the utility function is non-increasing as we increase ‖P‖. We formulate

the Learning Problem as a performance-speed tradeoff. From the Pareto front and

the constant cost straight lines, we can address the following two questions.

(i) Given a pre-specified performance, co (the cost of the utility function), choose a

Pareto-optimal solution that results into the fastest convergence of the HDC to

achieve co. We carry out this procedure by drawing a straight line that passes

the points (0, co) and (1, 0) in the Pareto plane. Then, we pick the Pareto-

optimal solution from the Pareto front that lies on this straight line and also

has the smallest value of ‖P‖. See Figure 3.1(b).

(ii) Given a pre-specified convergence speed, εa, of the HDC algorithm, choose a

Pareto-optimal solution that results into the smallest cost of the utility func-

tion, u(B,P). We carry out this procedure by choosing the Pareto-optimal

solution, (εa, δa), from the Pareto front. The cost of the utility function for this

solution is then the intercept (on the vertical axis) of the constant cost line that

passes through both (εa, δa) and (1, 0). See Figure 3.1(c).

We now characterize the steady state error. Let Bo,Po, be the operating point of

the HDC obtained from either of the two tradeoff scenarios described above. Then,

the steady state error in the limiting state, X∞, of the network when the HDC

with Bo,Po is implemented, is given by

ess = ‖(I−Po)
−1Bo −W‖, (3.110)

which is clearly bounded above by (3.54).

3.9. SIMULATIONS 69

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

f2

f 1

εexact

Case I

Case II

Figure 3.2: Typical Pareto front.

3.8.4 Exact solution: εexact < 1

In this case, the optimal operating point of the HDC algorithm is the Pareto-optimal

solution corresponding to (εexact, 0) on the Pareto front. A typical Pareto front in

this case is shown in Figure 3.2, labeled as Case I. A special case is when the sparsity

pattern of B is the same as the sparsity of the weight matrix, W. We can then choose

B = W, P = 0, (3.111)

as the solution to the Learning Problem and the Pareto front is a single point (0, 0)

shown as Case II in Figure 3.2.

If it is desirable to operate the HDC algorithm at a faster speed than corresponding

to εexact, we can consider the performance-speed tradeoff in Section 3.8.3 to get the

appropriate operating point.

3.9 Simulations

In this section, we revisit the leader-follower setup introduced in Section 3.6.1. We

consider a multi-agent system with N = 24 agents inter-connected using the nearest-

neighbor rule, withM1 = 10 ground robots,M2 = 10 aerial robots andK = 4 humans.

We choose the robots as the followers (sensors), i.e., we have M = M1 + M2 = 20,

and the humans as the leaders (anchors). This setup is shown in Fig. 3.3(a) where ‘◦’
represents a ground robot, ‘×’ represents an aerial robot, and ‘∇’ represents a human

70 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

anchor. We may consider the four anchors that are located at four corners on the

ground as base-stations that generate the operating instructions to the robots. Each

robot intends to receive operating instructions from one of the four humans but the

underlying communication network is restricted. We implement the HDC algorithm

to convey this information, i.e., if xi is the state of the ith robot, the HDC algorithm

requires

lim
t→∞

xi(t+ 1) = wiu, (3.112)

where wi is a 1×4 row-vector. Without loss of generality, we choose wi = [1, 0, 0, 0]

for i = 1, . . . , 5, wi = [0, 1, 0, 0] for i = 6, . . . , 10, wi = [0, 0, 1, 0] for i = 11, . . . , 15,

and wi = [0, 0, 0, 1] for i = 16, . . . , 20. For simulation purposes, we choose u =

[15, 5, − 5, − 15]T .

For the underlying communication graph shown in Fig. 3.3(a), the Pareto-front is

shown in Fig. 3.3(b). It turns out that in this case, there is indeed an exact solution as

shown on the Pareto-front. To study the performance-speed tradeoff, we choose three

operating points on the Paerto-front corresponding to f2 = ‖P‖ ∈ {0.3, 0.7, εexact =

0.9}. We implement the HDC algorithm with these choices of f2. The performance

of the HDC algorithm for these different operating points is shown in Fig. 3.3(c)

where we plot the normalized error summed over the entire network. Clearly, we can

trade convergence speed with the accuracy of the algorithm. For instance, notice that

as we get closer to εexact, the steady state error is reduced on the expense of the

convergence speed.

3.10 Conclusions

In this chapter, we describe a framework for the analysis and synthesis of linear dis-

tributed algorithms that we term High Dimensional Consensus (HDC). HDC contains

average-consensus as a special case. We present the conditions under which the HDC

converges, the limiting state, and its convergence rate of the HDC.

We then focus on the design of the HDC parameters so that the network states

converge to a pre-specified state. We term this as the learning problem. We show that

3.10. CONCLUSIONS 71

0 50 100 150 200 250
0

100

200

0

100

200

(a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

f2

f 1

εexact = 0.9

(b)

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

HDC iterations, t

N
or

m
al

iz
ed

 e
rr

or
 n

or
m

ε = 0.3
ε = 0.7
εexact = 0.9

(c)

Figure 3.3: (a) Multi-agent system: Network of ground robots ‘◦’, aerial robots ‘×’,
and humans ‘∇’. (b) The Pareto-front for the given W and the underlying communi-
cation graph. (c) HDC algorithm implemented for three different scenarios reflecting
the performance-speed tradeoff.

72 CHAPTER 3. HIGH DIMENSIONAL CONSENSUS (LINEAR CASE)

the solution of this learning problem is a Pareto-optimal solution to a multi-objective

optimization problem (MOP). We explicitly prove the Pareto-optimality of the MOP

solutions. We then prove that the Pareto front (collections of the Pareto-optimal solu-

tions) is convex and strictly decreasing. Using these properties, we solve the learning

problem and formulate performance-speed tradeoffs. We include experimental results

for the leader-follower architecture in multi-agent systems that learns the parameters

when we have multiple leaders. We explore different performance-speed tradeoffs for

this example.

Chapter 4

Localization in sensor networks

This chapter develops DILOC, a special case of the HDC algorithm (discussed in

Chapter 3). DILOC is a distributed, iterative algorithm to locate M sensors (with

unknown locations) in Rm,m ≥ 1 (for example, m = 2 corresponds to nodes lying on

a plane, while m = 3 corresponds to nodes in 3d space), with respect to a minimal

number, K = m + 1, of anchors with known locations. DILOC uses the barycentric

coordinates of a node with respect to its neighbors; these coordinates are computed

using the Cayley-Menger determinants, i.e., the determinants of matrices of inter-

node distances. We show convergence of DILOC by associating with it an absorbing

Markov chain whose absorbing states are the states of the anchors. In particular,

DILOC requires each sensor to communicate to exactly m+ 1 carefully chosen neigh-

bors. We relax this and consider certain enhancements to DILOC, namely, when we

have (i) dynamic network topology; (ii) more than m + 1 anchors; and (iii) more

than m + 1 neighbors. We then provide an algorithm, MDL, which performs dis-

tributed localization and tracking in networks of mobile agents. Finally, we study

localization in random environments (communication failures, communication noise,

and noisy distance measurements).

Parts of this chapter have been presented in [41, 44, 50, 51, 54, 57].

73

74 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

4.1 Introduction

Localization is a fundamental problem in sensor networks. Information about the

location of the sensors is key to process the sensors’ measurements accurately. In

applications where sensors are deployed randomly, they have no knowledge of their

exact locations, but equipping each of them with a localization device like a GPS is

expensive, not robust to jamming in military applications, and is usually of limited

use in indoor environments. We develop a distributed (decentralized) localization

algorithm where the sensors find their locations under a limited set of assumptions

and conditions.

For DILOC, we assume that there are exactly m + 1 anchors, i.e., K = m + 1.

In the context of sensor localization, anchors are the nodes in the network that know

their exact locations in Rm. The goal is then to locate the remaining M nodes in the

network, which we call sensors and which do not know their locations, with respect

to the anchors1. The problem is practically interesting when M � m + 1. Two

important characteristics in this work are: (i) we assume that the sensors lie in the

convex hull of the anchors; and, from this, it follows that (ii) each sensor can find a

triangulation set, i.e., a set of m + 1 nodes (a possible combination of anchors and

sensors) such that the sensor in question lies in the convex hull of this triangulation

set. The chapter will discuss the practical significance of these assumptions.

In applications with large-scale sensor networks, the distance of most of the M

sensors to the m + 1 anchors is large, so that it is impractical for the sensors to

communicate directly with the anchors. Further, because M is assumed very large,

to compute the locations of the sensors at a central station is not feasible, as it would

require a large communication effort, expensive large-scale computation, and add la-

tency and bottlenecks to the network operation. These networks call for efficient

distributed algorithms where each node communicates directly only with a few neigh-

boring nodes (either sensors or anchors) and a low order computation is performed

locally at the node and at each iteration of the algorithm, for example. We present

1In the sequel, the term node refers to either anchors (known location) or sensors (locations to
be determined). In a few exceptions, easily resolved from the context, we will still write sensors,
when we actually mean nodes.

4.1. INTRODUCTION 75

here the Distributed Iterative LOCalization algorithm (DILOC, pronounced die-lock)

that overcomes the above challenges in large-scale randomly deployed networks.

In DILOC, the sensors start with an initial estimate of their locations, that can

be a random guess. This random guess is arbitrary and does not need to place the

sensors in the convex hull of the anchors. The sensors then update their locations,

which we call the state of the network, by exchanging their state information only

with a carefully chosen subset of m + 1 of their neighbors (see (ii) above.) This

state updating is a convex combination of the states of the neighboring nodes. The

coefficients of the convex combination are the barycentric coordinates of the sensors

with respect to their neighbors, [84, 85], which are determined from the Cayley-

Menger determinants [86], see Appendix B.2.

We further extend DILOC to dynamic network topologies and more than m + 1

anchors and neighbors. When the sensor network consists of mobile agents2 e.g.,

robots, vehicles or cell-phones, whose positions change as a function of time, sim-

ple DILOC updates are not applicable since the network configuration is not static.

Hence, the state update (the optimal combining coefficients) changes with time as the

neighborhood at each sensor changes. In the mobile case, the localization problem

is not only to estimate the starting position of the agents, but also to track their

motion. To this end, we provide an algorithm MDL for localization in networks of

mobile agents.

In the following, we contrast our work with the existing literature on sensor local-

ization.

Brief review of the literature: The literature on localization algorithms may

be broadly characterized into centralized and distributed algorithms. Illustrative

centralized localization algorithms include: maximum likelihood estimators that are

formulated when the data is known to be described by a statistical model, [87, 88];

multi-dimensional scaling (MDS) algorithms that formulate the localization problem

as a least squares problem at a centralized location, [89, 90]; work that exploits the

geometry of the Euclidean space, like when locating a single robot using trilateration

2The term agents and sensors mean the same and are used interchangeably to denote the network
elements with unknown locations.

76 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

in m = 3-dimensional space, see [91] where a geometric interpretation is given to

the traditional algebraic distance constraint equations; localization algorithms with

imprecise distance information, see [92] where the authors exploit the geometric rela-

tions among the distances in the optimization procedure; for additional work, see, e.g.,

[93, 94]. Centralized algorithms are fine in small or tethered network environments;

but in large untethered networks, they incur high communication cost and may not

be scalable; they depend on the availability and robustness of a central processor and

have a single point of failure.

Distributed localization algorithms can be characterized into two classes: multi-

lateration and successive refinements. In multilateration algorithms, [95, 96, 97, 98],

each sensor estimates its range from the anchors and then calculates its location via

multilateration, [99]. The multilateration scheme requires a high density of anchors,

which is a practical limitation in large sensor networks. Further, the location esti-

mates obtained from multilateration schemes are subject to large errors because the

estimated sensor-anchor distance in large networks, where the anchors are far apart,

is noisy. To overcome this problem, a high density of anchors is required. We, on

the other hand, do not estimate distances to far-away nodes. Only local distances

to nearby nodes are estimated; these should have better accuracy. This allows us to

employ the minimal number m+ 1 of anchors (for localization in Rm.)

A distributed multidimensional scaling algorithm is presented in [100]. Successive

refinement algorithms that perform an iterative minimization of a cost function are

presented in [101, 102, 103]. Reference [101] discusses an iterative scheme where

they assume 5% of the nodes as anchors. Reference [103] discusses a Self-Positioning

Algorithm (SPA) that provides a GPS-free positioning and builds a relative coordinate

system.

Another formulation to solve localization problems in a distributed fashion is

the probabilistic approach. Nonparametric belief propagation on graphical models is

used in [104]. Sequential Monte Carlo methods for mobile localization are considered

in [105]. Particle filtering methods have been addressed in [106] where each sensor

stores representative particles for its location that are weighted according to their

likelihood. Reference [107] tracks and locates mobile robots using such probabilistic

4.1. INTRODUCTION 77

methods.

In the context of localization for mobile networks, reference [108] discusses a track-

ing algorithm that tracks objects using wireless sensing devices sensing the objects.

The wireless devices already know their locations and tracking is achieved by aggre-

gating the sensed information. Another interesting tracking algorithm is provided in

[109] that tracks humans on a tiled floor by using pressure sensors on the tiles and

pressure and gait patterns of the humans. Our algorithm falls into token localization

and tracking where the objects to be tracked possess a sensor (or an RFID tag) and

helps the tracker. Reference [110] uses trilaterations to solve the localization/tracking

problem that requires a large number of close by anchors to have a reasonable location

estimate. Some other relevant references in this direction include [111, 112, 113, 114].

In comparison with these references, DILOC is equivalent to solving by a dis-

tributed and iterative algorithm a large system of linear algebraic equations where

the system matrix is highly sparse. Our method exploits the structure of this matrix,

which results from the topology of the communication graph of the network.

We now describe the rest of the chapter. Section 4.2 presents preliminaries

and then DILOC, the distributed iterative localization algorithm, that is based on

barycentric coordinates, generalized volumes, and Cayley-Menger determinants. Sec-

tion 4.3 proves DILOC’s convergence. Section 4.4 presents the DILOC-REL, DILOC

with relaxation, and proves that it asymptotically reduces to the deterministic case

without relaxation. We then consider enhancements to DILOC in Section 4.5, i.e.,

Section 4.5.1 provides DILOC for dynamic network topologies, Section 4.5.2 provides

DILOC for more than m+ 1 anchors, and Section 4.5.3 provides DILOC where each

sensor utilizes the information from all of its neighbors. We then consider localiza-

tion for networks of mobile agents in Section 4.6. Specifically, Section 4.6.1 presents

our motion model, Section 4.6.2 presents the MDL algorithm, whereas Section 4.6.3

discusses the convergence proof of the MDL algorithm. We then briefly outline dis-

tributed localization in random environments in Section 4.7. Finally, Section 4.8

presents the simulations for all of the above scenarios and Section 4.9 concludes the

chapter. Appendices B.1–B.2 provide the convex hull inclusion test, and the Cayley-

Menger determinant.

78 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

4.2 Distributed sensor localization: DILOC

In this section, we formally state DILOC (Distributed Iterative LOCalization algo-

rithm) in m-dimension Euclidean space, Rm (m ≥ 1), and introduce relevant notation.

Of course, for sensor localization, m = 1 (sensors in a straight line), m = 2 (plane),

or m = 3 (3d-space.) The generic case of m > 3 is of interest, for example, when

the graph nodes represent m-dimensional feature vectors in classification problems,

and the goal is still to find in a distributed fashion their global coordinates (with re-

spect to a reference frame.) Since our results are general, we deal with m-dimensional

‘localization,’ but, for easier accessibility, the reader may consider m = 2 or m = 3.

To provide a quantitative assessment on some of the assumptions underlying

DILOC, we will, when needed, assume that the deployment of the sensors in a given

region follows a Poisson distribution. This random deployment is often assumed

and is realistic; we use it to derive probabilistic bounds on the deployment den-

sity of the sensors and on the communication radius at each sensor; these can be

straight forwardly related to the values of network field parameters (like transmitting

power or signal-to-noise ratio) in order to implement DILOC. We discuss the com-

putation/communication complexity of the algorithm and provide a simplistic, yet

insightful, example that illustrates DILOC.

4.2.1 Notation

Recall that the sensors and anchors are in Rm. Let Θ be the set of nodes in the

network decomposed as

Θ = κ ∪ Ω, (4.1)

where κ is the set of anchors, i.e., the nodes whose locations are known, and Ω is the

set of sensors whose locations are to be determined. By | · | we mean the cardinality

of the set, and we let |Θ| = N , |κ| = m + 1, and |Ω| = M . For a set Ψ of nodes, we

denote its convex hull by C (Ψ)3. For example, if Ψ is a set of three non-collinear nodes

in a plane, then C (Ψ) is a triangle. Let AΨ be the generalized volume (area in m = 2,

3The convex hull, C (Ψ), of a set of points in Ψ is the minimal convex set containing Ψ.

4.2. DISTRIBUTED SENSOR LOCALIZATION: DILOC 79

volume in m = 3, and their generalization in higher dimensions) of C (Ψ). Let dlk

be the Euclidean distance between two nodes l, k ∈ Θ, their inter-node distance; the

neighborhood of node l in a given radius, rl, is

K (l, rl) = {k ∈ Θ : dlk < rl} . (4.2)

Let cl be the m-dimensional coordinate vector for node, l ∈ Θ, with respect to a

global coordinate system, written as the m-dimensional row vector,

cl = [cl,1, cl,2, . . . , cl,m] . (4.3)

The true (possibly unknown) location of node l is represented by c∗l . Because the

distributed localization algorithm DILOC is iterative, cl(t) will represent the location

estimates, or state, for node l at iteration t.

4.2.2 Distributed iterative localization algorithm.

We state explicitly the assumptions that we make when developing DILOC.

(B0) Convexity. All the sensors lie inside the convex hull of the anchors

C(Ω) ⊆ C(κ). (4.4)

(B1) Anchor nodes. The anchors’ locations are known, i.e., their state remains

constant

cq(t) = c∗q, q ∈ κ, t ≥ 0. (4.5)

(B2) Nondegeneracy. The generalized volume4 for κ, Aκ 6= 0.

From (B0), the next Lemma follows easily.

Lemma 17 (Triangulation): For every sensor l ∈ Ω, there exists some rl > 0 such

4Nondegeneracy simply states that the anchors do not lie on a hyperplane. If this was the case,
then the localization problem reduces to a lower dimensional problem, i.e., Rm−1 instead of Rm. For
instance, if all the anchors in the network lie on a plane in R3, by (B0), the sensors also lie in R3,
and the localization problem can be thought of as localization in R2.

80 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

that a triangulation set, Θl(rl), satisfying the following conditions

Θl (rl) ⊆ K (l, rl) , l /∈ Θl (rl) , l ∈ C (Θl (rl)) , |Θl (rl)| = m+ 1, AΘl(rl) 6= 0, (4.6)

exists5.

Proof: Clearly, by (B0), κ satisfies (4.6) and by taking rl = maxl,k dlk, (l ∈
Ω, k ∈ κ) the Lemma follows.

Lemma 17 provides an existence proof, but in localization in wireless sensor net-

works, it is important to triangulate a sensor not with the network diameter but

with a small rl. In fact, Section 4.2.4 discusses the probability of finding one such Θl

with rl � maxl,k dlk, (l ∈ Ω, k ∈ Θ). In addition, Appendix B.1 provides a procedure

to test the convex hull inclusion of a sensor, i.e., for any sensor, l, to determine if

it lies in the convex hull of m + 1 nodes arbitrarily chosen from the set, K (l, rl),

of its neighbors. Finding Θl is an important step in DILOC and we refer to it as

triangulation.

To state the next assumption, define a communication link between nodes l and j,

if l and j can exchange information. If l and j have a communication link, l and j

can both estimate the inter-node distance, dlj, between them. This distance can be

found by Received Signal Strength (RSS), Time of Arrival (ToA), or Angle of Arrival

(AoA), see [115] for details.

(B3) Inter-node communication. There is a communication link between all

of the nodes in the set {l} ∪ K(l, rl), ∀ l ∈ Ω.

With the above assumptions and notations, we present barycentric coordinates

that serve as the updating coefficients in DILOC.

Barycentric coordinates. DILOC is expressed in terms of the barycentric co-

ordinates, alk, of the node, l ∈ Ω, with respect to the nodes, k ∈ Θl. The barycentric

coordinates, alk, are unique and are given by, see [84, 85],

alk =
A{l}∪Θl\{k}

AΘl

, (4.7)

5Recall that the set K (l, rl) groups the neighboring nodes of l within a radius rl. By (4.6), Θl (rl)
is a subset of m+ 1 nodes such that sensor l lies in its convex hull but is not one of its elements.

4.2. DISTRIBUTED SENSOR LOCALIZATION: DILOC 81

with AΘl 6= 0, where ‘\’ denotes the set difference, A{l}∪Θl\{k} is the generalized volume

of the set {l} ∪Θl \ {k}, i.e., the set Θl with node l added and node k removed. The

barycentric coordinates can be computed from the inter-node distances dlk using the

Cayley-Menger determinants as shown in Appendix B.2. From (4.7), and the facts

that the generalized volumes are non-negative and

∑

k∈Θl

AΘl∪{l}\{k} = AΘl , l ∈ C(Θl), (4.8)

it follows that, for each l ∈ Ω, k ∈ Θl,

alk ∈ [0, 1],
∑

k∈Θl

alk = 1. (4.9)

We now present DILOC in two steps: set-up and DILOC proper. We then provide

its matrix form useful for analysis purposes.

DILOC set-up: Triangulation. In the set-up step, each sensor l triangulates

itself, so that by the end of this step we have paired every l ∈ Ω with its correspond-

ing m+1 neighbors in Θl. Since triangulation should be with a small rl, the following

is a practical protocol for the set-up step.

Sensor l starts with a communication radius, rl, that guarantees triangulation with

high probability with the given density of deployment, γ0. This choice is explained

in detail in Section 4.2.4. Sensor l then chooses arbitrarily m + 1 nodes within rl,

and tests if it lies in the convex hull of these nodes using the procedure described in

Appendix B.1. Sensor l attempts this with all collections ofm+1 nodes within rl. If all

attempts fail, the sensor adaptively increases, in small increments, its communication

radius, rl, and repeats the process6. By (B0) and (4.4), success is eventually achieved

and each sensor is triangulated by finding Θl with properties (4.6) and (B3).

If a sensor has directionality a much simpler algorithm, based on Lemma 18 be-

low (see also the discussion following the Lemma), triangulates the sensor with high

6The step size of this increment is also dependent on the density of the deployment, γ0, such
that a reasonable number of sensors are added in the larger neighborhood obtained by increasing rl.
This will be clear from the discussion in Section 4.2.4.

82 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

probability of success in one shot. To assess the practical implications required by

DILOC’s set-up phase, Subsection 4.2.4 considers the realistic scenario where the

sensors are deployed using a random Poisson distribution and computes in terms of

deployment parameters the probability of finding at least one such Θl in a given

radius, rl.

DILOC iterations: state updating. Once the set-up phase is complete, at

time t + 1, each sensor l ∈ Ω, iteratively updates its state, i.e., its current location

estimate, by a convex combination of the states at time t of the nodes in Θl. The

anchors do not update their state, since they know their locations. The updating is

explicitly given by

cl(t+ 1) =

{
cl(t), l ∈ κ,

∑
k∈Θl

alkck(t), l ∈ Ω,
(4.10)

where alk are the barycentric coordinates of l with respect to k ∈ Θl. DILOC in (4.10)

is distributed since (i) the update is implemented at each sensor independently; (ii)

at sensor l ∈ Ω, the update of the state, cl(t + 1), is obtained from the states of

its m+ 1 neighboring nodes in Θl; and (iii) there is no central location and only local

information is available.

DILOC: Matrix format. For compactness of notation and analysis purposes, we

write DILOC (4.10) in matrix form. Without loss of generality, we index the anchors

in κ as 1, 2, . . . ,m + 1 and the sensors in Ω as m + 2,m + 3, . . . ,m + 1 + M = N .

We now stack the (row vectors) states, cl, given in (4.3) for all the N nodes in the

network in the N ×m-dimensional coordinate matrix

C =
[

cT1 , . . . , c
T
N

]T
. (4.11)

DILOC equations in (4.10) now become in compact matrix form

C(t+ 1) = ΥC(t). (4.12)

4.2. DISTRIBUTED SENSOR LOCALIZATION: DILOC 83

The structure of the N ×N iteration matrix Υ is more apparent if we partition it as

Υ =

[
Im+1 0

B P

]
, (4.13)

The first m+ 1 rows correspond to the update equations for the anchors in κ. Since

the states of the anchors are constant, see (B1) and (4.5), the first m+ 1 rows of Υ

are zero except for a 1 at their diagonal entry (q, q), q ∈ κ = {1, . . . ,m + 1}. In

other words, these first m + 1 rows are the (m + 1) × N block matrix [Im+1|0], i.e.,

the (m+ 1)× (m+ 1) identity matrix Im+1 concatenated with the (m+ 1)×M zero

matrix, 0.

Each of the M remaining rows in Υ, indexed by l ∈ Ω = {m + 2,m + 3, . . . , N},
have only m + 1 non-zero elements corresponding to the nodes in the triangulation

set, Θl, of l, and these non-zero elements are the barycentric coordinates, alk, of

sensor l with respect to the nodes in Θl. The M × (m+ 1) block B = {blj} is a zero

matrix, except in those entries blj corresponding to sensors l ∈ Ω that have a direct

link to anchors j ∈ κ. The M ×M block P = {plj} is also a sparse matrix where

the non-zero entries in row l correspond to the sensors in Θl. The matrices Υ, P,

and B have important properties that will be used to prove the convergence of the

distributed iterative algorithm DILOC in Sections 4.3 and 4.4.

Remarks: Equation (4.12) writes DILOC in matrix format for compactness; it

should not be confused with a centralized algorithm–it still is a distributed iterative

algorithm. It is iterative, because each iteration through (4.12) simply updates the

(matrix of) state(s) from C(t) to C(t+1). It is distributed because each row equation

updates the state of sensor l from a linear combination of the states of the m+1 nodes

in Θl. In all, the iteration matrix, Υ, is highly sparse having exactly (m+1)+M(m+1)

non-zeros out of possible (m+ 1 +M)2 elements.

4.2.3 Example

To illustrate DILOC, we consider an m = 2-dimensional Euclidean plane with m+1 =

3 anchors and M = 4 sensors, see Fig. 4.1. The nodes are indexed such that the anchor

84 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

1

2

4

3

5

7

6

���

Figure 4.1: Deployment corresponding to the example in Section 4.2.3.

set is κ = {1, 2, 3}, |κ| = m+ 1 = 3, and the sensor set is Ω = {4, 5, 6, 7}, |Ω| = M =

4. The set of all the nodes in the network is, thus, Θ = κ∪Ω = {1, . . . , 7}, |Θ| = N =

7. The triangulation sets, Θl, l ∈ Ω, identified by using the convex hull inclusion test

are Θ4 = {1, 5, 7}, Θ5 = {4, 6, 7}, Θ6 = {2, 5, 7}, Θ7 = {3, 5, 6}. These triangulation

sets satisfy the properties in (4.6). Sensor 5 does not have any anchor node in its

triangulation set, Θ5, while the other sensors have only one anchor in their respective

triangulation sets. Since no sensor communicates with the m+1 = 3 anchors directly,

no sensor can localize itself in a single step.

At each sensor, l ∈ Ω, the barycentric coordinates, alk, k ∈ Θl, are computed

using the inter-node distances (among the nodes in the set {l} ∪ Θl) in the Cayley-

Menger determinant. It is noteworthy that the inter-node distances that need to

be known at each sensor l to compute alk are only the inter-node distances among

the m+ 2 nodes in the set {l}∪Θl. For instance, the distances in the Cayley-Menger

determinant needed by sensor 5 to compute a54, a56, a57 are the inter-node distances

among the nodes in the set, {5} ∪Θ5, i.e., d54, d56, d57, d46, d47, d67. These inter-node

distances are known at sensor 5 due to (B3).

Once the barycentric coordinates, alk, are computed, DILOC for the sensors in Ω is

cl(t+ 1) =
∑

k∈Θl

alkck(t), l ∈ Ω = {4, 5, 6, 7}. (4.14)

4.2. DISTRIBUTED SENSOR LOCALIZATION: DILOC 85

We write DILOC for this example in the matrix format (4.12).

c1(t+ 1)

c2(t+ 1)

c3(t+ 1)

c4(t+ 1)

c5(t+ 1)

c6(t+ 1)

c7(t+ 1)

=

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

a41 0 0 0 a45 0 a47

0 0 0 a54 0 a56 a57

0 a62 0 0 a65 0 a67

0 0 a73 a74 0 a76 0

c1(t)

c2(t)

c3(t)

c4(t)

c5(t)

c6(t)

c7(t)

, (4.15)

where the initial conditions are C(0) = [c∗1, c
∗
2, c
∗
3, c

0
4, c

0
5, c

0
6, c

0
7]T , with c0

l , l ∈ Ω, being

randomly chosen row vectors of appropriate dimensions. The sparseness in the matrix

in (4.15) illustrates the locality of the communication among the nodes.

4.2.4 Random Poisson deployment

For sensors to determine their locations, they need to triangulate. We first consider

a sufficient condition for a sensor to triangulate. We illustrate it on the plane, m =

2; the discussion can be extended to arbitrary dimensions. Consider Fig. 4.2(a),

which shows the triangulation region, a circle of radius, rl, centered at sensor l.

Let Q1, Q2, Q3, Q4 be four disjoint sectors partitioning this circle with equal areas,

i.e., AQi =
πr2

l

4
, i = 1, . . . , 4.

Lemma 18: A sufficient condition to triangulate sensor l ∈ R2 is to have at least

one node in each of the four disjoint equal area sectors, Qi, i = 1, . . . , 4, which

partition the circle of radius, rl, centered at l.

Proof: In Fig. 4.2(b) consider the triangulation of sensor l located at the center

of the circle; we choose arbitrarily four nodes p1, p2, p3, p4 in each of the four sec-

tors Q1, Q2, Q3, Q4. Denote the polygon with vertices p1, p2, p3, p4 by Pol (p1p2p3p4).

Consider the diagonal7 p1—p3 that partitions this polygon into two triangles4p1p2p3

7If Pol (p1p2p3p4) is concave, we choose the diagonal that lies inside Pol (p1p2p3p4), i.e., p1—p3
in Fig. 4.2(b). If Pol (p1p2p3p4) is convex, we can choose any of the two diagonals and the proof
follows.

86 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

and 4p1p3p4. Since l ∈ Pol (p1p2p3p4) and 4p1p2p3 ∪ 4p1p3p4 = Pol (p1p2p3p4)

with 4p1p2p3 ∩ 4p1p3p4 = LineSegment(p1, p3), then either l ∈ 4p1p2p3 or l ∈
4p1p3p4 or l belongs to both (when it falls on the LineSegment(p1, p3)). The triangle

in which l lies becomes the triangulating set, Θl, of l.

This completes the proof. The generalization to higher dimensions is straightfor-

ward; for instance, in R3, we have eight sectors and an arbitrary sensor l is triangu-

lated with at least one node in each of these eight sectors (with equal volume) of a

sphere of radius, rl, centered around l.

l

Q2

Q1 Q3π/4

rl

Q4

(a)

l

Q2

Q1
Q3

rl

Q4

p1 p3

p4

p2

(b)

Figure 4.2: (a) Sensor l identifies its triangulation set, Θl, in the circle of radius, rl,
centered at sensor l. The circle is divided into four disjoint sectors with equal ar-
eas, Q1, . . . , Q4. A sufficient condition for triangulation is that there exists at least
one node in each of these four sectors. (b) Illustration of Lemma 18.

In the following subsections, we study various probabilities associated with the

triangulation, assuming a Poisson sensor deployment. For simplicity, we restrict the

discussion to m = 2; it can be extended to arbitrary dimensions.

Probability that a sensor can triangulate

Here, we provide a local result concerned with the triangulation of an arbitrary sen-

sor. We characterize the probability that a sensor l can triangulate successfully in a

region of radius, rl, centered at l. A common deployment model in wireless sensor

4.2. DISTRIBUTED SENSOR LOCALIZATION: DILOC 87

networks is the Poisson deployment [116, 117]. For a Poisson distribution with rate

parameter or deployment density, γ0 > 0, the mean number of nodes in a sector Q

with area AQ is γ0AQ. The numbers of nodes in any two disjoint sectors, Q1 and Q2,

are independent random variables, and the locations of the nodes in a sector Q are

uniformly distributed. Let Qi be the set of nodes in the sector Qi. It follows from

the Poisson deployment that the probability of finding at least one node in each of

the four sets, Q1, . . . , Q4, is the product

P
(∣∣Qi

∣∣ > 0, 1 ≤ i ≤ 4
)

=
(

1− e−γ0πr2
l /4
)4

, (4.16)

since the distribution of the number of nodes in disjoint sectors is independent. Thus,

we have

PΘl(γ0) , P({sensor l can triangulate})
= P (Θl exists satisfying (4.6) given γ0)

≥ P
(
|Qi| > 0, 1 ≤ i ≤ 4

)
. (4.17)

The probability that a sensor fails to triangulate is

PF,l(γ0) , P({sensor l cannot triangulate}) = 1− PΘl(γ0). (4.18)

Equations (4.17) and (4.18) provide a tradeoff between rl and γ0, Indeed, to guarantee

triangulation of sensor l with probability ε, arbitrarily close to 1, either

rl ≥

−4ln

(
1− ε 1

4

)

γ0π

1
2

or γ0 ≥
−4

πr2
l

ln
(

1− ε 1
4

)
. (4.19)

88 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

Probability that all M sensors triangulate

Here, we provide a global result, i.e., we (lower) bound the probability that all sensors

in the network triangulate. We have

P ({sensor l triangulates} , 1 ≤ l ≤M) = 1− P

(⋃

l

{sensor l cannot triangulate}
)
,

≥ 1−
∑

l

P ({sensor l cannot triangulate}) ,

= 1−MPF,l(γ0), (4.20)

where we use the union bound to go from the first equation to the second. To get

the third equation, we use (4.18) and assume a flat network, i.e., a network where all

the sensors have the same characteristics (in particular, rl is the same for all sensors).

Clearly, the bound in (4.20) is only meaningful if PF,l(γ0) is very small.

Probability that the resulting sensor network triangulates given triangu-

lation failures

Given that some sensors may fail to triangulate, we ask the question of what is the

probability that the remaining sensors can all triangulate. An exact expression is

beyond the scope of this chapter. Here, we give a plausible argument when the

number of sensors is large so that the laws of large numbers are valid. Since the

probability of failure of each sensor to triangulate is PF,l in (4.18), MPF,l sensors

fail to triangulate. Hence, to compute the probability that the reduced network (the

network of sensors that can triangulate once we exclude the sensors that could not)

triangulates, we simply repeat the steps in Subsections 4.2.4–4.2.4, but, now with M1

sensors and deployment density γ1, given by

M1 = M(1− PF,l(γ0)), (4.21)

γ1 = γ0(1− PF,l(γ0)), (4.22)

4.3. CONVERGENCE OF DILOC 89

From (4.20), the probability that the reduced network triangulates is

P (sensor l triangulates, ∀ l) ≥ 1−M1PF,l(γ1), (4.23)

= 1−M(1− PF,l(γ0))PF,l(γ1). (4.24)

Equation (4.24) shows that, although not all sensors can triangulate, the probability of

triangulating the reduced network can be made arbitrarily high by choosing either γ0,

or rl, or both appropriately, such that PF,l(γ1)→ 0 (or alternatively PΘl(γ1)→ 1).

4.2.5 Complexity of DILOC

Once the barycentric coordinates are computed, each sensor performs the update

in (4.10) that requires m+ 1 multiplications and m additions. Assuming the compu-

tation complexity of the multiplication and the addition operations to be the same,

the computation complexity of DILOC is 2m + 1 operations, i.e., O(1) per sensor,

per iteration. Since each sensor exchanges information with m + 1 nodes in its tri-

angulation set, the communication complexity of DILOC is m + 1 communications,

i.e., O(1) per sensor, per iteration. Hence, both the computation and communication

complexity are O(M) for a network of M sensors. Note that, since the triangulation

set-up phase8, which identifies Θl (rl) and computes the barycentric coordinates, as

explained in Subsection 4.2.2, are to be carried out only once at the start of DILOC,

they require a constant computation/communication complexity, so we do not ac-

count for it explicitly.

4.3 Convergence of DILOC

In this section, we prove the convergence of DILOC to the exact locations of the

sensors, c∗l , l ∈ Ω. To formally state the convergence result, we provide briefly

8It follows from Lemma 18 that if the sensors have directional capability then each sensor has
to find one neighbor in each of its 4 sectors, Ql,1, Ql,2, Ql,3, Ql,4 (in m = 2-dimensional space).
Once a neighbor is found, triangulation requires choosing 3 out of these 4, in order to identify Θl.
The computational complexity in m = 2-dimensional Euclidean space is 4 choose 3 = 4. Without
directionality the process of finding Θl has the (expected) computation complexity of γ0πr

2
l choose 3.

90 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

background and additional results, based on assumptions (B0)–(B3).

The entries of the rows of the iteration matrix Υ, in (4.12), are either zero or the

barycentric coordinates, alk, which are non-negative, and, by (4.9), add to 1. This

matrix can then be interpreted as the transition matrix of a Markov chain. We then

describe the localization problem and DILOC in terms of a Markov chain. Let the

assumptions (B0)–(B3) in Section 4.2.2 hold and the N nodes in the sensor network

correspond to the states of a Markov chain where the (ij)-th element of the iteration

matrix, Υ = {υij}, defines the probability that the ith state goes to the jth state.

Because of the structure of Υ, this chain is a very special Markov chain.

Absorbing Markov chain. Let an N × N matrix, Υ = {υij}, denote the

transition probability matrix of a Markov chain with N states, si,i=1,...,N . A state si

is called absorbing if the probability of leaving that state is 0 (i.e., υij = 0, i 6= j, in

other words υii = 1). A Markov chain is said to be absorbing if it has at least one

absorbing state, and if from every state it is possible to go with non-zero probability

to an absorbing state (not necessarily in one step). In an absorbing Markov chain, a

state which is not absorbing is called transient. For additional background, see, for

example, [71].

Lemma 19: The underlying Markov chain with the transition probability matrix

given by the iteration matrix, Υ, is absorbing.

Proof: We prove by contradiction. Since υii = 1, i ∈ κ, the anchors are

the absorbing states of the Markov chain. We now show that the Markov chain is

absorbing with the sensors as the transient states.

Assume that the underlying Markov chain is not absorbing. This can happen only

if the transient states can be partitioned into two disjoint clusters C1 and C2 (with C2

non-empty), such that each non-absorbing state (sensor) in C1 can reach, with non-

zero probability, at least one of the absorbing states (i.e., there is a directed path

from each non-absorbing state to at least one of the anchors) and, with probability 1,

the states in C2 cannot reach an absorbing state (i.e., there is no directed path from

the transient state to any anchor). It follows that with probability 1 that the states

in C2 cannot reach the states in C1 (in one or multiple steps); otherwise, they reach

an absorbing state with a non-zero probability.

4.3. CONVERGENCE OF DILOC 91

Now consider the non-absorbing states (or sensors) that lie on the boundary of

the convex hull, C(C2), i.e., the vertices of C(C2). Because they are on the boundary,

they cannot lie in the interior of the convex hull of any subset of sensors in C(C2),

and, thus, cannot triangulate themselves, which contradicts Lemma 17. In order

to triangulate the boundary sensors in C(C2), the boundary sensors in C2 must be

able to reach the non-absorbing states (sensors) of C1 and/or the absorbing states

(anchors); that is to say that the boundary sensors in C(C2) have directed paths

to the absorbing states (anchors). This clearly contradicts the assumption that the

set C2 is non-empty and, hence, every non-absorbing state has a directed path to the

absorbing states. Hence, the Markov chain is absorbing and the sensors correspond

to the transient states of the absorbing Markov chain.

Consider the partitioning of the iteration matrix, Υ, in (4.13). With the Markov

chain interpretation, the M × (m + 1) block B = {blj} is a transition probability

matrix for the transient states to reach the absorbing states in one-step, and the

block M ×M P = {plj} is a transition probability matrix for the transient states.

With (4.13), Υt+1 can be written as

Υt+1 =

Im+1 0
t∑

k=0

PkB Pt+1

 , (4.25)

and, as t goes to infinity, we have

lim
t→∞

Υt+1 =

[
Im+1 0

(IM −P)−1 B 0

]
, (4.26)

by Lemma 25, in Appendix A.1. Lemma 25 uses the fact that if P is the matrix

associated to the transient states of an absorbing Markov chain, then ρ(P) < 1,

where ρ(·) is the spectral radius of a matrix. With (4.26), DILOC (4.10) converges

to

lim
t→∞

C(t+ 1) =

[
Im+1 0

(IM −P)−1 B 0

]
C(0). (4.27)

92 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

From (4.27) we note that the coordinates of the M sensors in Ω (last M rows of C(t+

1)) converge as t→∞ to functions of the m+ 1 anchors in κ (whose coordinates are

exactly known). The limiting values of the states of the M sensors in Ω are written in

terms of the coordinates of the m+1 anchors in κ weighted by (IM−P)−1B. To show

that the limiting values are indeed the exact solution, we give the following Lemma.

Lemma 20: Let c∗l be the exact coordinates of a node, l ∈ Θ. Let the M× (m+1)

matrix, D = {dlj}, l ∈ Ω, j ∈ κ, be the matrix of the barycentric coordinates of

the M sensors (in Ω) in terms of the m+ 1 anchors in κ, relating the coordinates of

the sensors to the coordinates of the anchors by

c∗l =
∑

j∈κ

dljc
∗
j , l ∈ Ω. (4.28)

Then, we have

D = (IM −P)−1 B. (4.29)

Proof: Clearly (IM−P) is invertible, since, by Lemma 25 in Appendix A.1, ρ(P) <

1; this follows from the fact that the eigenvalues of the matrix IM − P are 1 − λj,
where λj is the jth eigenvalue of the matrix P and |λj| < 1, ∀j = 1, . . . ,M . It suffices

to show that,

D = B + PD, (4.30)

since (4.29) follows from (4.30). In (4.30), D and B are both M × (m+ 1) matrices,

whereas P is an M ×M matrix whose non-zero elements are the barycentric coordi-

nates for the sensors in Ω. Hence, for the lj-th element in (4.30), we need to show

that

dlj = blj +
∑

k∈Ω

plkdkj. (4.31)

For an arbitrary sensor, l ∈ Ω, its triangulation set, Θl, may contain nodes from

both κ and Ω. We denote κΘl as the elements of Θl that are anchors, and ΩΘl as the

elements of Θl that are sensors, i.e., non anchors. The exact coordinates, c∗l , of the

sensor, l, can be expressed as a convex combination of the coordinates of its neighbors

4.3. CONVERGENCE OF DILOC 93

in its triangulation set, k ∈ Θl, using the barycentric coordinates, alk, i.e.,

c∗l =
∑

k∈Θl

alkc
∗
k,

=
∑

j∈κΘl

aljc
∗
j +

∑

k∈ΩΘl

alkc
∗
k,

=
∑

j∈κ

bljc
∗
j +

∑

k∈Ω

plkc
∗
k, (4.32)

since the scalars, alj, are given by

alj =

blj, if j ∈ κΘl ,

plj, if j ∈ ΩΘl ,

0, if j /∈ Θl.

(4.33)

Equation (4.32) becomes, after writing each k ∈ Ω in terms of the m+1 anchors in κ,

c∗l =
∑

j∈κ

bljc
∗
j +

∑

k∈Ω

plk
∑

j∈κ

dkjc
∗
j ,

=
∑

j∈κ

bljc
∗
j +

∑

j∈κ

∑

k∈Ω

plkdkjc
∗
j ,

=
∑

j∈κ

(
blj +

∑

k∈Ω

plkdkj

)
c∗j . (4.34)

This is a representation of the coordinates of sensor, l, in terms of the coordinates

of the anchors, j ∈ κ. Since for each j ∈ κ, the value inside the parentheses is

non-negative with their sum over j ∈ κ being 1, and the fact that the barycentric

representation is unique, we must have

dlj = blj +
∑

k∈Ω

plkdkj, (4.35)

which, comparing to (6.53), completes the proof.

We now recapitulate these results in the following theorem.

Theorem 7 (DILOC convergence): DILOC (4.10) converges to the exact sensor

94 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

coordinates, c∗l , l ∈ Ω, i.e.,

lim
t→∞

cl(t+ 1) = c∗l , ∀ l ∈ Ω. (4.36)

Proof: The proof is a consequence of Lemmas 19 and 20.

Convergence rate. The convergence rate of the localization algorithm depends

on the spectral radius of the matrix P, which by Lemma 25 in Appendix A.1 is strictly

less than one. In fact, as shown in Lemma 8, DILOC is characterized by geometric

convergence rate with exponent ρ(P). This is a consequence of the fact that P is a

uniformly substochastic matrix. The convergence is slow if the spectral radius, ρ(P),

is close to 1. This can happen if the matrix B is close to a zero matrix, 0. This is the

case if the sensors cluster in a region of very small area inside the convex hull of the

anchors, and the anchors themselves are very far apart. In fact, it can be seen that

in this case the barycentric coordinates for the sensors with κΘl 6= ∅ (see Lemma 20

for this notation) corresponding to the elements in κΘl are close to zero. When, as

in practical wireless sensor applications, the nodes are assumed to be deployed in a

geometric or a Poisson fashion (see details in Section 4.2.4), the above event is highly

improbable.

4.4 DILOC with relaxation

In this Section, we modify DILOC to obtain a form that is more suitable to study dis-

tributed localization in random environments. We observe that in DILOC (4.10), at

time t+1, the expression for cl(t+1), l ∈ Ω, does not involve its own coordinates, cl(t),

at time t. We introduce a relaxation parameter, α ∈ (0, 1], in the iterations, such

that the expression of cl(t+ 1) is a convex combination of cl(t) and (4.10). We refer

to this version as DILOC with relaxation, DILOC-REL. It is given by

cl(t+ 1) =

{
(1− α)cl(t) + αcl(t) = cl(t), l ∈ κ,

(1− α)cl(t) + α
∑

k∈Θl
alkck(t), l ∈ Ω.

(4.37)

DILOC is the special case of DILOC-REL with α = 1. Clearly, DILOC-REL is also

distributed as the sensor updates now have additional terms corresponding to their

4.4. DILOC WITH RELAXATION 95

own past states. The matrix representation of DILOC-REL is

C(t+ 1) = HC(t), (4.38)

where H = (1− α) IN+αΥ and IN is the N×N identity matrix. It is straightforward

to show that the iteration matrix, H, corresponds to a transition probability matrix

of an absorbing Markov chain, where the anchors are the absorbing states and the

sensors are the transient states. Let J = (1− α) IM + αP; partitioning H as

H =

[
Im+1 0

αB J

]
. (4.39)

We note the following

Ht+1 =

Im+1 0
t∑

k=0

JkαB Jt+1

 , (4.40)

lim
t→∞

Ht+1 =

[
Im+1 0

(IM − J)−1 αB 0

]
, (4.41)

from Lemma 25. Lemma 25 applies to H, since H is non-negative and ρ(J) < 1. To

show ρ(J) < 1, we recall that ρ(P) < 1 and the eigenvalues of J are (1 − α) + αλj,

where λj are the eigenvalues of P. Therefore, we have

ρ(J) = max
j
|(1− α) + αλj| < 1. (4.42)

The following Theorem establishes convergence of DILOC-REL.

Theorem 8: DILOC-REL (4.37) converges to the exact sensor coordinates, c∗l , l ∈
Ω, i.e.,

lim
t→∞

cl(t+ 1) = c∗l , ∀ l ∈ Ω. (4.43)

Proof: It suffices to show that

(IM − J)−1 αB = (IM −P)−1 B. (4.44)

96 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

To this end, we note that

(IM − J)−1 αB = (IM − ((1− α) IM + αP))−1 αB, (4.45)

which reduces to (4.44) and the convergence of DILOC-REL follows from Lemma 20.

4.5 Enhancements to DILOC

We now generalize DILOC to the following cases.

• We assumed earlier that the iteration matrix, Υ, is fixed in the algorithm. This

assumption corresponds to static network topology. Here, we let the network

topology to be dynamic, and hence a different iteration matrix can be chosen

at each time step, t, of the algorithm.

• The number of anchors can be greater than m + 1, i.e., |κ| > m + 1. We also

give a different proof (from Lemma 20) for the convergence of DILOC.

• The number of neighboring sensors that a particular sensor used to express its

own coordinates can be more than m+ 1.

4.5.1 Dynamic network topology

In case of dynamic network topology, each sensor, l, chooses a different triangulation

set, Θl(t), at each iteration t of the iterative algorithm, such that the conditions in

Lemma 17 hold. In this case, the coordinates of the lth sensor can be written as

cl(t+ 1) =

{
cl(t), l ∈ κ,

∑
j∈Θl(t)

apj(t)cj(t), l ∈ Ω.
(4.46)

The following lemma establishes the convergence of the above algorithm.

4.5. ENHANCEMENTS TO DILOC 97

Lemma 21: The localization algorithm (4.46) with different triangulation sets at

each iteration, converges to the exact sensor locations, c∗l ∀ l ∈ Ω, i.e.,

lim
t→∞

cl(t+ 1) = c∗l , l ∈ Ω. (4.47)

Proof: The resulting localization algorithm (4.46) (note that the iteration ma-

trix, Υ, is now a function of time, Υ(t)) can be written as

C(t+ 1) = Υ(t)C(t),

=
t∏

j=0

Υ(j)C(0). (4.48)

Consider the matrices, Yt, given by the product in (4.48), i.e.,

Yt =
t∏

j=0

Υ(j) (4.49)

where each Υ(j) can be partitioned as shown in (4.13). It follows from the structure

of the matrices, Υ(j), that

Yt =

[
Im+1 0

Bt Pt

]
. . .

[
Im+1 0

B0 P0

]
,

=

[
Im+1 0

Jt
∏t

j=0 Pj

]
, (4.50)

where we denote the lower left block of Yt as Jt. Let the exact coordinate matrix, C∗,

be partitioned into the exact coordinates of the anchors, C∗κ, and the exact coordinates

of the sensors, C∗Ω, as

C∗ =

[
C∗κ

C∗Ω

]
. (4.51)

Since, C∗ is the fixed point of each Υ(j) in the product matrix, Yt, i.e.,

[
C∗κ

C∗Ω

]
= Υ(j)

[
C∗κ

C∗Ω

]
, ∀j, (4.52)

98 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

it follows that C∗ is the fixed point of the product matrix, Yt, in (4.49). In particular,

since C∗ is the fixed point of the product matrix, Yt , we have

JtC
∗
κ +

(
t∏

j=0

Pj

)
C∗Ω = C∗Ω, ∀t. (4.53)

Since the matrix Pj is uniformly substochastic (i.e., ρ(Pj) < 1, which follows from

the discussion after (4.26)) for j = 0, . . . , t, we have

lim
t→∞

t∏

j=0

Pj = 0. (4.54)

Therefore, it follows from (4.53), that limt→∞ JtC
∗
κ exists and, in particular,

lim
t→∞

JtC
∗
κ = C∗Ω. (4.55)

Now let

C(0) =

[
C∗κ

CΩ

]
, (4.56)

be the actual initial state of the algorithm where CΩ is any arbitrary initial guess of

the sensor locations. Then,

lim
t→∞

C(t+ 1) = lim
t→∞

Yt

[
C∗κ

CΩ

]
,

= lim
t→∞

 C∗κ

JtC
∗
κ +

(∏t
j=0 Pj

)
CΩ

 ,

=

[
C∗κ,

C∗Ω

]
. (4.57)

Clearly, the above lemma shows that the algorithm for dynamic network topologies

in(4.46) converges to the exact sensor locations.

4.5. ENHANCEMENTS TO DILOC 99

4.5.2 More than m+ 1 anchors

In this section, we study the case where the number of anchors is greater than m+ 1,

i.e., |κ| = K > m + 1. This happens when, for instance, M sensors do not lie in the

convex hull of m+ 1 anchors, but, lie in the convex hull of K > m+ 1 anchors. The

iterative procedure has the same form as (4.10), however, the total number of sensors

plus anchors becomes K + M . The coordinate matrix, C, has the dimension (K +

M)×m and the iteration matrix, ΥK , has the dimension (K +M)× (K +M) that

can be partitioned as

ΥK =

[
IK 0

B P

]
, (4.58)

where IK is a K ×K identity matrix, B is an M × K matrix and P is an M ×M
matrix. We have the following result.

Lemma 22: The iterative localization algorithm with K > m + 1 anchors re-

sulting into the iteration matrix, ΥK , in (4.58) converges to the exact sensor loca-

tions, c∗l ∀ l ∈ Ω, i.e.,

lim
t→∞

cl(t+ 1) = c∗l , l ∈ Ω. (4.59)

Proof: It is straightforward to show that C∗ is the fixed point of the matrix

form of (4.10) with the iteration matrix, ΥK , in (4.58), we have

[
C∗κ

C∗Ω

]
=

[
IK 0

B P

][
C∗κ

C∗Ω

]
, (4.60)

⇒ C∗Ω = BC∗κ + PC∗Ω, (4.61)

which gives

C∗Ω = (IM −P)−1 BC∗κ. (4.62)

Since P is a uniformly substochastic matrix (i.e., ρ(P) < 1, which follows from the

discussion after (4.26)), the eigenvalues of P lie in [0, 1), the eigenvalues of IM − P

lie in (0, 1] and hence IM − P is invertible. Using Lemma 25 again, it can be shown

that

lim
t→∞

Υt+1
K =

[
IK 0

(IM −P)−1B 0

]
. (4.63)

100 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

Hence the iterative algorithm converges to

lim
t→∞

Ct+1 = (IM −P)−1BC∗κ = C∗Ω. (4.64)

This completes the proof for the case when we have more than m+ 1 anchors.

The proof for K = m+ 1 anchors can be formulated as a special case of the above

arguments and, hence, the above argument provides an alternative proof for DILOC

in Lemma 20.

4.5.3 More than m+ 1 neighbors

Motivated by wireless sensor networks, where each sensor broadcasts its data in a

communication radius and every other sensor that lies in its communication radius

can receive its data, we consider the case when a sensor can have more than m +

1 neighboring nodes. Let Θ̂l denote the set of sensors or anchors that lie in the

communication radius, rl, of sensor l, i.e.,

Θ̂l = {j : dlj < rl}, (4.65)

where dlj is the Euclidean distance between node l and node j. Let Θl = {Θi
l} ⊆ Θ̂l

be the collection of subsets of Θ̂l such that each element, Θi
l ∈ Θl, is a triangulation

set for sensor l (i.e., the conditions in Lemma 17 hold). If Θl = ∅, the lth sensor

increases its communication radius, rl, until |Θl| ≥ 1 (note that |∅| = 0). In this

fashion, each sensor can adaptively choose its communication radius, rl, large enough

such that |Θl| ≥ 1.

The coordinates of sensor l’s location can now be expressed uniquely in terms

of any element, Θi
l ∈ Θl, by using the barycentric coordinates. Furthermore, each

sensor l can express its coordinates in terms of all the elements in Θl as a convex

combination of each of them, i.e.,

cl =
∑

i

wil
∑

j∈Θil

ailjcj, l ∈ Ω, (4.66)

4.5. ENHANCEMENTS TO DILOC 101

where wil ≥ 0 ∀i and
∑

iw
i
l = 1. An iterative procedure obtained on (4.66) is

cl(t+ 1) =

{
cl(t), l ∈ κ,

∑
iw

i
l

∑
j∈Θil

ailjcj(t), l ∈ Ω.
(4.67)

We have the following result.

Lemma 23: The distributed localization algorithm in (4.67) converges to the exact

sensor locations, c∗l ∀ l ∈ Ω, i.e.,

lim
t→∞

cl(t+ 1) = c∗l , l ∈ Ω. (4.68)

Proof: The distributed localization algorithm in (4.67) can be written in matrix

form as

C(t+ 1) = Υ̃C(t). (4.69)

As shown in (4.66), we again note that the way we have derived the iteration ma-

trix, Υ̃, the matrix of exact coordinates, C∗, still remains the fixed point of the

algorithm, i.e.,

[
C∗κ

C∗Ω

]
=

[
Im+1 0

B̃ P̃

][
C∗κ

C∗Ω

]
, (4.70)

⇒ C∗Ω = B̃C
∗
κ + P̃C

∗
Ω, (4.71)

which gives

C∗Ω =
(
IM − P̃

)−1

B̃C
∗
κ. (4.72)

It is straightforward to show that P̃ is a uniformly substochastic matrix (i.e., ρ(P̃) <

1) since it is a convex combination of uniformly substochastic matrices. Using

Lemma 25 again, it can be shown that

lim
t→∞

Υ̃t+1 =

[
Im+1 0

(IM − P̃)−1B̃ 0

]
. (4.73)

102 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

Hence, the iterative algorithm converges to

lim
t→∞

Ct+1 = (IM − P̃)−1B̃C∗κ = C∗Ω. (4.74)

Clearly, the above lemma shows that the localization algorithm in (4.67) with more

than m+ 1 neighbors at each sensor converges to the exact sensor locations.

4.5.4 Remarks

It is a straightforward generalization to combine all of the three scenarios presented in

this section. The resulting algorithm gives a comprehensive distributed localization

algorithm that deals with random network topologies, any number, K ≥ m + 1, of

anchors and incorporates all the sensors in the neighborhood of each sensor to achieve

sensor localization.

4.6 Distributed localization in mobile networks

In this section, we present a distributed localization algorithm in m-dimensional Eu-

clidean space, Rm, that can be used with mobile networks. In our setup, we assume

that an arbitrary number of sensors with unknown locations lie in the convex hull of

at leat m + 1 anchors that precisely know their locations and motion (for instance,

they may have a GPS unit). The proposed algorithm is distributed and requires

only local distance information to compute the state updates at each time when the

motion has taken place.

We present a broad motion model that captures several practical scenarios of coor-

dinated and uncoordinated motion of mobile agents. As a motivation of coordinated

motion, consider the anchors moving in a specified manner such that the underlying

sensor network is guided in a desired direction. An example of uncoordinated motion

is the motion of cell phones that move randomly in a given fixed region (or a cell).

At each time step of the motion, the network configuration changes. Our algorithm

is implemented on the same time scale as that of the motion. In this section, we

4.6. DISTRIBUTED LOCALIZATION IN MOBILE NETWORKS 103

present our motion model, derive conditions under which our algorithm converges,

and establish minimal assumptions required for this setup.

4.6.1 Motion dynamics of mobile agents

We consider the following model for the motion dynamics of the agents in our network.

Let C∗(t) denote the exact locations of the nodes at time t, partitioned as

C∗(t) =

[
C∗κ(t)

C∗Ω(t)

]
. (4.75)

The motion model, we consider, is as follows.

C∗(t) = AC∗(t) + z(t) + y(t), (4.76)

which can be partitioned into anchors and sensors as

[
C∗κ(t+ 1)

C∗Ω(t+ 1)

]
=

[
I 0

Aux Axx

][
C∗κ(t)

C∗Ω(t)

]
+

[
zu(t)

zx(t)

]
+

[
0

yx(t)

]
. (4.77)

The N×N matrix9 A relates the motion of a sensor to its neighbors such that the

network may move in a coordinated fashion. The matrix z(t) is the deterministic drift

added to the coordinates, whereas the matrix y(t) is the random drift with bounded

norm. We state this explicitly as an assumption.

Assumption M.2.

‖y(t)‖ ≤ a P a.s. (4.78)

i.e., the norm of the random drift vector, y(t), is bounded above almost surely for

all t.

9The identity matrix on the upper left block ofA emphasizes that the anchors move independently
of each other and the sensors. The motion of the anchors is captured by the deterministic drift zu(t).
In some problems of interest, like formation control of mobile vehicles, the anchors may be coupled
among each other and the identity block can be replaced by a matrix with a specific structure, like
a stochastic matrix. In that case our analysis will hold with obvious modifications in the proofs.

104 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

Although, the motion of the anchors is independent of the sensors (because of the

upper right zero block in A), the sensors move in such a way that they remain in the

convex hull of the anchors. To guarantee this, we may assume that A is stochastic

and the drift matrices are such that the sensors do not leave the convex hull of the

anchors. Since the anchors know their exact locations at all time, the random drift in

the anchors motions is zero, i.e., yu(t) = 0, ∀t. We further assume that each sensor l

knows the lth row of the matrices A and z. The above is the general form of our

motion model that we consider in this chapter. Some special cases can be derived

that we elaborate below.

Uncoordinated motion in a fixed region: Consider zu(t) = 0, ∀t and Aux =

0,Axx = I. In this scenario, the anchors remain fixed and the sensors move randomly

inside their convex hull. This can be thought of as the motion of wireless objects

that move randomly inside a given region (or a cell). The drift at each sensor l, i.e.,

the lth row of zx(t) + yx(t), is such that each sensor l does not leave the convex hull

of the anchors.

Coordinated motion driven by anchors: Consider another scenario where zx(t) =

0, ∀t, and Aux 6= 0,Axx 6= 0 are such that each column of Aux contains at least one

non-zero element and the resulting A is a stochastic matrix. This form of a motion

model is driven by anchors and the conditions on Aux,Axx, guarantee that the sensors

move in a coordinated manner driven by the anchors.

Given the motion dynamics in eq. (4.76), we would like to estimate and track the

location of each sensor in a distributed manner.

4.6.2 Algorithm and assumptions

Consider the motion model for mobile agents presented in Section 4.6.1. We now

present the following algorithm for distributed localization of mobile sensors:

Algorithm MDL:

C(t+ 1) = Υt+1

(
AC(t) +

[
zu(t)

zx(t)

])
(4.79)

4.6. DISTRIBUTED LOCALIZATION IN MOBILE NETWORKS 105

Here: C(t) = [CT
κ (t) CT

Ω(t)]T corresponds to the location estimates of the agents at

time t. Note that under the assumptions of the motion model, we have

Cκ(t) = C∗κ(t), ∀t. (4.80)

Also, the time-varying matrix Υt+1 denotes the matrix of local barycentric coordinates

computed at time t+1 based on distance measurements corresponding to the network

configuration C∗(t+ 1).

Some Remarks on MDL: Before proceeding to the convergence analysis of

MDL, we present some discussion on the above update rule. Recall the algorithm

DILOC for distributed localization in a network of static agents (Section 4.2.2), where

the update is of the form:

C(t+ 1) = ΥC(t). (4.81)

In that case, the network configuration (i.e., the inter-sensor distances) remains con-

stant over time, and the matrix Υ of local barycentric coordinates does not change.

The exact location C∗ is a fixed point of the linear operator Υ, i.e.,

C∗ = ΥC∗. (4.82)

Under the assumptions of DILOC, the operator Υ has the desired contraction prop-

erties and the update rule in (4.81) converges to the unique fixed point of Υ, i.e., we

have

lim
t→∞

C(t) = C∗ (4.83)

In the mobile network case, if Υt+1 is the matrix of local barycentric coordinates

computed on the basis of the network configuration at time t+1, we have the following

fixed point condition:

C∗(t+ 1) = Υt+1

(
AC∗(t) +

[
zu(t)

zx(t)

]
+

[
0

yx(t)

])
. (4.84)

For a moment, assume that the unknown random perturbation yx(t) is absent. In this

106 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

case, under appropriate uniform contractive properties of the linear operators {Υt}t≥0

(to be detailed in the assumptions provided later), it is reasonable to expect that the

MDL update should converge to the exact coordinates as t→∞, i.e.,

lim
t→∞
‖C(t)−C∗(t)‖ = 0 (4.85)

This is the key intuition behind the MDL update rule. In the general case, when

random perturbations are present and are unpredictable, the update takes the form

of (4.79). In this case, we expect a steady state convergence error, i.e.,

lim sup
t→∞

‖C(t)−C∗(t)‖ ≤ e∗ (4.86)

where the steady-state error depends on the distribution of the random perturbation,

as shown later.

We now present the key assumption on network connectivity and triangulation at

time t, required for establishing desired convergence properties of the MDL algorithm:

Assumption M.1 For every t, define the matrix Ht by:

Ht = PtAxx. (4.87)

Here, Pt is the block coming from the natural decomposition of the matrix Υt as:

Υt =

[
I 0

Bt Pt

]
. (4.88)

We make the following assumption on network connectivity and triangulation:

There exists 0 < ε < 1, such that,

P (‖Ht‖ ≤ ε, ∀t) = 1 (4.89)

(note that the matrices Ht are now random, because of the random perturbations yx(t)

that affect the network configuration and thus Ht.)

4.6. DISTRIBUTED LOCALIZATION IN MOBILE NETWORKS 107

Since, ‖Axx‖ ≤ 1 (being a sub-block of a stochastic matrix, A), a sufficient con-

dition for M.1 to hold is:

P (‖Pt‖ ≤ ε, ∀t) = 1. (4.90)

The fact, that M.1 is reasonable, is demonstrated from the fact, that, in the

static case, under minimal assumptions on network connectivity and triangulation,

we have ‖P‖ ≤ ε for some ε < 1. In the dynamic case, assuming the network is

sufficiently dense or the motion is coordinated, the network structure does not change

drastically over time and hence Assumption M.1, which is a uniformity condition on

the relative network structure, is reasonable.

4.6.3 Convergence analysis of MDL

In this section, we present the convergence analysis of the algorithm MDL with the

general motion model discussed in Section 4.6.1 and Assumption M.1-M.2 (recall

that M.2 is provided in Section 4.6.1).

Theorem 9: Consider the dynamic sensor motion model with C∗(t) denoting the

sensor configuration at time t as given in (4.76). Let C(t) be the sensor state estimates

generated by the distributed localization algorithm MDL in (4.79). We then have

P
(

lim sup
t→∞

‖C(t)−C∗‖ ≤ a

1− ε

)
= 1 (4.91)

Proof: By construction of the local barycentric coordinates, it follows that for

all t (recall eqn. (4.84)),

C∗(t+ 1) = Υt+1

[
I 0

Aux Axx

]
C(t)∗ + Υt+1

[
zu(t)

zx(t)

]
+ Υt+1

[
0

yx(t)

]
. (4.92)

Subtracting this from the MDL state update

C(t+ 1) = Υt+1

(
AC(t) +

[
zu(t)

zx(t)

])
(4.93)

108 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

we have

e(t+ 1) = Υt+1

[
I 0

Aux Axx

]
e(t)−Υt+1

[
0

yx(t)

]
(4.94)

where:

e(t) = C(t)−C∗(t) (4.95)

is the matrix of location estimation errors at time t. Decomposing e(t) into sensors

and anchors, we have

e(t) =

[
eκ(t)

eΩ(t)

]
=

[
0

eΩ(t)

]
(4.96)

The fact, that eκ(t) = 0, follows from Cκ(t) = C∗κ(t), as the anchors know their

locations exactly at all time t.

Multiplying out the various terms in eqn. (4.94) we then have the following update

rule for e(t):

eΩ(t+ 1) = Ht+1eΩ(t)−Pt+1yx(t), ∀t (4.97)

where Ht is defined in eqn. (4.87). Continuing the recursion for eΩ(t), we have

eΩ(t) =

(
t∏

k=1

Hk

)
eΩ(0)−

t−1∑

k=0

(
t∏

j=t−k+2

Hj

)
Pt−k+1yx(t− k). (4.98)

We thus have

‖eΩ(t)‖ ≤ ‖eΩ(0)‖
t∏

k=1

‖Hk‖+
t−1∑

k=0

‖Pt−k+1‖ ‖yx(t− k)‖
(

t∏

j=t−k+2

‖Hj‖
)
. (4.99)

Under Assumptions M.1, M.2, we have for all t

‖Ht‖ ≤ ε, P a.s. (4.100)

‖yx(t)‖ ≤ a, P a.s. (4.101)

4.6. DISTRIBUTED LOCALIZATION IN MOBILE NETWORKS 109

Also, by construction, the matrix Pt is substochastic for all t and hence

‖Pt‖ ≤ 1, P a.s. (4.102)

The following then holds P a.s. from (4.99)

‖eΩ(t)‖ ≤ εt ‖eΩ(0)‖+ a

t−1∑

k=0

εk (4.103)

Taking the limit as t→∞ and noting that 0 < ε < 1, we have P a.s.

lim sup
t→∞

‖eΩ(t)‖ ≤ a

1− ε (4.104)

The result then follows from (4.104).

Remarks: The convergence results are established under minimal conditions on

network connectivity and triangulation, embedded in the Assumption M.1, i.e.,

P (‖Ht‖ ≤ ε, ∀t) = 1, (4.105)

for some ε < 1. The problem of finding the right value of ε is also of interest and

conveys significant information on the convergence rate of the algorithm. Such a

characterization of ε depends on the specifics of the motion model, for example, the

geometry of sensor deployment, the various model matrices and the distribution of

the random drift. This is an interesting problem in its own right and we intend to

investigate this in the future.

In the absence of the random drift (but with non-zero deterministic drift), the

assumption M.1 on network connectivity and local triangulation at all times can

be relaxed, and we may work with the much weaker assumption of successful local

triangulation infinitely often (i.o.), i.e.,

P (‖Ht‖ ≤ ε, i.o. t) = 1 (4.106)

for some ε < 1.

110 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

4.7 Localization in random environments

We discussed the random environments in the context of the HDC in Section 3.5. In

this section, we translate the random phenomena to the sensor localization problem.

Note that the assumptions on the data packet drops and the communication noise

hold for the sensor localization problem. Below, we explain the significance of small

perturbation of system matrices in the context of sensor localization.

Revisiting: Small perturbation of system matrices: Recall from (B3) in

Section 4.2.2 that, at each sensor l, the distances required to compute the barycentric

coordinates are the inter-node distances in the set

Dl = {l} ∪ K(l, rl). (4.107)

In reality, the sensors do not know the precise distances, d∗(·)(·), but estimate the dis-

tances, d̂(·)(·)(t), from the Received-Signal-Strength (RSS) or Time-of-Arrival (TOA)

measurements at time t. When we have noise on distance measurements, we cannot

iterate with the system matrices P(d∗) and B(d∗), but iterate with P(d̂t) and B(d̂t),

where the collection of all the required inter-node distance estimates is

d̂t = {d̂kn(t) | k, n ∈ Dl, l ∈ Ω}. (4.108)

Assuming the distance measurements are statistically independent over time, P(d̂t)

and B(d̂t) can be written as

P
(
d̂t

)
= P(d∗) + SP + S̃P(t) , {p̂ln(t)}, B

(
d̂t

)
=B(d∗) + SB + S̃B(t) , {b̂ln(t)},

(4.109)

where SP and SB are mean measurement errors, and {S̃P(t)}t≥0 and {S̃B(t)}t≥0 are

independent sequence of random matrices with zero-mean and finite second moments.

In particular, even if the distance estimates are unbiased, the computed P(d̂t) and

B(d̂t) may have non-zero biases, SP and SB, respectively. Now, we employ the

modified HDC algorithm, presented in Section 3.5, to establish the convergence to

4.7. LOCALIZATION IN RANDOM ENVIRONMENTS 111

the sensor locations described in Theorem 4. Clearly, if SP = SB = 0, then the

sensors converge to the exact sensor locations. In the other case (SP 6= 0,SB 6= 0),

there is a steady-state error.

We now present DILAND (distributed localization algorithm with noisy distances)

that converges a.s. to the exact sensor locations, even if SP 6= 0,SB 6= 0. As men-

tioned above, since, at time t, we use only the current RSS or TOA measurements

to compute distance estimates, the resulting system matrices have constant error

bias, i.e., SP 6= 0 and SB 6= 0. Clearly, a more accurate scheme is to utilize the

information from past distance measurements also, so that one computes the sys-

tem matrices at time t as a function of the entire past measurements, {RSSs}s≤t
or {TOAs}s≤t. The DILAND algorithm efficiently utilizes the past information and,

as will be shown, leads to a.s. convergence to the exact sensor locations under prac-

tical distance measurement schemes in sensor networks. To this aim, we explore two

standard distance measurement methods in sensor networks, namely, the Received

Signal Strength (RSS) and the Time-of-Arrival (TOA). For the remainder of this

subsection, we borrow experimental and theoretical results from [115].

4.7.1 Received signal strength (RSS)

In wireless settings, the signal power decays with a path-loss exponent, np, which

depends on the environment. If sensor a sends a packet to sensor b, then RSS0 is

the power of the signal received by sensor b. Based on the RSS measurement, RSSab,

the maximum likelihood estimator, d̂ab, of the distance, dab, between sensors a and

sensor b is [115]

d̂ab = ∆010
Π0−RSSab

10np , (4.110)

where Π0 is the received power at a short reference distance ∆0. For this estimate,

E
[
d̂ab

]
= Cdab, (4.111)

where C is a multiplicative bias factor. Based on calibration experiments and a

priori knowledge of the environment, we can obtain precise estimates of C; for typical

112 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

channels, C ≈ 1.2 [118] and hence scaling (4.110) by C gives us an unbiased estimate.

If the estimate of C is not acceptable, we can employ the following.

DILAND is iterative and data is exchanged at each iteration t. We then have

the measurements on RSS and C at each iteration. Hence, the distance estimate we

employ is

d̃ab(t) =
d̂ab(t)

Ĉ(t)
, (4.112)

where Ĉ(t) is the estimate of C (for details on this estimate, see [115] and references

therein) at the t-th iteration of DILAND. Assuming that d̂ab(t) and Ĉ(t) are statisti-

cally independent (which is a reasonable assumption if we use different measurements

for both of these estimates and assuming that the measurement noise is independent

over time), we have

E
[
d̃ab(t)

]
= dab. (4.113)

Since at time t, we have knowledge of {d̃ab(s)}0≤s≤t, we can use the following

sequence, {dab(t)}t≥0, of distance estimates to compute the barycentric coordinates

at time t:

dab(t) =
1

t

∑

s≤t

d̃ab(s) =
t− 1

t
dab(t− 1) +

1

t
d̃ab(t), dab(0) = d̃ab(0). (4.114)

Then from (4.112)-(4.113) and the strong law of large numbers, we have dab(t)→ dab

a.s. as t→∞.

4.7.2 Time-of-arrival (TOA)

Time-of-arrival is also used in wireless settings to estimate distances. TOA is the

time for a signal to propagate from sensor a to sensor b. To get the distance, TOA

is multiplied by νp, the propagation velocity. Over short ranges, the measured time

delay, Tab, can be modeled as a Gaussian distribution10 [115] with mean dab/νp + µT

and variance σ2
T . The distance estimate is given by d̂ab = (Tab − µT)νp. Based on

10Although, as noted before, DILAND does not require any distributional assumption.

4.7. LOCALIZATION IN RANDOM ENVIRONMENTS 113

calibration experiments and a priori knowledge of the environment, we can obtain

precise estimates of µT ; Wideband DS-SS measurements [88] have shown µT = 10.9ns.

Since DILAND is iterative; we can make the required measurements at each it-

eration t and also compute an estimate, µ̂T (t), of the bias factor, µT (for details

on this computation, see [88]). Then, using the same procedure described for RSS

measurements, we can obtain a sequence, {dab(t)}t≥0, of distance estimates such

that dab(t)→ dab a.s. as t→∞.

In both of the above cases, we note that, if {Z(t)}t≥0 is a sequence of distance

measurements, where Z = RSS or Z = TOA, collected over time, then there exist

estimates dt with the property: dt → d∗ a.s. as t→∞. In other words, by efficiently

(for example, simple averaging) using past distance information, we can estimate the

required inter-sensor distances to arbitrary precision as t → ∞. This leads to the

following natural assumption:

(D1) Noisy distance measurements: Let {Z(t)}t≥0 be any sequence of inter-

node distance measurements collected over time. Then, there exists a sequence of

estimates {dt}t≥0, such that, for all t, dt can be computed efficiently from {X(s)}s≤t
and we have

P
[

lim
t→∞

dt = d∗
]

= 1 (4.115)

We now present the algorithm DILAND under the modified assumption (D1).

4.7.3 Algorithm

For clarity of presentation, we analyze the DILAND algorithm only in the con-

text of noisy distance measurements and assume inter-sensor communication is per-

fect (i.e., no link failures and communication noise11.) Let P(dt) , {pln(t)} and

B(dt) , {blk(t)} be the matrices of barycentric coordinates computed at time t from

the distance estimate dt.

11The modifications under these phenomena is straightforward as discussed in Section 3.5.

114 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

The DILAND algorithm updates the location estimates as follows:

xjl (t+ 1) = (1− α(t))xjl (t)

+ α(t)

 ∑

n∈KΩ(l)

pln(t)xjn(t) +
∑

k∈Kκ(l)

blk(t)u
j
k

 , (4.116)

for l ∈ Ω, 1 ≤ j ≤ m, where the weight sequence, α(t), satisfies

α(t) ≥ 0, lim
t→∞

α(t) = 0, and
∑

t

α(t) =∞. (4.117)

In particular, here we consider the following choice: for a > 0 and 0 < δ ≤ 1,

α(t) =
a

(t+ 1)δ
. (4.118)

The update (4.116) is followed by a distance update of the form (4.114). The

following result gives the convergence properties of DILAND.

Theorem 10: Let {x(t)}t≥0 be the state sequence generated by DILAND (4.116)

under the standard DILOC assumptions (B0)-(B3) and (D1). Then, for every l, xl(t)

converges a.s. to the exact location of sensor l as t→∞, i.e.,

P
[

lim
t→∞

xj(t) = (I−P(d∗))−1 B(d∗)uj, ∀j = 1, . . . ,m
]

= 1, (4.119)

which are the exact sensor locations.

Proof: A detailed proof is provided in [44].

4.8 Simulations

In this section, we present numerical experiments for DILOC, its enhancements, and

localization for the mobile agents.

4.8. SIMULATIONS 115

0 10 20 30 40 50
1

2

3

4

5

6

7

8

���������	��
������
�����������

����
 ! "$#
%&(')
�
*)'#
)�
 +

(a)

(8, 1)(1, 1)

(4, 9)

(b)

Figure 4.3: Deterministic environment: (a) Estimated coordinates of sensor 6 in Sec-
tion 4.2.3 as a function of DILOC iterations. (b)Trajectories of the sensors’ estimates
obtained by DILOC.

4.8.1 DILOC

We consider the example presented in Section 4.2.3, that has m + 1 = 3 anchors

and M = 4 sensors with no noise in the system. DILOC, as given in (4.14), is

implemented, where Fig. 4.3(a) shows the estimated coordinates of sensor 6, and

Fig. 4.3(b) shows the trajectories of the estimated coordinates for all the sensors with

random initial conditions. Both figures show fast convergence to the exact sensor

locations, which should be the case because of the geometric convergence rate.

We further consider a network of N = 500 nodes shown in Fig. 4.4(a) after triangu-

lation. The communication radius is increased until each sensor triangulates. DILOC

is implemented with zero initial conditions and Fig. 4.4(b) shows the estimated coor-

dinates of two arbitrary sensors; this illustrates that geometric convergence of DILOC

estimates to the exact sensor locations. Fig. 4.4(c) shows a typical histogram of the

inter-node distances (normalized by the mean of all anchor-anchor distances) over

which the DILOC communications are implemented. It can be verified that the 95th

percentile of the inter-node distances are within 10% of the mean anchor-anchor dis-

tance.

116 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

(5000, 3)(1, 2)

(2500, 5000)

(a)

0 100 200 300 400 500
0

1000

2000

3000

4000

���������
	����������	����������

����
 ! "$#
%&(')
�
*)'#
)�
 +,
%#
! -,

.0/�1324/�5 ��6

. /�13247 5 �86

. 7�132 7 5 ��6

. 7�1324/ 5 �86

(b)

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

{dli}l∈Ω,i∈Θl/mean
(
{djk}j,k∈κ

)

Fr
eq

ue
nc

y

(c)

Figure 4.4: Deterministic environment: (a) An N = 500 node network and the
respective triangulation sets. (b) Estimated coordinates of two arbitrarily chosen
sensors as a function of DILOC iterations. (c) Histogram of normalized inter-node
distances over which the DILOC communications are implemented.

4.8. SIMULATIONS 117

0 20 40 60 80 100
0

20

40

60

80

100

Figure 4.5: For a fixed sensor, its 3 different neighborhoods are shown.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

���������	��
���������

�����
�� ���
��!
"�
�#
$"
���
� �
���
�

Static network topology
Dynamic network
topology

Figure 4.6: Performance comparison of the dynamic scheme with T = 20 static (fixed)
topologies.

4.8.2 Dynamic network topology

We simulate an N = 20 node network in m = 2−Euclidean space, where we have K =

m+ 1 = 3 anchors (with known locations) and M = 17 sensors (with unknown loca-

tions). We formulate T = 20 different iteration matrices, Υ(j), where j = 1, . . . , T

and at each iteration, t, of the algorithm we randomly choose one out of the T iteration

matrices. The dynamical network topology for a particular sensor is shown in Fig. 4.5

where 3 different neighborhoods are shown. Fig. 4.6 compares the performance of the

dynamic scheme with T = 20 static networks.

118 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

(a)

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

(b)

Figure 4.7: (a) The overall sensor network with K = 4 > m + 1 anchors such
that C(Ω) ⊂ C(κ). (b) Dividing the overall network into two subproblems where we
have m+ 1 = 3 anchors for each of the subproblems.

4.8.3 More than m+ 1 anchors

We simulate an N = 60 node network in m = 2−Euclidean space, where we have K =

4 > m + 1 anchors (with known locations) and M = 56 sensors (with unknown

locations). Fig. 4.7(a) shows the overall network where the M = 56 sensors lie in

the convex hull of K = 4 anchors. Fig. 4.7(b) divides the original problem into

two subproblems, each of which is solving the unknown sensors with m + 1 = 3

anchors. Fig. 4.8 compares the combined performance of the two subproblems with

the performance of the scheme where we used more anchors.

4.8.4 More than m+ 1 neighbors

We simulate an n = 20 node network in m = 2−Euclidean space, where we have K =

m + 1 = 3 anchors (with known locations) and M = 17 sensors (with unknown

locations). The neighborhood, Θi
l, of the lth sensor is chosen adaptively by increasing

the communication radius, Rl, of the lth sensor as discussed in Section 4.5.3. Adaptive

choice of the communication radius is shown in Fig. 4.9(a) for three arbitrarily chosen

sensors. Fig. 4.9(b) shows the resulting communication network where it can be

4.8. SIMULATIONS 119

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

���������	��
���������

�����
�� ���
��!
"�
�#
$"
���
� �
���
�

 % &(')����*�+,���-�
. ��/)0,
1�,��2435����6����-/)���,*��

Figure 4.8: Performance comparison between the aggregated performance of the two
subproblems and the scheme with K = 4 anchors.

verified that each sensor is now connected to more than m+1 neighbors. Performance

comparison of fixed m + 1 neighbors for each T = 20 different neighborhoods with

the scheme where all the neighborhoods are combined using a weighting sequence is

shown in Fig. 4.10. The combining weights are chosen to be 1/Nl, where Nl = |Θl|.

4.8.5 Localization of mobile agents

We now present numerical simulations for the MDL algorithm. Consider a network

of N = 50 nodes in R2 (plane), where we have m + 1 = 3 anchors and M = 47

sensors. The sensors lie in the convex hull of the anchors. We assume a coordinated

motion model on the sensors. In particular, we choose Aux and Axx such that A is

a stochastic matrix and there is no drift on the sensors’ motion, i.e., zx = 0. The

anchors move with a known drift and the sensors move as a convex combination of

their neighbors’ movement. This guarantees that the sensors remain in the convex

hull.

Fig. 4.12(a) shows the motion of the anchors and two randomly chosen sensors.

Fig. 4.11(a) and fig. 4.11(b) show the horizontal and vertical coordinates of two ran-

domly chosen sensors as solid lines. The estimated coordinates with the MDL algo-

rithm are plotted as dashed lines. The initial condition of the algorithm are set to

120 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

0 20 40 60 80 100 120

0

20

40

60

80

100

120

(a)

0 20 40 60 80 100

0

20

40

60

80

100

(b)

Figure 4.9: (a) Adaptively choosing the communication radius, Rl shown for three
arbitrarily chosen sensors. (b) Resulting network where each sensor is connected to
more than m+ 1 = 3 neighbors.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

���������	��
���������

�����
�� ���
��!
"�
�#
$"
���
� �
���
�

m+1 neighbors
more than m+1 neighbors

Figure 4.10: Performance comparison of the fixed m+1 neighbors with more than m+
1 neighbors.

4.8. SIMULATIONS 121

0 50 100 150 200 250
0

10

20

30

40

Iteratins, t

H
or

iz
on

ta
l c

oo
rd

in
at

es
 o

f
tw

o
ra

nd
om

ly
 c

ho
se

n
se

ns
or

s

Original
Estimated
Original
Estimated

(a)

0 50 100 150 200 250
0

10

20

30

40

50

60

70

Iterations, t

V
er

tic
al

 c
oo

rd
in

at
es

 o
f

tw
o

ra
nd

om
ly

 c
ho

se
n

se
ns

or
s

Original
Estimated
Original
Estimated

(b)

Figure 4.11: Coordinated motion with deterministic drift: (a) The horizontal and (b)
vertical coordinates of two randomly chosen sensors and the MDL estimates.

zero. Notice that MDL catches up with the motion and then tracks the motion of

the sensors. Fig. 4.12(b) shows the normalized mean squared error, i.e.,

MSEt =
1

M

M∑

l=1

m∑

i=1

(
cl,i(t)− c∗l,i

)2
, l ∈ Ω, (4.120)

in the estimated coordinates.

In the next experiment, we consider the same model as before but introduce a

random drift to the sensors motion. In particular, we choose a uniform random

variable on the interval [−2 2] as random drift in each coordinate at each sensor.

For a network of N = 50 nodes, we show the resulting estimates as dashed lines

against the original coordinates as solid lines in Fig. 4.13(a) and Fig. 4.13(b) for two

randomly chosen sensors. Fig. 4.14(a) shows the motion of the anchors and these

sensors. We then plot the normalized mean squared error in Fig. 4.14(b). Notice that

the estimates catch up the exact sensor coordinates but there is an error due to the

random drift. We use log scale to show the steady state error.

Finally, we present a simulation for uncoordinated motion in a fixed region. We

choose A= I and choose zero known drift, i.e., z = 0. We choose yx such that each

122 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

(a)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Iterations, t

N
or

m
al

iz
ed

M
SE

t

(b)

Figure 4.12: Coordinated motion with known drift: (a) The motion of the anchors
(shown as nablas) and two randomly chosen sensors (out of N = 50) shown as gray
and black. (b) The normalized mean squared error.

0 50 100 150 200 250
0

10

20

30

40

50

60

Iterations, t

H
or

iz
on

ta
l c

oo
rd

in
at

es
 o

f
tw

o
ra

nd
om

ly
 c

ho
se

n
se

ns
or

s

(a)

0 50 100 150 200 250
0

10

20

30

40

50

60

Iterations, t

V
er

tic
al

 c
oo

rd
in

at
es

 o
f

tw
o

ra
nd

om
ly

 c
ho

se
n

se
ns

or
s

(b)

Figure 4.13: Coordinated motion with random drift: (a) The horizontal and (b)
vertical coordinates of two randomly chosen sensors and the MDL estimates.

4.9. CONCLUSIONS 123

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

140

(a)

0 50 100 150 200 250
10

−4

10
−3

10
−2

10
−1

10
0

Iterations, t

N
or

m
al

iz
ed

M
SE

t

(b)

Figure 4.14: Coordinated motion with random drift: (a) The motion of the anchors
(shown as nablas) and two randomly chosen sensors (out of N = 50) shown as gray
and black. (b) The log-normalized mean squared error.

of its element is a uniform random variable on the interval [−2 2]. Fig. 4.16(a) shows

the motion for two randomly chosen sensors (notice that the anchors are fixed and do

not move). For a network of N = 50 nodes, we show the resulting estimates as dashed

lines against the original coordinates as solid lines in Fig. 4.15(a) and Fig. 4.15(b)

for two randomly chosen sensors. We then plot the normalized mean squared error

in Fig. 4.16(b). Notice that the estimates catch up the exact sensor coordinates but

there is an error due to the random drift. We use log scale to show the steady state

error.

4.9 Conclusions

In this chapter, we present DILOC, a distributed iterative sensor localization algo-

rithm in m−dimensional Euclidean space, Rm (m ≥ 1), that finds the location coor-

dinates of the sensors in a sensor network with only local communication. DILOC

requires the minimal number, m+1, of anchors (network nodes with known location)

to localize an arbitrary number, M , of sensors that lie in the convex hull of these m+1

124 CHAPTER 4. LOCALIZATION IN SENSOR NETWORKS

0 100 200 300 400 500
0

10

20

30

40

50

Iterations, t

H
or

iz
on

ta
l c

oo
di

na
te

s
of

 tw
o

ra
nd

om
ly

 c
ho

se
n

se
ns

or
s

(a)

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

Iterations, t

V
er

ti
ca

lc
oo

rd
in

te
s

of
tw

o
ra

nd
om

ly
ch

os
en

se
ns

or
s

(b)

Figure 4.15: Uncoordinated motion in a fixed region with random drift: (a) The
horizontal coordinates of two randomly chosen sensors and the MDL estimates. (b)
The vertical coordinates of two randomly chosen sensors and the MDL estimates.

0 20 40 60 80 100
0

20

40

60

80

100

(a)

0 100 200 300 400 500
10

−4

10
−3

10
−2

10
−1

10
0

Iterations, t

N
or

m
al

iz
ed

M
SE

t

(b)

Figure 4.16: Uncoordinated motion in a fixed region with random drift: (a) The
motion of two randomly chosen sensors (out of N = 50) shown as gray and black.
(b) The log-normalized mean squared error.

4.9. CONCLUSIONS 125

anchors. In the deterministic case, i.e, when there is no noise in the system, we show

that our distributed algorithms, DILOC and DILOC-REL, lead to convergence to the

exact sensor locations.

We then consider natural extensions to DILOC, i.e., when the network topology

is not static, with more than m + 1 anchors, and with more than m + 1 neighbors.

The convergence is proved in all cases and the convergence is shown to be exact. In

particular, we provide the following results: (i) Choosing the sensor network commu-

nication topology dynamically improves the worst case performance; (ii) Increasing

the number of anchors increases the convergence of the algorithm. (iii) Increasing the

number of neighbors significantly improves the worst case performance.

We then present the MDL algorithm for localization and tracking of wireless mo-

bile devices. The MDL algorithm requires the devices to be tracked to lie in the

convex hull of at least m + 1 anchors that know their exact locations. We present

a general model to capture the motion dynamics and discuss realistic practical cases

where such motion can occur as special cases of this general model. Under minimal

assumptions on network connectivity and deployment, we show that algorithm con-

verges to exact locations in the mobile case when there is no random drift in the

motion. Under random drift, we bound the steady state error that arises due to this

randomness.

We further provide extensive simulations to support the theoretical claims.

Chapter 5

Banded matrix inversion

In this chapter, we specialize HDC to invert banded matrices. Recall that the dis-

tributed Jacobi algorithm provided in Section 3.4 can be employed to invert positive-

definite matrices in a distributed fashion. As we will show, at each network node, the

complexity of the distributed Jacobi algorithm scales linearly with n for inverting n×n
matrices. We provide the distributed iterate-collapse inversion (DICI) algorithm for

inverting banded matrices whose complexity is independent of n at each node. The

DICI algorithm exploits the structure of banded matrices and appends a non-linear

collapse step to the HDC iterations. We apply DICI algorithm to invert the informa-

tion matrices in a computationally efficient distributed implementation of the Kalman

filter (Chapter 6) and show its application towards inverting arbitrary sparse SPD

matrices.

Parts of this chapter have been presented in [48, 35].

5.1 Introduction

Banded matrices are found frequently in signal processing, e.g., in the context of dis-

cretization of partial differential equations governing a random field and autoregres-

sive or moving average image modeling. When they are constrained to be symmetric

positive definite (SPD) matrices, they are the inverses of the covariance matrices of

causal or non-causal Gauss-Markovian random processes [119]. Furthermore, in linear

126

5.1. INTRODUCTION 127

algebra, solving a sparse large linear system of equations is a well studied problem,

where a sparse matrix inverse is to be calculated. By employing matrix reordering

algorithms [1], we can convert sparse SPD matrices to banded SPD matrices and use

the theory developed in this chapter to compute the inverse.

The direct inverse of banded matrices can be computed centrally but that re-

quires extensive storage, communication, and computation. Algorithms to compute

direct inverses include Gauss-Jordan elimination. Most inversion algorithms for SPD

matrices involve a Cholesky factorization that is efficient on a single processor imple-

mentation as long as computation power and memory requirements are within limits.

Incomplete Cholesky factorization is also employed to solve large sparse SPD linear

systems [76].

Recursive inversion of banded matrices can be found in [120, 121]. In [120], a

forward-backward recursion algorithm is provided to compute the inverse of a tridi-

agonal matrix, which involves a forward recursion to start from the first node and

reach the last node, and a backward recursion that proceeds in the opposite direction.

Since, the iterations involve serial communication of the local matrices among all the

nodes, the associated latency is impractical, besides requiring an inordinate amount

of communication. Distributed Jacobi algorithm of Section 3.4 can also be employed

to invert banded matrices but, as we will show, the computational complexity scales

with the dimensions of the matrix.

In this chapter, we present a distributed iterate-collapse inversion algorithm,

named DICI (pronounced die-see to sound like spicy), for L−banded symmetric

positive-definite (SPD) matrices. The computational complexity of the DICI al-

gorithm, at each node, is independent of the size of the matrix and only depends

on its bandwidth, L. DICI algorithm exploits the structure of banded matrices and

appends a non-linear collapse step to the HDC iterations. We now summarize the

rest of the chapter. In Section 5.2, we provide some relevant properties of banded

matrices and their inverses, whereas Section 5.3 provides the problem formulation. In

Section 5.4, we show the complexity of the distributed Jacobi algorithm to scale with

the size of n × n matrices. We then present the DICI algorithm in Section 5.5, and

its application to sparse matrix inversion in subsection 5.6. Section 5.7 concludes the

128 CHAPTER 5. BANDED MATRIX INVERSION

chapter.

5.2 Properties of banded matrices

We start by some relevant definitions.

Definition 6 (L-banded matrices): A matrix, Z = {zij} ∈ Rn×n, is referred to as

an L-banded matrix (L ≥ 0), if the elements outside the band defined by the Lth

upper and the Lth lower diagonal are zero. Mathematically, if Z = {zij} is an L-

banded matrix, then we have

zij = 0, |i− j| > L. (5.1)

Note that a banded matrix is not necessarily a blocked diagonal matrix.

Definition 7 (Semi-separable matrices): The set, Ξ, of semi-separable matrices

[122, 123] is defined by

Ξ =
{
S ∈ Rn×n ∣∣S−1 is an L-banded, SPD matrix

}
. (5.2)

We provide a relevant result on semi-separable matrices.

Lemma 24: Let S = {s}ij ∈ Ξ be a semi-separable matrix, then any non L-band

element of S, i.e., sij, |i−j| > L, can be written as a function of its L-band elements,

i.e., sij, |i− j| ≤ L. For L = 1, we have

sij = si,j−1s
−1
i+1,j−1si+1,j, |i− j| > L. (5.3)

If any of the elements on the R.H.S of (5.3) is a non L−band element, then we write

it first in terms of L−banded elements using (5.3). Lemma 24 uses a determinant

maximizing completion of S assuming that its non L-band elements are unspecified.

The proof along with appropriate formulae to replace (5.3) when L > 1 are provided

in [121].

5.3. PROBLEM FORMULATION 129

Z(l)

O

Z

S=Z-1

Z(2)

Z(N)

S(N)

S(2)

Z(1)

Z =

S(1)

Figure 5.1: Composition of the L−band of Z from the local matrices, Z(l), shown in
the left figure. Centralized Implementation of S = Z−1, shown in the right figure.

5.3 Problem formulation

Consider Z to be an L−banded symmetric positive-definite (SPD) matrix. We are

interested in computing S = Z−1, when the non-zero sub-matrices along the main

diagonal of Z are distributed among N processing nodes1. This is shown in figure 5.1

(left). The lth node has a diagonal sub-matrix, Z(l), that we refer to as the local matrix

at node l. We would like to devise a distributed algorithm to compute S(l) from Z(l)

(see Fig. 5.2) that requires local communication and low-order computation. Note

that once we compute S(l) (a sub-matrix on the main diagonal of S containing elements

inside the L-band), any non-L band element can be computed using Lemma 24.

5.4 Distributed Jacobi algorithm for matrix inver-

sion

The inversion of banded matrices is equivalent to solving a linear systems of equations

ZS = I, (5.4)

1This arises in problems where the information is distributed in a large geographical region,
e.g., estimation of a large-scale dynamical system through distributed sensing (see Chapter 6).
On the other hand, we may be interested in solving a very large linear system of equations on
a multiprocessor machine where parallelizing the algorithm is essential in load balancing and its
real-time implementation, and hence the matrix is distributed among different available processors.
Typically for such problems L� n.

130 CHAPTER 5. BANDED MATRIX INVERSION

for S. Hence, the matrix version of the distributed Jacobi algorithm (as provided in

Section 3.4) can be specialized to solve (5.4), which is given by the following iterations:

S(k + 1) = PγS(k) + Bγ, (5.5)

where

Pγ = (1− γ)I + γM−1 (M− Z) , (5.6)

Bγ = γM−1, (5.7)

M = diag(Z), (5.8)

and γ > 0 is a sufficiently small relaxation parameter. Note that since Z is L−banded, Pγ

is also L−banded. It can be shown that S = Z−1 is the fixed point of (5.5). Choosing

appropriate γ, we can show that ρ(Pγ) < 1 and (5.5) converges to Z−1 as shown in

Section 3.4.

We distribute the above algorithm among the network nodes as follows. The

iteration for the ij-th element, sij, in S(k + 1) can be written at time k + 1 as

sij(k + 1) = pis
j(k) (i 6= j) (5.9)

sij(k + 1) = pis
j(k) + bii (i = j) (5.10)

where pi is the ith row of Pγ, sj(k) is the jth column of S(k), and bii is the (i, i)

element of Bγ. Since, P is L−banded, we note that the only non-zero elements in

the ith row, pi, of P are located at most at the i−L, . . . , i+L locations and can be

represented by {pi}q, where q goes from i−L, . . . , i+L. These non-zero elements pick

the corresponding elements, {sj(k)}q, in the jth column, sj(k), of S(k), from (5.9)

or (5.10), which are available at the nearby nodes.

Drawbacks for distributed Implementation: Recall that we are interested in

computing S(l) from Z(l). Although it may seem like we only require to iterate on

the elements inside S(l), this is not the case. This is because Z is banded and non

block-diagonal and S, inverse of Z, is, in general, a full matrix. This can be shown

5.5. DISTRIBUTED ITERATE COLLAPSE INVERSION (DICI) ALGORITHM131

s11 s12 s13 s14 s15

s12 s22 s23 s24 s25

s13 s23 s33 s34 s35

s14 s24 s34 s44 s45

s15 s25 s35 s45 s55

z11 z12 0
z12 z22 z23

z23 z33 z34

z34 z44 z45

0 z45 z55

-1

-1
== =

Figure 5.2: An example of a 5× 5, L = 1-banded matrix inversion.

by writing out the iteration on the L−band element s45 from (5.9), see figure 5.2

for L = 1−banded Z,

s45(k + 1) = p43s35(k) + p44s45(k) + p45s55(k), (5.11)

where pij is the (i, j) element of Pγ. Equation (5.11) shows that the iterations on

an L−band element s45 requires a non L−band element s35. The iterations on the

non L−band element s35 are given by

s35(k + 1) = p32s25(k) + p33s35(k) + p34s45(k). (5.12)

The computation in (5.12) involves s25(k) that lies in the non L−band of S(k), it-

erating on which, in turn, requires another non L−band element, s15(k), and so on.

Computing the elements outside the L−band, thus, requires iterating on all the ele-

ments in a single column of S, at the corresponding node. Hence, a single iteration

of the algorithm, although requiring only local communication, sweeps the entire

columns in S at the corresponding nodes and the complexity of this approach, at

each node, scales with the size, n, of the linear system.

5.5 Distributed Iterate Collapse Inversion (DICI)

Algorithm

In this section, we present the distribute iterate collapse inversion (DICI) algorithm.

The DICI algorithm is divided into two steps:

132 CHAPTER 5. BANDED MATRIX INVERSION

(i) iterate step;

(i) collapse step.

The iterate step is applied to the L-band elements only and is given by

sij(k + 1) =

{
pis

j(k), i 6= j,

pis
j(k) + bii, i = j,

|i− j| ≤ L, (5.13)

where the symbols are defined as in Section 5.4. As we explained before in Section 5.4,

the implementation of (5.13) requires non L-banded elements that, in turn, require

further non L-banded elements. To address this problem, we introduce a collapse

step, which uses Lemma 24. Hence, when a non L-band element is required by the

iterate step, we use the collapse step so that further non L-band elements do not

repeat.

In the context of Fig. 5.2, instead of iterating on s35 as in (5.12), we employ the

collapse step,

s35(k + 1) = s34(k)s−1
44 (k)s45(k), (5.14)

that prevents us from iterating further on the non L-band elements. The DICI al-

gorithm can be easily extended to L > 1. The only modification required is in the

collapse step, since (5.3) holds only for L = 1. The computation requirements for

the DICI-OR algorithm are independent of n, at each sub-system, and it provides a

scalable implementation of the matrix inversion problem.

5.5.1 Convergence of the DICI algorithm

The iterate and the collapse steps of the DICI algorithm can be combined in matrix

form as follows.

Iterate Step: S(k + 1) = PγS(k) + Bγ, |i− j| ≤ L (5.15)

Collapse Step: S(k + 1) = ζ (S(k + 1)) , |i− j| > L(5.16)

5.5. DISTRIBUTED ITERATE COLLAPSE INVERSION (DICI) ALGORITHM133

The operator ζ(·) is the collapse operator; it employs a maximizing determinant/entropy

completion of a covariance matrix whose non L-band elements are unspecified using

the results in [121]. The DICI algorithm is a composition of the linear function (the

iterate step in (5.15)), D : S(k) → PγS(k) + γM−1, followed by the collapse oper-

ator, ζ(·) given in (5.3) for L = 1 and in [121] for L > 1. Combining (5.15)–(5.16)

summarizes the DICI algorithm for S(k) ∈ Ξ as,

S(k + 1) = ζ
(
PγS(k) + γM−1

)
. (5.17)

We define a composition map, Υ : Ξ 7→ Ξ, as Υ
.
= ζ ◦D. To prove the convergence

of the DICI algorithm, we show that the composition map, Υ, is a contraction map

under some norm, that we choose to be the spectral norm ||·||2, i.e., for some α ∈ [0, 1),

||Υ(XΞ)−Υ(YΞ)||2 ≤ α||XΞ −YΞ||2, ∀XΞ,YΞ ∈ Ξ. (5.18)

The convergence of the iterate step of the DICI algorithm is based on the iterate

operator, Pγ, which is proved to be a contraction map in [58]. For the convergence

of the collapse operator, ζ, we resort to a numerical procedure and show, in the

following, that (5.18) is a contraction by simulating (5.18) 1.003× 106 times.

For the simulations, we generate n× n matrices, Xrand, with i.i.d. normally dis-

tributed elements and get, Xsym = Xrand + XT

rand. We eigen-decompose Xsym =

VΛVT . We replace Λ with a diagonal matrix, ΛΞ, whose diagonal elements are

drawn from a uniform distribution in the interval (0, 10]. This leads to a random

symmetric positive definite matrix that lies in Ξ when we apply collapse opera-

tor, XΞ = ζ
(
VΛΞVT

)
. For n = 100 and L a random integer between 1 and n/2 = 50,

we compute, by Monte Carlo simulations, the quotient of (5.18)

||Υ(XΞ)−Υ(YΞ)||2
||XΞ −YΞ||2

. (5.19)

The number of trials is 1.003 × 106. The histogram of the values of α, in (5.19),

(with 1000 bins) is plotted in Fig. 5.3. The maximum value of α found in these 1.003×
106 simulations is 0.9851 and the minimum value is 0.8252. Since α ∈ (0, 1), i.e.,

134 CHAPTER 5. BANDED MATRIX INVERSION

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

4

α

Fr
eq

ue
nc

y

max(α) = 0.9851
min(α) = 0.8252

Figure 5.3: Histogram of α.

strictly less than 1, we assume that (5.18) is numerically verified.

5.5.2 Error bound for the DICI algorithm

Let the matrix produced by the DICI algorithm at the k+ 1-th iteration be Ŝ(k+ 1).

The error process in the DICI algorithm is given by

Ê(k + 1) = Ŝ(k + 1)− S. (5.20)

Claim: The spectral norm of the error process, ||Ê(k + 1)||2, of the DICI algo-

rithm is bounded above by the spectral norm of the error process, ||Ẽ(k + 1)||2, of

the distributed Jacobi algorithm. Since, the distributed Jacobi algorithm always con-

verges for symmetric positive definite matrices, Z, we deduce that the DICI algorithm

converges.

We verify this claim numerically by Monte Carlo simulations. The number of

trials is 4490, and we compute the error process, Ê(k+ 1)(K), of the DICI algorithm

and the error process, Ẽ(k + 1)(K), of the distributed Jacobi algorithm. We choose

the relaxation parameter, γ, to be 0.1. In Fig. 5.4(a), Fig. 5.4(b), and Fig. 5.4(c), we

show the following,

{maxK , minK , meanK}
(
||Ẽ(k + 1)(K)||2 − ||Ê(k + 1)(K)||2

)
,

5.5. DISTRIBUTED ITERATE COLLAPSE INVERSION (DICI) ALGORITHM135

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

������������	�
����
��������������������������������������� �!�
���	"���$#&%('

#)��*,+.- /1032$4�-6587 9 /1032$4:-;5&7 9<7

(a)

0 50 100 150 200
−1

−0.5

0

0.5

1
x 10

−5

������������	�
����
��������������������������������������� �!�
���	"���$#&%('

#)	��+*-, .0/213�,5476 8 .0/21$3�,5476 8�6

(b)

0 50 100 150 200
0

0.5

1

1.5

2

2.5
x 10

−3

������������	�
����
��������������������������������������� �!�
���	"���$#&%('

#)���$�+*-, .0/213�,5476 8 .0/21$39,:4&6 8;6

(c)

Figure 5.4: Simulation for the error bound of the DICI algorithm.

respectively, against the number of iterations of the distributed Jacobi and DICI

algorithm. Since all the three figures show that the max, min, and the mean of the

difference of the spectral norm of the two error processes, ||Ẽ(k + 1)(K)||2 − ||Ê(k +

1)(K)||2, is always ≥ 0, we deduce that

||Ê(k + 1)||2 ≤ ||Ẽ(k + 1)||2.

This verifies our claim numerically and provides us an upper bound on the spectral

norm of the error process of the DICI algorithm.

136 CHAPTER 5. BANDED MATRIX INVERSION

5.6 Sparse matrix inversion

We show the extension of the DICI algorithm to invert sparse SPD matrices after

applying matrix reordering algorithms to the sparse SPD matrices. These algorithms

apply matrix bandwidth reduction methods, e.g., Reverse Cuthill Mckee (RCM) al-

gorithm reordering [1], such that the sparse SPD matrices are converted to banded

matrices by permutation of rows and columns.

Consider Z to be an arbitrary sparse SPD matrix. We can apply the RCM al-

gorithm to convert Z into an L−banded matrix, Z. The general reordering looks

like

Z = PZPT . (5.21)

The inverse of Z is given by

Z
−1

= PTZ−1P. (5.22)

We can parallelize the computation of Z−1 on a multiprocessor machine using the DICI

algorithm and computing Z
−1

reduces to low order computation at each processor

(node) l, and two matrix multiplications. The matrix P is a permutation matrix and

multiplying by it is a permutation of rows (and columns).

Remarks: It may seem that pre- and post-multiplication with the permutation

matrix, P, in (5.22), has to be implemented at a central location. In fact, this step

can also be distributed by realizing that the permutation of rows and columns can be

implemented by imposing a communication graph on the nodes using the structure

of the permutation matrix, P. Hence, P, determines the communication topology

required by the nodes to communicate the appropriate elements among the nodes.

We show the result of the RCM algorithm on a 100× 100 sparse SPD matrix, Z,

shown in figure 5.5(a), which is converted to a L = 12−band matrix, Z, shown in

figure 5.5(b), by the permutation matrix given by the RCM algorithm [1]. Depending

on the number of nodes, the L = 12−banded matrix, Z, shown in figure 5.5(b), is

divided into overlapping local matrices. Note that the minimum size of the local

matrix is L+ 1× L+ 1, which in the case (L = 12) is a 13× 13 matrix.

5.7. CONCLUSIONS 137

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Figure 5.5: (a) A random sparse SPD matrix, Z, with sparseness density 0.03. Non-
zero elements are shown in black. (b) L = 12−banded reordering of Z, shown in
figure 5.5(a), using RCM algorithm [1].

5.7 Conclusions

We present a distributed inversion algorithm, DICI, for banded SPD matrices that is

distributed both in terms of communication and computations. Each node does local

communication and performs computation of order O(L4t) with only local matrices,

where L << n and t is the number of iterations of the DICI algorithm. The algorithm

has significant importance when applied to problems where partial information about

a global phenomenon is available at the nodes and where parallelized solutions are

sought under resource constraints for load balancing. We use the DICI algorithm to

distribute the Kalman filter in the next chapter.

Chapter 6

Distributed estimation in

large-scale systems

In this chapter, we present a distributed Kalman filter to estimate the state of a

sparsely connected, large-scale, n-dimensional, dynamical system monitored by a

network of N sensors. We implement local Kalman filters on nl-dimensional sub-

systems, nl � n, obtained by spatially decomposing the large-scale system. The

distributed Kalman filter is optimal under an Lth order Gauss-Markov approxima-

tion to the centralized filter. Gauss-Markov covariances have banded inverses and

we employ the DICI algorithm (Chapter 5) to compute these error covariances in a

distributed fashion. Hence, the computation of the centralized (approximated) Ric-

cati and Lyapunov equations is distributed and requires local communication and

low-order computation. We fuse the observations that are common among the local

Kalman filters using bipartite fusion graphs and a linear average-consensus algorithm.

The proposed algorithm achieves full distribution of the Kalman filter. Nowhere in

the network, storage, communication, or computation of n-dimensional vectors and

matrices is needed; only nl � n dimensional vectors and matrices are communicated

or used in the local computations at the sensors.

Parts of this chapter have been presented in [46, 47, 48, 35].

138

6.1. INTRODUCTION 139

6.1 Introduction

Centralized implementation of the Kalman filter [124, 125], although possibly opti-

mal, is neither robust nor scalable to complex large-scale dynamical systems with

their measurements distributed on a large geographical region. The reasons are

twofold: (i) the large-scale systems are very high-dimensional, and thus require ex-

tensive computations to implement the centralized procedure; and (ii) the span of

the geographical region, over which the large-scale system is deployed or the physi-

cal phenomenon is observed, poses a large communication burden and thus, among

other problems, adds latency to the estimation mechanism. To remove the difficul-

ties posed by centralization, we decompose the large-scale system into nl-dimensional

sub-systems and distribute the estimation algorithm with a low order Kalman filter

implemented at each of these sub-systems. To account for the processing, commu-

nication, and limited resources at the sub-systems, the local Kalman filters involve

computations and communications with local quantities only, i.e., vectors and ma-

trices of low dimensions, nl � n, where n is the dimension of the state vector—no

sensor computes, communicates, or stores any n-dimensional quantity.

Much of the existing research on distributed Kalman filters focuses on sensor

networks monitoring low -dimensional systems, where an nth order Kalman filter is

replicated at each sensor. This replication is only practical when the dimension of

the state is small, for example, when multiple sensors mounted on a small number

of robot platforms are used for target tracking [126, 127, 128]. The problem in such

scenarios reduces to how to efficiently incorporate the distributed observations, which

is also referred to in the literature as ‘data fusion,’ see also [129]. Data fusion for

Kalman filters over arbitrary communication networks is discussed in [37], using it-

erative consensus protocols in [130]. The consensus protocols in [130] are assumed to

converge asymptotically, thus, between any two time steps of the Kalman filter, the

consensus protocols require an infinite number of iterations to achieve convergence.

References [131, 127] incorporate packet losses, intermittent observations, and com-

munication delays in the data fusion process. Because they replicate an n-dimensional

Kalman filter at each sensor, they communicate and invert n × n matrices locally,

140 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

which, in general, is an O(n3) computation. This may be viable for low dimensional

systems, as in tracking, but, unacceptable in the problems we consider where the

state dimension, n, is very large, for example, in the range of 102 to 109. In such

problems, replication of the global dynamics in the local Kalman filters is either not

practical or not possible.

Kalman filters with reduced order models have been studied in, e.g., [132, 133]

to address the computation burden posed by implementing nth order models. In

these works, the reduced models are decoupled, which is sub-optimal, as important

coupling among the system variables is ignored. Furthermore, the network topology

is either fully connected [132], or is close to fully connected [133], requiring long

distance communication that is expensive. We are motivated by problems where the

large-scale systems, although sparse, cannot be decoupled, and where, due to the

sensor constraints, the communication and computation should both be local.

We present a distributed Kalman filter that addresses both the computation and

communication challenges posed by complex large-scale dynamical systems, while

preserving its coupled structure; in particular, nowhere in our distributed Kalman

filter, do we store, communicate, or compute any n-dimensional quantity. As an

interesting remark, nowhere either in the network is there a copy of the entire state

estimate; in other words, knowledge about the state is intrinsically distributed. We

briefly explain the key steps and approximations in our solution.

Spatial decomposition of complex large-scale systems: To distribute the

Kalman filter, we provide a spatial decomposition of the complex large-scale dynami-

cal system (of dimension n) that we refer to as the overall system into several, possibly

many, local coupled dynamical systems (of dimension nl, such that nl � n) that we

refer to as sub-systems in the following. The large-scale systems we consider are

sparse and localized. Physical systems with such characteristics are described in Sec-

tion 6.2.1, as resulting, for example, from a spatio-temporal discretization of random

fields. These sub-systems overlap, i.e., they share states, and thus the resulting local

Kalman filters also overlap. In addition to this overlap, the sub-systems are con-

nected by local interactions that account for the coupling between the sub-systems.

We preserve this coupling by modeling explicitly this information exchange among

6.1. INTRODUCTION 141

the sub-systems.

Overlapping dynamics at the sub-systems: Bipartite fusion graphs: The

sub-systems that we extract from the overall system overlap. In particular, some state

variables are observed by several sub-systems. To fuse this shared information, we

implement a fusion algorithm using bipartite fusion graphs, which we introduced

in [46], and an average-consensus algorithm [17]. The interactions required by the

fusion procedure are constrained to a small neighborhood and with particular choices

of the communication topology, the observation fusion procedure remains single hop.

Assimilation of the local error covariances—DICI algorithm: A key is-

sue when distributing the Kalman filter is that the local error covariances should

approximate the centralized error covariance in a meaningful way. If the local error

covariances evolve independently at each sub-system they may lose any coherence

with the centralized error covariance. For example, in the estimation scheme in [134],

the coupled states are applied as inputs to the local observers, but, the error co-

variances remain decoupled and no structure of the centralized error covariance is

retained by the local filters. To keep coherence between the local covariances and

the centralized covariance, we employ a cooperative assimilation procedure among the

local error covariances that is based on approximating the centralized error process

by a low dimensional Gauss-Markov error process1. The assimilation procedure is

carried out with the DICI algorithm in Chapter 5.

In summary, spatial decomposition of complex large-scale systems, fusion algo-

rithms for fusing observations, and the DICI algorithm to assimilate the local error

covariances combine to give a robust, scalable, and distributed implementation of the

Kalman filter.

We describe the rest of the chapter. Section 6.2 motivates the discrete-time mod-

els and describes the centralized Information filters2 (CIFs) and the centralized L-

banded Information filters (CLBIFs). Section 6.3 covers the model distribution step.

1In the error covariance domain, this approximation corresponds to the determinant/entropy
maximizing completion of a partially specified (L-band, in our case) covariance matrix [135, 119,
120, 136]. Such a completion results into a covariance matrix whose inverse is L-banded.

2We use the Kalman filter in the Information filter format [137, 133]. Information filter is alge-
braically equivalent to the Kalman filter.

142 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

We introduce the local Information filters in Section 6.3.2 along with the necessary

notation. Section 6.4 gives the observation fusion step of the local Information filters.

We provide the filter step of the local Information filters in Section 6.6, and the pre-

diction step of the local Information filters in Section 6.7. We conclude the chapter

with results in Section 6.8 and conclusions in Section 7.2.4. Appendix C.1 discusses

the L-banded inversion theorem, [120].

6.2 Background

In this section, we motivate the type of applications and large-scale dynamical sys-

tems of interest to us. The context is that of a time-varying random field governed

by partial differential equations (PDEs); these systems can also be generalized to ar-

bitrary dynamical systems belonging to a particular structural class, as we elaborate

in Subsection 6.2.1. To fix notation, we then present the centralized version of the

Information filter.

6.2.1 Global model

Global dynamical system

Our goal here is to motivate how discrete linear models occur that exhibit a sparse

and localized structure that we use to distribute the model in Section 6.3. Examples

include physical phenomena [138, 139, 140, 141, 142], e.g., ocean/wind circulation

and heat/propagation equations, that can be broadly characterized by a PDE of the

Navier-Stokes type. These are highly non-linear and different regimens arise from

different assumptions. For data assimilation, i.e., combining models with measured

data, e.g., satellite altimetry data in ocean models, it is unfeasible to use non-linear

models; rather, linearized approximations (dynamical linearization) are employed.

Hence, we take a very simplistic example and consider the discretization of a spatio-

temporal dynamical system,

ẋt = Lxt + ut, (6.1)

6.2. BACKGROUND 143

where ẋt is the time partial derivative of a continuous-time physical phenomenon

(e.g., heat, wave or wind), ut is random noise, and L, for example, is a 2nd order

elliptical operator (that arises in the heat equation in diffusion),

L = α
∂2

∂ρ2
x

+ β
∂2

∂ρ2
y

, (6.2)

where ρx and ρy represent the horizontal and vertical dimensions, respectively, and α, β

are constants pertinent to the specific application.

We start by discretizing the elliptical operator (6.2), using a standard 2nd order

difference approximation on an M × J uniform mesh grid,

∂2xt
∂ρ2

x

∼ xi+1,j − 2xi,j + xi−1,j,
∂2xt
∂ρ2

y

∼ xi,j+1 − 2xi,j + xi,j−1, (6.3)

where xij is the value of the random field, xt, at the ij-th location in the M ×J grid.

We collect the variables, {xij}, in a state vector, x, by, for example, using lexicographic

ordering. Let A be a tridiagonal matrix, with zeros on the main diagonal and ones

on the upper and lower diagonal; approximating the time derivative in (6.1) by using

the forward Euler method, we can write the spatio-temporal discretization of (6.1) as

xk+1 = (I + Fc) xk + Guk, k ≥ 0, (6.4)

where k is the discrete-time index and the matrix Fc is given by

Fc =

B C
.

C B

 = I⊗B + A⊗C, (6.5)

where B = µI + βhA, and C = βvI, the constants µ, βh, βv are in terms of α, β

in (6.2), and ⊗ is the Kronecker product [143]. Putting F = I + Fc, the discrete-time

dynamical system takes the form

xk+1 = Fxk + Guk. (6.6)

144 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

In the above model, x0 ∈ Rn are the state initial conditions, F ∈ Rn×n is the model

matrix, uk ∈ Rj′ is the state noise vector and G ∈ Rn×j′ is the state noise matrix.

Remarks: Here, we note that the model matrix, F, is highly sparse, since the

matrices B and C are at most tridiagonal, and is perfectly banded in case of PDEs.

We can relax this to sparse and localized matrices as when the coupling among the

states decays with distance (in an appropriate measure), for example, see the spatially

distributed systems in [144]. We mention briefly two other examples where such

discrete-space-time models (with sparse and localized structure) also occur. In image

processing, the dynamics at a pixel depends on neighboring pixel values [145], [146];

power grid models, under certain assumptions, exhibit banded structures, [66, 147,

49]. As a final comment, systems that are sparse but not localized can be converted

to sparse and localized by using matrix bandwidth reduction algorithms [1].

Observation model

Let the system described in (6.6) be monitored by a network of N sensors. Observa-

tions at sensor l and time k are

y
(l)
k = Hlxk + w

(l)
k , (6.7)

where Hl ∈ Rpl×n is the local observation matrix for sensor l, pl is the number of

simultaneous observations made by sensor l at time k, and w
(l)
k ∈ Rpl is the local

observation noise. In the context of the systems we are interested in, it is natural to

assume that the observations are localized. These local observations at sensor l may

be, e.g., the temperature or height at location l or an average of the temperatures or

heights at l and neighboring locations. Mathematically, this can be characterized by

assuming that HHT is sparse and banded.

We stack the observations at all N sensors in the sensor network to get the global

observation model as follows. Let p be the total number of observations at all the

6.2. BACKGROUND 145

sensors. Let the global observation vector, yk ∈ Rp, the global observation ma-

trix, H ∈ Rp×n, and the global observation noise vector, wk ∈ Rp, be

yk =

y
(1)
k
...

y
(N)
k

 , H =

H1

...

HN

 , wk =

w
(1)
k
...

w
(N)
k

 . (6.8)

Then the global observation model is given by

yk = Hxk + wk. (6.9)

We further assume that the overall system (6.6) and (6.9) is coupled, irreducible, and

the pair (F,H) to be observable.

Statistical assumptions

We adopt standard assumptions on the statistical characteristics of the noise. The

state noise sequence, {uk}k≥0, the observation noise sequence, {wk}k≥0, and the initial

conditions, x0, are independent, Gaussian, zero-mean, with

E[uιu
H
τ] = Qδιτ and E[wιw

H
τ] = Rδιτ , and E[x0x

H
0] = S0, (6.10)

where the superscript H denotes the Hermitian, the Kronecker delta διτ = 1, if and

only if ι = τ , and zero otherwise. Since the observation noises at different sensors are

independent, we can partition the global observation noise covariance matrix, R, into

blocks Rl ∈ Rpl×pl corresponding to the local observation noise covariance matrices

at each sensor l, as

R = blockdiag[R1, . . . ,RN]. (6.11)

For the rest of the presentation, we consider time-invariant models, specifically, the

matrices, F,G,H,Q,R, are time-invariant. The discussion, however, is not limited

to either zero-mean initial conditions or time-invariant models and generalizations to

the time-variant models will be added as we proceed.

146 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

6.2.2 Centralized Information Filter (CIF)

Let S̆k|k and S̆k|k−1 be the (filtered and prediction, respectively) error covariances, and

their inverses be the information matrices, Z̆k|k and Z̆k|k−1. Let x̂k|k and x̂k|k−1 be

the filtered estimate and the predicted estimate of the state vector, xk, respectively.

We have the following relations.

S̆k|k = Z̆−1
k|k (6.12)

S̆k|k−1 = Z̆−1
k|k−1 (6.13)

Define the n-dimensional global transformed state vectors as

ẑk|k−1 = Z̆k|k−1x̂k|k−1, (6.14)

ẑk|k = Z̆k|kx̂k|k. (6.15)

Define the n-dimensional global observation variables as

ik = HTR−1yk, (6.16)

I = HTR−1H, (6.17)

and the n-dimensional local observation variables at sensor l as

il,k = HT
l R−1

l y
(l)
k , (6.18)

Il = HT
l R−1

l Hl. (6.19)

When the observations are distributed among the sensors, see (7.15), the CIF can be

implemented by collecting all the sensor observations at a central location; or, with

observation fusion, by realizing that the global observation variables in (6.16)−(6.17)

6.2. BACKGROUND 147

can be written as, see [126, 133, 37],

ik =
N∑

l=1

il,k, (6.20)

I =
N∑

l=1

Il. (6.21)

The filter step of the CIF is

Z̆k|k = Z̆k|k−1 +
N∑

l=1

Il, k ≥ 0, (6.22a)

ẑk|k = ẑk|k−1 +
N∑

l=1

il,k, k ≥ 0. (6.22b)

The prediction step (k ≥ 1) of the CIF is

Z̆k|k−1 = S̆−1
k|k−1 = (FZ̆−1

k−1|k−1F
T+GQGT)−1, Z̆0|−1 = S̆−1

0 , (6.23a)

ẑk|k−1 = Z̆k|k−1

(
FZ̆
−1

k−1|k−1ẑk−1|k−1

)
, ẑ0|−1 = 0. (6.23b)

The CIF needs: (i) the knowledge of all the observations, yk, at a central location

to compute (6.20), a non-trivial communication task when the number of sensors, N ,

is large; and (ii) global filter computations, e.g., (6.23), an infeasible challenge when

the number of states, n, is large. Further, the CIF has the disadvantages of large

latency and a single point of failure.

6.2.3 Centralized L-Banded Information Filters (CLBIF)

To avoid the O(n3) computations of the global quantities in (6.23), e.g., the inver-

sion, Z̆−1
k−1|k−1, we may approximate the information matrices, Z̆k|k and Z̆k|k−1, to

be L-banded matrices, Zk|k and Zk|k−1. We refer to the CIF with this approximation

as the centralized L-banded Information filter (CLBIF). This approach is studied

148 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

in [148], where the information loss between Z̆ and Z, is given by the divergence

Divk(Z̆k|q,Zk|q) =
1

2

∣∣∣
∣∣∣Z̆−

T
2

k|q

(
Zk|q − Z̆k|q

)
Z
− 1

2

k|q

∣∣∣
∣∣∣
2

F
,

≤ 1

2

(∑

i

λ
− 1

2

i(Zk|q)

)2(∑

i

λ
− 1

2

i(Z̆k|q)

)2 ∣∣∣
∣∣∣Zk|q − Z̆k|q

∣∣∣
∣∣∣
2

F
, (6.24)

where q = k for estimation and q = k − 1 for prediction, || · ||F is the Frobenius

norm and λi(Zk|q) is the ith eigenvalue of the matrix Zk|q. Although, for a fixed k

the divergence in (6.24) is bounded, the sequence, Divk(·, ·), may be unbounded for

small values of L. Here, we assume that L is chosen large enough, i.e., L ≥ Lmin,

such that limk→∞Divk(·, ·) exists. The choice of Lmin varies for different dynamical

systems and loosely speaking depends on the structure of the model matrices, F.

This banded approximation of the information matrices is equivalent to the de-

terminant/entropy maximizing completion of its inverse, a covariance matrix; part of

whose elements are unspecified. In our case, the unspecified elements are the non L-

band elements, and it is well known that such completion of the covariance matrices

have banded inverses with the same bandwidth, see, for instance, [135, 120, 136] and

the references within. Furthermore, such covariance matrices result from approximat-

ing the Gaussian error processes,

εk|k = xk − x̂k|k, εk|k−1 = xk − x̂k|k−1, (6.25)

to Gauss-Markov of Lth order [119] (for L = 1, this has also been studied in [149]).

Reference [120] presents an algorithm to derive the approximation that is optimal

in Kullback-Leibler or maximum entropy sense in the class of all L-banded matrices

approximating the inverse of the error covariance matrix. In the sequel, we assume

this optimal L-banded approximation.

The CLBIF (with the L-banded information matrices, Zk|k and Zk|k−1) is given by

the filter step in (6.22a)−(6.22b) and the prediction step in (6.23a)−(6.23b), where

the optimal information matrices, Z̆k|k and Z̆k|k−1, are replaced by their L-banded

approximations. The algorithms in [120, 121] reduce the computational complexity

6.3. SPATIAL DECOMPOSITION OF LARGE-SCALE SYSTEMS 149

of the CLBIF to O(n2) but the resulting algorithm is still centralized and deals with

the n-dimensional state. To distribute the CLBIF, we start by distributing the global

model (6.6)−(6.9) in the following section.

6.3 Spatial decomposition of large-scale systems

Instead of implementing CLBIF based on the global model, we implement local In-

formation filters at the sub-systems obtained by spatially decomposing the overall

system. Subsection 6.3.1 deals with this decomposition by exploiting the sparse and

localized structure of the model matrix, F.

6.3.1 Reduced model at each Sensor

This subsection shows how to distribute the global model (6.6) and (6.9), in order

to get the reduced order sub-systems. We illustrate the procedure with a simple

example that reflects our assumptions on the dynamical system structure. Consider

a five dimensional system with the global dynamical model

xk+1 =

f11 f12 0 0 0

f21 f22 0 f24 0

f31 0 f33 0 0

0 0 f43 0 f45

0 0 0 f54 f55

xk +

0 0

0 0

0 g32

0 0

g51 0

uk (6.26)

= Fxk + Guk.

The system has two external noise sources uk = [u1k, u2k]
T . We monitor this system

with N = 3 sensors, having scalar observations, y
(l)
k , at each sensor l. The global

150 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

observation vector, yk, stacks the local observations, y
(l)
k , and is

yk =

y

(1)
k

y
(2)
k

y
(3)
k

 =

h11 h12 h13 0 0

0 h22 h23 h24 0

0 0 0 h34 h35

xk +

w

(1)
k

w
(2)
k

w
(3)
k

 (6.27)

= Hxk + wk,

where H = [HT
1 HT

2 HT
3]T ; the elements {fij} and {hij} in (6.26)–(6.27), are such

that the dynamical system is (F,H)-observable. We distribute the global model of

equations (6.26) and (6.27) in the following subsections.

Graphical representation using system digraphs

A system digraph visualizes the dynamical interdependence of the system. A sys-

tem digraph, [134], J = [V,E], is a directed graphical representation of the system,

where V = X ∪ U is the vertex set consisting of the states, X = {xi}i=1,...,n, and

the noise inputs, U = {ui}i=1,...,j′ . The interconnection matrix, E, is the binary rep-

resentation (having a 1 for each non-zero entry) of the model matrix, F, and the

state noise matrix, G, concatenated together. The interconnection matrix, E, for the

system in (6.26) is,

E =

1 1 0 0 0 0 0

1 1 0 1 0 0 0

1 0 1 0 0 0 1

0 0 1 0 1 0 0

0 0 0 1 1 1 0

. (6.28)

The system digraph is shown in Fig. 6.1(a).

Sub-system derivation using cut-point sets

We have N = 3 sensors monitoring the system through the observation model (6.27).

We implement a sub-system at each sensor, thus, sub-system l corresponds to sen-

sor l. We associate to each sub-system l a cut-point set, V (l), where V (l) ⊆ X. We

choose to include the states in a cut-point set that are observed by the sensors in

6.3. SPATIAL DECOMPOSITION OF LARGE-SCALE SYSTEMS 151

x4

x2

x1

x3

x5

u2

u1

(a)

x4

x2

x1

x3

x5

u2

u1

s1

s2

s3

(b)

F(1) D(1)

f11 f12 0 0 0
f21 f22 0 f24 0
f31 0 f33 0 0
0 0 f43 0 f45

0 0 0 f54 f55

F1

F(3)D(3)

F3

(c)

Figure 6.1: System Digraph and cut-point sets: (a) Digraph representation of the 5 di-
mensional system, (6.26)−(6.27). The circles represent the states, x, and the squares
represent the input noise sources, u. (b) The cut-point sets associated to the 3 sub-
systems (4) are shown by the dashed circles. (c) Partitioning of the global model
matrix, F, into local model matrices, F(l), and the local internal input matrices, D(l),
shown for sub-system 1 and sub-system 3, from the example system, (6.26)−(6.27).

its corresponding sub-system; see [150] for an alternate definition of the cut-point

sets, and algorithms to find all cut-point sets and a minimal cut-point set, if it ex-

ists. The cut-point sets select the local states involved in the local dynamics at each

sub-system. From (6.27), the cut-point sets3 are shown in Fig. 6.1(b) where we have

the following cut-point set, e.g., at sub-system 1, V (1) = {x1, x2, x3} .

Dimension of the sub-systems: The local states at sub-system l, i.e., the

components of the local state vector, x
(l)
k , are the elements in its associated cut-point

set, V (l). The dimension of the local Kalman filter implemented at sub-system l is

now nl. The set of nl-dimensional local Kalman filters will give rise, as will be clear

later, to an L-banded centralized information matrix with L = min(n1, . . . , nN). The

loss in the optimality as a function of L is given by the divergence (6.24). Hence,

for a desired level of performance, i.e., for a fixed L, we may need to extend (include

3For simplicity of the presentation, we chose here that each state variable is observed at at least
one sub-system. We can easily account for this when this is not true by extending the cut-point
sets, V (l), to V

(l)
, such that

⋃N
l=1 V

(l)
= X.

152 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

additional states in a cut-point set) the cut-point sets, V (l), to V
(l)
L , such that

nl =
∣∣∣V (l)
L

∣∣∣ ≥ L, ∀ l, (6.29)

where | · | when applied to a set denotes its cardinality. This procedure of choosing

an L based on a certain desired performance gives a lower bound on the dimension

of each sub-system.

Coupled States as Inputs: The directed edges coming into a cut-point set

are the inputs required by local model at that sub-system. In the context of our

running illustration (6.26)−(6.27), we see that the local state vector for sub-system 1

is, x
(1)
k = [x1,k, x2,k, x3,k]

T , and the inputs to the local model consist of a subset of

the state set, X, (at sub-system 1, x4,k is the input coming from sub-system 2) and

a subset of the noise input set, U , (u2,k at sub-system s1).

Local models: For the local model at sub-system l, we collect the states required

as input in a local internal input vector, d
(l)
k (we use the word internal to distinguish

from the externally applied inputs), and the noise sources required as input in a local

noise input vector, u
(l)
k . We collect the elements from F corresponding to the local

state vector, x
(l)
k , in a local model matrix, F(l). Similarly, we collect the elements

from F corresponding to the local internal input vector, d
(l)
k , in a local internal input

matrix, D(l), and the elements from G corresponding to the local noise input vec-

tor, u
(l)
k , in a local state noise matrix, G(l). Fig. 6.1(c) shows this partitioning for

sub-systems 1 and 3. We have the following local models from(6.26).

x
(1)
k+1 =

f11 f12 0

f21 f22 0

f31 0 f33

x

(1)
k +

0

f24

0

x4,k +

0

0

g32

u2,k,

= F(1)x
(1)
k + D(1)d

(1)
k + G(1)u

(1)
k . (6.30)

6.3. SPATIAL DECOMPOSITION OF LARGE-SCALE SYSTEMS 153

x
(2)
k+1 =

f22 0 f42

0 f33 0

0 f43 0

x

(2)
k +

f21 0

f31 0

0 f45

[
x1,k

x5,k

]
+

0

g32

0

u2,k,

= F(2)x
(2)
k + D(2)d

(2)
k + G(2)u

(2)
k (6.31)

x
(3)
k+1 =

[
0 f45

f54 f55

]
x

(3)
k +

[
f43

0

]
x3,k +

[
0

g51

]
u1,k,

= F(3)x
(3)
k + D(3)d

(3)
k + G(3)u

(3)
k (6.32)

We may also capture the above extraction of the local states by the cut-point sets,

with the following procedure. Let the total number of states in the cut-point set at

sub-system l, V (l), be nl. Let Tl be an nl × n selection matrix, such that it selects nl

states in the cut-point set, V (l), from the entire state vector, xk, according to the

following relation,

x
(l)
k = Tlxk. (6.33)

For example, the selection matrix, T1 at sub-system 1, is

T1 =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 . (6.34)

We establish a reduced local observation matrix, H(l), by retaining the terms corre-

sponding to the local state vector, x
(l)
k , from the local observation matrix, Hl. We

may write

H(l) = HlT
#
l , (6.35)

where ‘#’ denotes the pseudo-inverse of the matrix. In the context of our running

illustration, the reduced local observation matrix H(1) = [1, 1, 1] is obtained from the

local observation matrix H1 = [1, 1, 1, 0, 0]. Note that Hl picks the states from the

global state vector, xk, whereas H(l) picks the states from the local state vector, x
(l)
k .

154 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

The reduced local observation models are given by

y
(l)
k = H(l)x

(l)
k + w

(l)
k . (6.36)

We now make some additional comments. For simplicity of the explanation, we

refer to our running example, (6.26)−(6.27). We note that the sub-systems overlap,

as shown by the overlapping cut-point sets in Fig. 6.1(b). Due to this overlap, ob-

servations corresponding to the shared states are available at multiple sub-systems

that should be fused. We further note that the local model (6.30) at sub-system 1

is coupled to the local model (6.31) at sub-system 2 through the state x4,k. The

state x4,k at sub-system 1 does not appear in the local state vector, i.e., x4,k /∈ x
(1)
k .

But, it is still required as an internal input at sub-system 1 to preserve the global dy-

namics. Hence, sub-system 2 communicates the state x4,k, which appears in its local

state vector, i.e., x4,k ∈ x
(2)
k , to sub-system 1. Hence at an arbitrary sub-system l, we

derive the reduced model to be

x
(l)
k+1 = F(l)x

(l)
k + D(l)d

(l)
k + G(l)u

(l)
k . (6.37)

Since the value of the state itself is unknown, sub-system 2 communicates its esti-

mate, x̂
(2)
4,k|k, to sub-system 1. This allows sub-system 1 to complete its local model and

preserve global dynamics, thus, taking into account the coupling sub-systems. This

process is repeated at all sub-systems. Hence, the local internal input vector, d
(l)
k ,

is replaced by its estimate, d̂
(l)
k|k. It is worth mentioning here that if the dynamics

were time-dependent, i.e., the matrices, F,G,H, change with time, k, then the above

decomposition procedure will have to be repeated at each k. This may result into a

different communication topology over which the sub-systems communicate at each k.

6.3.2 Local Information filters

To distribute the estimation of the global state vector, xk, we implement local In-

formation filters (LIFs) at each sub-system l, which are based on the sub-system

models (6.37) and (6.36). Each LIF computes local quantities (matrices and vectors

6.3. SPATIAL DECOMPOSITION OF LARGE-SCALE SYSTEMS 155

Initialize
VI-A

Observation Fusion
IV-A

Local Filter Step
VI-B

Distributed Matrix
Inversion using DICI

V

Local
Prediction Step

VII

Figure 6.2: Block Diagram for the LIFs: Steps involved in the LIF implementation.
The ovals represent the steps that require local communication.

of dimension nl), which are then fused (if required) by exchanging information among

the neighbors. Some of the update procedures are iterative. Although, no centralized

knowledge of the estimation of the global state exists, the union of the local state

vector represents, in a distributed way, the knowledge that exists in a centralized

fashion in the CLBIF. In most applications nowhere in the network is there the need

for this centralized knowledge.

The LIFs consist of initial conditions, a local filter step (including observation fu-

sion and distributed matrix inversion) and a local prediction step (including estimate

fusion), see Fig. 6.2. These steps are presented in the next four sections. To proceed

with the next sections, we provide notation in the following Subsection.

Notation

The superscript (l) refers to a local reduced-order variable (nl × 1 vector or nl × nl
matrix) at sub-system l. For example, the reduced observation vector, i

(l)
k , and the

reduced observation matrix, I(l), are

i
(l)
k = (H(l))TR−1

l y
(l)
k , (6.38)

I(l) = (H(l))TR−1
l H(l). (6.39)

The local error covariance matrices, S
(l)
k|k and S

(l)
k|k−1, are the overlapping diagonal sub-

matrices of the global error covariance matrices, Sk|k and Sk|k−1. Let Z
(l)
k|k and Z

(l)
k|k−1

156 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

s11 s12 s13 s14 s15

s12 s22 s23 s24 s25

s13 s23 s33 s34 s35

s14 s24 s34 s44 s45

s15 s25 s35 s45 s55

z11 z12 0
z12 z22 z23

z23 z33 z34

z34 z44 z45

0 z45 z55

-1

-1
== =

Figure 6.3: Relationship between the global error covariance matrices, S and their
inverses, the global information matrices, Z, with L = 1-banded approximation on Z.
The figure also shows how the local matrices, S(l) and Z(l), constitute their global
counterparts. Since this relation holds for both the estimation and prediction matri-
ces, we remove the subscripts.

be the local information matrices. These local information matrices are overlapping

diagonal sub-matrices of the global L-banded information matrices, Zk|k and Zk|k−1.

These local matrices overlap because the sub-systems overlap. Fig. 6.3 captures the

relationship between the local error covariance matrices and the local information

matrices given by (6.12) and (6.13).

6.4 Overlapping reduced models

After the spatial decomposition of the dynamical system, introduced in Section 6.3,

the resulting sub-systems share state variables, as shown by the overlapped cut-

point sets in Fig. 6.1(b). Since the sub-systems sharing the states have independent

observations of the shared states, observations corresponding to the shared states

should be fused. We present observation fusion in subsection 6.4.1 with the help of

bipartite fusion graphs, [46].

6.4.1 Observation fusion

Equations (6.20) and (6.21) show that the observation fusion is equivalent to adding

the corresponding n-dimensional local observation variables, (6.18)−(6.19). In CLBIF,

we implement this fusion directly because each local observation variable in (6.18)−(6.19)

6.4. OVERLAPPING REDUCED MODELS 157

x1 x5x4x3x2

s3s2s1

(a)

s1

s3

s2s1

s2

s3

s1

s2 s3

G1

G2 , G3

G4
G = U GjG5

(b)

Figure 6.4: (a) A bipartite Fusion graph, B, is shown for the example system. (b)
Subgraphs, Gj, for observation fusion.

corresponds to the full n-dimensional state vector, xk. Since the nl-dimensional re-

duced observation variables, (6.38)−(6.39), correspond to different local state vec-

tors, x
(l)
k , they cannot be added directly.

For simplicity and without loss of generality, we assume each local observation

matrix, Hi, to be a row. To achieve observation fusion, we introduce the following

undirected bipartite fusion graph4, B. Let SN = {s1, . . . , sN} be the set of sensors

and X be the set of states. The vertex set of the bipartite fusion graph, B, is SN ∪X.

We now define the edge set, EB, of the fusion graph, B. The sensor si is connected

to the state variable xj, if si observes (directly or as a linear combination) the state

variable xj. In other words, we have an edge between sensor si and state variable xj, if

the local observation matrix, Hi, at sensor si, contains a non-zero entry in its jth col-

umn. Fig. 6.4(a) shows the bipartite graph for the example system in (6.26)−(6.27).

The set of sensors, Sj, that observe the jth state, xj, come directly form the bipartite

fusion graph, B. For example, from Fig. 6.4(a), we see that S1 contains s1 as a single

sensor, whereas S2 contains the sensors s1, s2, and so on5. States having more than

one sensor connected to them in the bipartite fusion graph, B, are the states for which

fusion is required, since we have multiple observations for that state.

4A bipartite graph is a graph whose vertices can be divided into two disjoint sets X and SN ,
such that every edge connects a vertex in X to a vertex in SN , and there is no edge between any
two vertices of the same set, [151].

5Mathematically, this can be captured as follows. Let the number of non-zero elements in the jth
column, hj , of the global observation matrix, H, be given by Nj and let Ωj be the set of the locations
of these non-zero elements, with |Ωj | = Nj and Ωj,ς be its ςth element. Let Vj be an Nj×N matrix
with ones on the (ς,Ωj,ς)-th locations and zeros elsewhere. Then Sj = VjSN .

158 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

With the help of the above discussion, we establish the fusion of the reduced

observation variables, (6.38)−(6.39). The reduced model at each sensor involves nl

state variables, and each element in the nl × 1 reduced observation vector, i
(l)
k , cor-

responds to one of these states, i.e., each entry in i
(l)
k has some information about

its corresponding state variable. Let the entries of the nl × 1 reduced observation

vector, i
(l)
k , at sensor l, be subscripted by the nl state variables modeled at sensor l.

In the context of the example given by system (6.26)−(6.27), we have

i
(1)
k =

i
(1)
k,x1

i
(1)
k,x2

i
(1)
k,x3

 , i

(2)
k =

i
(2)
k,x2

i
(2)
k,x3

i
(2)
k,x4

 , i

(3)
k =

[
i
(3)
k,x4

i
(3)
k,x5

]
. (6.40)

For the jth state, xj, the observation fusion is carried out on the set of sensors, Sj,

attached to this state in the bipartite fusion graph, B. The fused observation vectors

denoted by i
(l)
f,k are given by

i
(1)
f,k =

i
(1)
k,x1

i
(1)
k,x2

+ i
(2)
k,x2

i
(1)
k,x3

+ i
(2)
k,x3

 , i

(2)
f,k =

i
(2)
k,x2

+ i
(1)
k,x2

i
(2)
k,x3

+ i
(1)
k,x3

i
(2)
k,x4

+ i
(3)
k,x4

 , i

(3)
f,k =

[
i
(3)
k,x4

+ i
(2)
k,x4

i
(3)
k,x5

]
. (6.41)

Generalizing to the arbitrary sensor l, we may write the entry, i
(l)
f,k,xj

, corresponding

to xj in the fused observation vector, i
(l)
f,k as

i
(l)
f,k,xj

=
∑

s∈Sj

i
(s)
k,xj

, (6.42)

where i
(s)
k,xj

is the entry corresponding to xj in the reduced observation vector at

sensor s, i
(s)
k .

6.4.2 Implementation

We now provide further notation on the communication topology to formulate the

observation fusion procedure precisely. For the jth state, xj, let G(fc)
j = {Sj, E(fc)

j }

6.4. OVERLAPPING REDUCED MODELS 159

be a fully-connected6 (fc) sub-graph, such that its vertices are all the sensors that ob-

serve xj. With this definition we can define E
(fc)
j = Vj

(
I− hjhTj

)
V#
j , where V

is given in footnote 5 and the overline denotes the binary representation, as in-

troduced in Section 6.3.1. For the jth state, xj, let G(c)
j = {Sj, E(c)

j ⊂ E
(fc)
j }

be a connected7 sub-graph. Now, the overall sensor network topology required for

the observation fusion with fully-connected sub-graphs, G(fc)
j , can be given by G ={

SN ,
∑

j V#
j E

(fc)
j Vj = I−HH

T
}

and for the connected sub-graphs, G(c)
j , can be

given by G̃ =
{
SN ,

∑
j V#

j E
(c)
j Vj

}
. These graphs are shown in Fig. 6.4(b).

Remarks: We now make some comments.

(i) If we choose the overall sensor communication graph, G, that results from the

union of the fully-connected sub-graphs, G(fc)
j ∀j, the observation fusion proce-

dure does not require an iterative procedure and is realized in a single step.

(ii) If we choose the overall sensor communication graph, G̃, that results from the

union of the connected sub-graphs, G(c)
j ∀j, the observation fusion procedure

requires an iterative consensus algortihm8 and can be realized using an average-

consensus algorithm [17].

(iii) With the assumption of a localized global observation matrix, H, as motivated

in Section 6.2.1, the overall sensor communication network, G or G̃, is not nec-

essarily fully-connected, as shown in Fig. 6.4(b).

(iv) With any choice of the overall sensor communication graph, G or G̃, the com-

munication required for observation fusion is single-hop.

6A fully-connected graph, G(fc) = {SN , E
(fc)}, is such that every pair of distinct vertices in SN

is connected by an edge in E(fc).
7A connected graph, G(c) = {SN , E

(c)}, is such that there exists a path from any vertex in SN

to any other vertex in SN .
8In this case, we assume that the communication is fast enough so that the consensus algorithm

can converge, see [152] for a discussion on distributed Kalman filtering based on consensus strategies.
The convergence of the consensus algorithm is shown to be geometric and the convergence rate
can be increased by optimizing the weight matrix for the consensus iterations using semidefinite
programming [17]. The communication topology of the sensor network can also be improved to
increase the convergence speed of the consensus algorithms [153].

160 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

(v) It is worth mentioning that the observation fusion procedure implemented in

[37] cannot be realized in single-step unless the overall sensor communication

graph, G, is fully-connected, which we do not require anywhere in our solution.

A similar procedure on the pairs of state variables and their associated subgraphs

can be implemented to fuse the reduced observation matrices, I(l). Since we assume

the observation model to be stationary (H and R are time-independent), the fusion

on the reduced observation matrix, I(l), is to be carried out only once and can be an

offline procedure. If that is not the case, and H and R are time dependent, fusion

on I has to be repeated at each time, k.

A comment on estimate fusion. Since we fuse the observations concerning the

shared states among the sensors, one may ask if it is required to carry out fusion of

the estimates of the shared states. It turns out that consensus on the observations

leads to consensus on the estimates. This will become clear with the introduction

of the local filter and the local prediction step of the LIFs, therefore, we defer the

discussion on estimate fusion to Section 6.7.3.

6.5 Distributed matrix inversion with local com-

munication

In this section, we discuss the cooperative assimilation procedure on the local er-

ror covariances. Consider the example model (6.26)−(6.27), when we employ LIFs

on the distributed models (6.30)−(6.32). The local estimation information matri-

ces, Z
(1)
k|k, Z

(2)
k|k, and Z

(3)
k|k, correspond to the overlapping diagonal sub-matrices of the

global 5 × 5 estimation information matrix, Zk|k, see Fig. 6.3, with L = 1-banded

approximation on Zk|k. It will be shown (Section 6.7.1) that the local prediction

information matrix, Z
(l)
k+1|k, is a function of the local error covariance matrices, S

(l)
k|k,

and hence we need to compute S
(l)
k|k from the local filter information matrices, Z

(l)
k|k,

which we get from the local filter step (Section 6.6). As can be seen from Fig. 6.3

6.6. LOCAL INFORMATION FILTERS: INITIAL CONDITIONS AND LOCAL FILTER STEP161

and (6.12), for these local sub-matrices,

S(l) 6=
(
Z(l)
)−1

. (6.43)

Collecting all the local information matrices, Z
(l)
k|k, at each sensor and then carry-

ing out an n × n matrix inversion is not a practical solution for large-scale systems

(where n may be large), because of the large communication overhead and O(n3)

computational cost. Using the L-banded structure on the global estimation informa-

tion matrix, Zk|k, we employ the DICI algorithm (Chapter 5) to compute the inverse

of Zk|k in a distributed fashion.

6.6 Local Information filters: Initial conditions and

local filter step

The initial conditions and the local filter step of the LIFs are presented in the next

subsections.

6.6.1 Initial conditions

The initial condition on the local predictor is

ẑ
(l)
0|−1 = 0. (6.44)

Since the local information matrix and the local error covariances are not the inverse

of each other, (6.43), we obtain the initial condition on the prediction information

matrix by using the L-banded inversion theorem [120], provided in Appendix C.1.

This step may require a local communication step further elaborated in Section 6.7.1.

Z
(l)
0|−1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L-Banded Inversion Theorem S

(l)
0 (6.45)

162 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

6.6.2 Local filter step

In this section, we present the local filter step of the LIFs. The local filter step is

given by

Z
(l)
k|k = Z

(l)
k|k−1+I(l)

f , (6.46a)

ẑ
(l)
k|k = ẑ

(l)
k|k−1+i

(l)
f,k, (6.46b)

where I(l)
f and i

(l)
f,k denote the fused observation variables. Fusion of the observations

is presented in Section 6.4.1. The distribution of the addition operation, ‘+’, in (6.22)

is straightforward in (6.46). Recall that the observation fusion, (6.42), is carried out in

single-step for the sensor communication graph, G, or using the an average-consensus

algorithm for the sensor communication graph, G̃. In case of G̃, the asymptotic

convergence of this iterative algorithm is guaranteed under certain conditions, see [17]

for details on such conditions. Hence, with the required assumptions on the sub-

graph, Gj, the observation fusion algorithm, (6.42), asymptotically converges, and

hence (with a slight abuse of notation),

N⋃

l=1

i
(l)
f,k → ik and

N⋃

l=1

I(l)
f → I. (6.47)

The above notation implies that the local fused information variables, I(l)
f and i

(l)
f,k,

when combined over the entire sensor network, asymptotically converge to the global

information variables, I and ik. This, in turn, implies that the local filter step of the

LIFs asymptotically converges to the global filter step, (6.22), of the CLBIF.

Once the local filter step is completed, the DICI algorithm (Chapter 5) is em-

ployed on the local information matrices, Z
(l)
k|k obtained from (6.46a), to convert them

into the local error covariance matrices, S
(l)
k|k. Finally, to convert the estimates in

the information domain, ẑ
(l)
k|k, to the estimates in the Kalman filter domain, x̂

(l)
k|k,

which is linear system of equations (6.15), we use the distributed Jacobi algorithm

(Section 3.4).

6.7. LOCAL INFORMATION FILTERS: LOCAL PREDICTION STEP 163

6.7 Local Information filters: Local prediction step

This section presents the distribution of the global prediction step, (6.23), into the

local prediction step at each LIF.

6.7.1 Computing the local prediction information matrix

Because of the coupled local dynamics of the reduced sensor-based models, each

sensor may require that some of the estimated states be communicated as internal

inputs, d̂
(l)
k|k, to its LIF, as shown in (6.37). These states are the directed edges

into each cut-point set in Fig. 6.1(b). Hence, the error associated to a local esti-

mation procedure is also influenced by the error associated to the neighboring es-

timation procedure, from where the internal inputs are being communicated. This

dependence is true for all sensors and is reflected in the local prediction error co-

variance matrix, S
(l)
k|k−1, as it is a function of the global estimation error covariance

matrix, Sk−1|k−1. Equation (6.48) follows from (6.23a) after expanding (6.23a) for

each diagonal submatrix, S
(l)
k|k−1, in Sk|k.

S
(l)
k|k−1 = FlSk−1|k−1F

T
l + G(l)Q(l)G(l)T . (6.48)

The matrix, Fl = TlF, (the matrix Tl is introduced in (6.33)) is an nl × n matrix,

which relates the state vector, xk, to the local state vector, x
(l)
k . Fig. 6.1(c) shows that

the matrix, Fl, is further divided into F(l) and D(l). With this sub-division of Fl, the

first term on the right hand side of (6.48), FlSk−1|k−1F
T
l , can be expanded, and (6.48)

can be written as

S
(l)
k|k−1 = F(l)S

(l)
k−1|k−1F

(l)T + F(l)Sx
(l)d(l)

k−1|k−1D
(l)T

+
(
F(l)Sx

(l)d(l)

k−1|k−1D
(l)T
)T

+ D(l)Sd
(l)d(l)

k−1|k−1D
(l)T + G(l)Q(l)G(l)T , (6.49)

where:

• S
(l)
k−1|k−1 is the local error covariance matrix, which is available from (6.46a)

and the DICI algorithm at sensor l;

164 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

• Sd
(l)d(l)

k−1|k−1 is the local error covariance matrix, which is available from (6.46a)

and the DICI algorithm at the sensors having the states, d
(l)
k , in their reduced

models;

• Sx
(l)d(l)

k−1|k−1 is the error cross correlation between the local state vector, x
(l)
k , and

the local internal input vector, d
(l)
k .

The non L-banded entries in this matrix can be computed from equation (5.14) in

Lemma 24. Since the model matrix, F, is sparse, we do not need the entire error co-

variance matrix, Sk−1|k−1, only certain of its sub-matrices. Since the model matrix, F,

is localized, long-distance communication is not required, and the sub-matrices are

available at the neighboring sensors. Once we have calculated the local prediction

error covariance matrix, S
(l)
k|k−1, we realize (6.43) and compute the local prediction

information matrix, Z
(l)
k|k−1, using the L-banded Inversion Theorem (see [120] and

Appendix C.1).

Z
(l)
k|k−1

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L-Banded Inversion Theorem S

(l)
k|k−1. (6.50)

From (C.2) in Appendix C.1, to calculate the local prediction information matrix, Z
(l)
k|k−1,

we only need the S
(l)
k|k−1 from sensor ‘l’ and from some additional neighboring sen-

sors. Hence Z
(l)
k|k−1 is again computed with only local communication and nlth order

computation.

6.7.2 Computing the local predictor

We illustrate the computation of the local predictor, ẑ
(3)
k|k−1, for the 5-dimensional

system, (6.26)−(6.27), with L = 1. The local predictor, ẑ
(3)
k|k−1, at sensor 3 follows

from the global predictor, (6.23b), and is given by

ẑ
(3)
k|k−1 = Z

(3)
k|k−1

(
F(3)x̂

(3)
k−1|k−1 + D(3)d̂

(3)
k−1|k−1

)
+

 z34

(
f31x̂

(1)
1,k−1|k−1 + f33x̂

(2)
3,k−1|k−1

)

0

 ,

(6.51)

6.7. LOCAL INFORMATION FILTERS: LOCAL PREDICTION STEP 165

where z34 is the only term arising due to the L = 1-banded (tridiagonal) assumption

on the prediction information matrix, Zk|k−1. Note that f31x̂
(1)
1,k−1|k−1 +f33x̂

(2)
3,k−1|k−1 is

a result of f3x̂k−1|k−1, where f3 is the third row of the model matrix, F. A model matrix

with a localized and sparse structure ensures that f3x̂k−1|k−1 is computed from a small

subset of the estimated state vector, x̂
(Q)
k−1|k−1, communicated by a subset Q ⊆ K(l)

of the neighboring sensors, which are modeling these states in their reduced models.

This may require multi-hop communication.

Generalizing, the local predictor in the information domain, ẑ
(l)
k|k−1, is given by

ẑ
(l)
k|k−1 = Z

(l)
k|k−1

(
F(l)x̂

(l)
k−1|k−1 + D(l)d̂

(l)
k−1|k−1

)
+ f1

(
Z

(V)
k|k−1,F

(V), x̂
(Q)
k−1|k−1

)
(6.52)

for some V ,Q ⊆ K(l), where f1(·) is a linear function and depends on L.

6.7.3 Estimate fusion

We present the following fact, if any Gj is not fully connected.

Fact: Let m denote the number of iterations of the consensus algorithm that are

employed to fuse the observations (recall (6.42)). As m→∞, the local estimates, ẑ
(l)
k|k,

in (6.46b) also reach a consensus on the estimates of the shared states, i.e., the local

estimates converge to the CLBIF estimates.

It is straightforward to note that, if the local predictors, ẑ
(l)
k|k−1, of the shared

states are the same over the sensors that share these states, then as m→∞ we have

a consensus on the estimates (of the shared states) in the local filter step (6.46b). To

show that the shared local predictors are the same over the sensors that share these

states, we refer back to our illustration and write the local predictors for sensor 2 as

follows,

ẑ
(2)
k|k−1 = Z

(2)
k|k−1

(
F(2)x̂

(2)
k−1|k−1 + D(2)d̂

(2)
k−1|k−1

)

+

z12

(
f11x̂

(1)
1,k−1|k−1 + f12x̂

(2)
2,k−1|k−1

)

0

z45

(
f54x̂

(2)
4,k−1|k−1 + f55x̂

(3)
5,k−1|k−1

)

 . (6.53)

166 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

The predictor for the shared state x4,k can now be extracted for sensor 3 from (6.51)

and for sensor 2 from (6.53) and can be verified to be the following for each l = 2, 3.

ẑ
(l)
4,k|k−1 = z34f31x̂

(1)
1,k−1|k−1 + (z34f33 + z44f43)x̂

(2)
3,k−1|k−1

+ z45f54x̂
(3)
4,k−1|k−1 + (z44f45 + z45f55)x̂

(3)
5,k−1|k−1 (6.54)

The elements zij belong to the prediction information matrix, which is computed

using the DICI algorithm and the L-banded inversion theorem. It is noteworthy that

the DICI algorithm is not a consensus algorithm and thus the elements zij are the

same across the sensor network at any iteration of the DICI algorithm. With the

same local predictors, the iterations of the consensus algorithm on the observations

lead to a consensus on the shared estimates.

6.8 Results

6.8.1 Summary of the Local Information filters (LIFs)

We summarize the distributed local Information filters. The initial conditions are

given by (6.44) and (6.45). Observation fusion is carried out using (6.42). The fused

observation variables, i
(l)
f,k and I

(l)
f,k, are then employed in the local filter step, (6.46a)

and (6.46b), to obtain the local information matrix and the local estimator, Ẑ
(l)
k|k

and z
(l)
k|k, respectively. We then implement the DICI algorithm (Chapter 5) to com-

pute the local error covariance matrix, S
(l)
k|k, from the local information matrix, Z

(l)
k|k.

We employ the distributed Jacobi algorithm (Section 3.4) to compute the local es-

timates in the Kalman filter domain, x̂
(l)
k|k, from the local estimator, ẑ

(l)
k|k. Finally,

the local prediction step is completed by computing the local prediction error covari-

ance matrix, Ŝ
(l)
k|k−1, the local prediction information matrix, Ẑ

(l)
k|k−1, and, the local

predictor, ẑ
(l)
k|k−1, from (6.49), (6.50), and (6.52), respectively.

6.8. RESULTS 167

0 20 40 60 80 100

0

20

40

60

80

100 ����������	�
����������� ����������	���� �

 "!#%$
&%'
()+*,"-/.
01 *!2
3
4

(a)

0 20 40 60 80 100

0

20

40

60

80

100

����������	�
����������� ����������	���� �

 "!#%$
&%'
()+*,"-/.
01 *!2
3
4

(b)

Figure 6.5: (a & b) Non-zero elements (chosen at random) of 100×100, L = 20-banded
(Fig. 6.5(a)) and L = 36-banded (Fig. 6.5(b)) model matrices, F, such that ||F||2 = 1.

6.8.2 Simulations

We simulate an n = 100-dimensional system with N = 10 sensors monitoring the

system. Figures 6.5(a) and 6.5(b) show the non-zero elements (chosen at random) of

the model matrix, F, such that its maximum eigenvalue is unity, i.e., maxiλi(F) = 1.

The model matrix in Fig. 6.5(a) is L = 20-banded. The model matrix in Fig. 6.5(b)

is L = 36-banded that is obtained by employing the reverse Cuthill-Mckee algorithm

[1] for bandwidth reduction of a sparse random F. The non-zeros (chosen at random

as Normal(0, 1)) of the global observation matrix, H, are shown in Fig. 6.6. The lth

row of the global 10× 100 observation matrix, H, is the local observation matrix, Hl,

at sensor l. Distributed Kalman filters are implemented on (i) F in 6.5(a) and H in

Fig. 6.6; and (ii) F in 6.5(b) and H in Fig. 6.6. The trace of the error covariance

matrix, Sk|k, is simulated for different values of L in [n, 1, 2, 5, 10, 15, 20] and the plots

are shown (after averaging over 1000 Monte Carlo trials) in Fig. 6.7(a) for case (i);

and in Fig. 6.7(b) for case (ii). The stopping criteria for the DICI algorithm and

the consensus algorithm are such that the deviation in their last 10 iterations is less

than 10−5. In both Fig. 6.7(a) and Fig. 6.7(b), tr(Sk|k) represents the trace of the

solution of the Riccati equation in the CIF (no approximation).

With 1000 Monte Carlo trials, we further simulate the trace of the error covari-

ance, tr(Sk|k), for case (ii) with L = 20-banded approximation (on the information

168 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

0 20 40 60 80 100

0
5

10

���������
	������������������������ ������ �!"����� #
$%&
'

Figure 6.6: Global observation matrix, H. The non-zero elements (chosen at random)
are shown. There are N = 10 sensors, where the lth row of H corresponds to the
local observation matrix, Hl, at sensor l. The overlapping states (for which fusion is
required) can be seen as the overlapping portion of the rows.

matrices) as a function of the number of iterations, t, of the DICI algorithm. We com-

pare this with (a) the simulation obtained from the O(n3) direct inverse of the the

error covariance (with L = 20-banded approximation on its inverse); and (b) tr
(
Sk|k

)
,

trace of the solution of the Riccati equation of the CIF (no approximation). We

choose t = [1, 10, 30, 100, 200] for the DICI algorithm and show the results in Fig. 6.8.

As t ↑, the curves we obtain from the DICI algorithm get closer to the curve we obtain

with the direct inverse.

The simulations confirm the following:

(i) The LIFs asymptotically track the results of the CLBIF, see Fig. 6.8.

(ii) We verify that as L ↑, the performance is virtually indistinguishable from that

of the CIF, as pointed out in [121]; this is in agreement with the fact that the

approximation is optimal in Kullback-Leibler sense, as shown in [120]. Here, we

also point out that, as we increase L, the performance increases, but, we pay a

price in terms of the communication cost, as we may have to communicate in a

larger neighborhood.

(iii) In Fig. 6.7(a) and Fig. 6.7(b), it can be verified that L should be greater than

some Lmin for the CLBIF to converge, as pointed out in Section 6.2.3.

(iv) Since, the trace of the error covariance is the trace of an expectation operator,

we use Monte Carlo trials to simulate the expectation operator. If we increase

6.8. RESULTS 169

0 5 10 15 20 25 30 35 40
9

10

11

12

13

14

15

16

17

18

19

20

���������	��
���������	�������	���������������������� �����	�����������!#"

$&%
'
()

()*)

()

()*)
+

 ����,�-/.10 .32
465879,�������:�:��	�;=<�2
465 >
465@?
465@A
465 >B
465 >A
465@?�B

(a)

0 5 10 15 20 25 30 35 40
10

12

14

16

18

20

22

24

26

28

30

���������	��
������������������������������� �����!�"�����������������#%$

&('
)
* +

* +, +

* +

* +, +
-

���/.103254 276
8:9<;=.������>�>��	��?A@"6
8:9 B
8:9DC
8:9DE
8:9 B�F
8:9 B�E
8:9DCF

(b)

Figure 6.7: (a & b) Distributed Kalman filter is implemented on the model matrices
in Fig. 6.5(a)-6.5(b) and the global observation matrix, H (Fig. 6.6), in Fig. 6.7(a)-
6.7(b). The expectation operator in the trace (on horizontal axis) is simulated
over 1000 Monte Carlo trials.

the number of Monte Carlo trials the variations reduce, and the filters eventually

follow the solution of the Riccati equation, tr
(
Sk|k

)
.

(v) The curve in Fig. 6.8 with t = 1 shows the decoupled LIFs, when the local error

covariances are not assimilated. This investigates the case where the distributed

estimation scheme fails because the covariances at the local filters are decoupled.

We next discuss the computational advantage of the LIFs over some of the

existing methods.

6.8.3 Complexity

We regard the multiplication of two n× n matrices as an O(n3) operation, inversion

of an n× n matrix also as an O(n3) operation, and multiplication of an n× n matrix

and an n × 1 vector as an O(n2) operation. For all of the following, we assume N

sensors monitoring the global system, (6.6).

170 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

0 5 10 15 20 25 30 35 40
10

11

12

13

14

15

16

17

18

19

20

���������	��
�� ����!#"

$&%

'

()

()*
)

()

()*)
+

���,����-	�/.���01���	���/ 2436587 5

��.�9/.�!;:4< =
��.�9/.�!;:4< =�>
��.�9/.�!;:4<@?>
��.�9/.�!;:4< =�>>
��.�9/.�!;:4<@A>>

��� 3CBD7 B

Figure 6.8: Performance of the DICI algorithm as a function of the number of DICI
iterations, t.

Centralized Information Filter, CIF

This is the case where each sensor sends its local observation vector to a centralized

location or a fusion center, where the global observation vector is then put together.

The fusion center then implements the CIF, with an O(n3) computation complexity

for each time k, so we have the complexity as O(n3k), with inordinate communication

requirements (back and forth communication between the sensors and the central

location).

Information filters with replicated models at each sensor and observation

fusion

In this scheme, the local observation vectors are not communicated to the central

location, but are fused over an all-to-all communication network, [126], or an arbitrary

network, [37]. Computational complexity at each sensor is O(n3k) in [126]. In [37],

let the complexity of the iterative algorithm be O(ϕ(n)) and let tϕ be the number

of iterations of the consensus algorithm. Each sensor implements a CIF after fusing

the observations. For each time index, k, each sensor requires O(n3) operations plus

the operations required for the consensus algorithm, which are O(ϕ(n)tϕ); so the

total computation complexity is O((n3 + ϕ(n)tϕ)k) at each sensor. Communication

requirements are global in [126], and local in [37].

6.9. CONCLUSIONS 171

Distributed Kalman filters: Local Information Filters, LIFs

The distributed Kalman filter presented in this chapter has three iterative algorithms.

In all other steps, the computation complexity is dominated by O(n3
l), where nl � n.

Let to be the iterations required by the weighted averaging algorithm, where at each

step of the iterative algorithm the computations are dominated by O(n2
l). Let tJ1 be

the iterations required by the DICI algorithm for vectors, where at each step of the

iterative algorithm the computations are dominated by an O(L2) operations. Let tJ2

be the iterations required by the DICI algorithm, where at each step of the iterative

algorithm the computations are dominated by O(L4) operations. Recalling that L ∼
nl from Section 6.3, the total computation complexity is O((n3

l +n
2
l to+n

2
l tJ1 +n4

l tJ2)k).

Let t$ = max(to, tJ1 , tJ2), then the computation complexity is bounded by O(n4
l t$k)

at each sensor for the LIFs, which is much smaller than the computational cost of

the solutions in 6.8.3 and 6.8.3. The communication requirement in the LIFs may

be multi-hop but is always constrained to a neighborhood because of the structural

assumptions on the model matrix, F.

6.9 Conclusions

In this chapter, we present a distributed implementation of the Kalman filter for

sparse large-scale systems monitored by sensor networks. In our solution, the com-

munication, computing, and storage is local and distributed across the sensor net-

work, no single sensor processes n-dimensional vectors or matrices, where n, usually

a large number, is the dimension of the state vector representing the random field.

We achieve this by solving three linked problems: (1) Spatial decomposition of the

global dynamical system into sub-systems. These sub-systems are obtained using

a graph-theoretic model distribution technique; (2) Fusing, through distributed av-

eraging, multiple sensor observations of the state variables that are common across

sub-systems; and (3) Inverting full n-dimensional matrices, with local communication

only, by using the distributed iterate-collapse inversion (DICI) algorithm. The DICI

algorithm only requires matrices and vectors of order nl of the reduced state vectors.

172 CHAPTER 6. DISTRIBUTED ESTIMATION IN LARGE-SCALE SYSTEMS

The DICI algorithm preserves the coupling among the local Kalman filters. Our so-

lution is optimal when the error processes of the Kalman filter are constrained to

Gauss-Markov random processes and contrasts with existing Kalman filter solutions

for sensor networks that either replicate an n-dimensional Kalman filter at each sensor

or reduce the model dimension at the expense of decoupling the field dynamics into

lower-dimensional models. The former are infeasible for large-scale systems and the

latter are not optimal and further cannot guarantee any structure of the centralized

error covariances.

Simulations show that the distributed implementation with local Kalman filters

implemented at each sensor converges to the global Kalman filter as the bandwidth, L,

of the approximated information matrices is increased.

Chapter 7

Applications to smart grids

In this chapter, we apply the theory developed in this thesis to distributed estimation

and inference in electric power grids. Future power grids (also referred to as smart

grids) are envisioned to be a diverse mix of conventional (coal, gas) and renewable

(wind, solar) energy sources. We view the smart grid as a network of such diverse

inter-connected modules aided by distributed sensing and communication methodolo-

gies. In this context, the techniques developed in this thesis for information processing

in large-scale networks provide a foundation for a computationally efficient, scalable,

and robust operation of the smart grid.

A key question, in this regard, is appropriate modeling of the electric power system

to reflect that it possess certain structural properties. To this end, we present a

structure-preserving model that we term as cyber-physical model of the electric power

grid. The cyber-physical model that we present is a hybrid of data-driven models

and physics-based dynamical models. The data-driven models capture the dynamics

of the system modules that cannot be modeled from basic principles, e.g., aggregate

system load, whereas, the physics-based models describe the dynamics of system

modules that are modeled from the underlying physics, e.g., generators, modeled

by their Partial Differential Equations (PDEs). Based on the cyber-physical model,

we present a computationally-efficient, distributed estimation algorithm for electric

power systems, along the lines of Chapter 6.

Finally, we present a novel inference technique to estimate the phasors in electric

173

174 CHAPTER 7. APPLICATIONS TO SMART GRIDS

power grids by using a minimal number of optimally-placed Phasor Measurement

Units (PMUs). Our algorithm is based on the sensor localization algorithm, DILOC

(Chapter 4), specialized to one-dimensional localization.

Parts of this chapter have been presented in [49, 52, 42].

We now describe the rest of the chapter. In Section 7.1, we develop cyber-physical

model of the electric power system. Section 7.2 describes distributed estimation

in electric power systems based on the cyber-physical model. Finally, Section 7.3

presents a distributed inference algorithm for phase-angle estimation.

7.1 Cyber-physical model of the power system

In this section, we present a cyber-physical model for the electric power system.

Consider an electric power network with K steam-turbine generators1 and M loads

where the loads are considered to be aggregated loads at the sub-station level. We

model the generators using their Partial Differential Equation (PDE) descriptors. On

the other hand, modeling the electric load from the underlying physics is a practi-

cally impossible task. This is because modeling the electric load in a typical energy

system, with millions of diverse components ranging from appliances in residential

households through medium to large-size industrial and commercial consumers, is

highly non-trivial. To avoid this modeling difficulty, we postulate a cyber model for

the electrical load based on sensor-based identification. We then combine the cyber

and physical models of all of the system modules as they are interconnected via the

electric transmission network. Below, we explain the procedure.

7.1.1 Physics based description of the generator module

We model the dynamics of the generators as a governor-turbine-generator (G-T-G)

set [154]. The generator dynamics in discrete-time are given by (using a standard

1Here we use steam-turbine generators, but the results are generalizable to any other kind.

7.1. CYBER-PHYSICAL MODEL OF THE POWER SYSTEM 175

approximation of first order derivatives)

xg,k+1 =

I + ∆T

−D
J

1

J

eT
J

0 − 1

Tu

KT

Tu

− 1

Tg
0 − r

Tg

xg,k

+

−∆T

J
0

0

Pg,k +

0

0

∆Tω
ref
g

+ ug,k,

= Fgxg,k + cgPg,k + bg + ug,k, (7.1)

where ∆T denotes the sampling rate,

xg,k = [ωg,k PT,k ak]
T , (7.2)

collects of the generator’s frequency, mechanical power, and valve opening. The vec-

tor, xg,k, is the state vector of the steam-turbine generator at time k. The generator’s

parameters, D, J,KT , Tu, Tg, are the damping coefficient, moment of inertia, and the

time constants of the turbine and the generator, respectively, Pg,k is the power sup-

plied by the generator, and ug,k ∼ N (0,Q) is a white noise input vector.

7.1.2 Sensor based identification of the load module

We characterize the electric load modules much as the same way as the G-T-G set is

characterized. We postulate a cyber model for the electric load based on a Newton-like

representation of load dynamics governed by the instantaneous mismatch between the

power delivered to the load, PL,k at time k, and the power consumed at the load, Lk

at time k. We have (after discretization using a standard approximation of the first

order derivatives)

ωL,k+1 = (1−∆T
DL

JL
)ωL,k −

∆T

JL
PL,k −

1

JL
Lk + uL,k, (7.3)

176 CHAPTER 7. APPLICATIONS TO SMART GRIDS

where JL and DL refer to the effective moment of inertia and the damping coefficient

of the aggregate load2. We model the load consumed, Lk, by an auto-regressive (AR)

process of order p driven by zero-mean white noise, vk. The AR model is given by

[49]

Lk+1 =

p∑

j=1

φjLk−j + vk, (7.4)

where the φjs are the coefficients of the AR model identified using standard statistical

techniques. Let L̂k denote the estimate of the power consumed, then

L̂k =

p∑

j=1

φpLk−j, (7.5)

is the optimal estimate of the AR model in (7.4). We assume that the past sam-

ples, Lk−j, are available by using sensing methodologies [49].

7.1.3 Combined cyber and physical model

The power supplied by the generator, Pg,k, and the power delivered to the load, PL,k

are related by the interconnection network of the generators and loads. Let

Pg,k = [P 1
g,k . . . PK

g,k]
T , (7.6)

be the vector of power supplied by the K generators, and let

PL,k = [P 1
L,k . . . PM

L,k]
T , (7.7)

be the vector of power delivered to the M loads. Define

Ωg,k , [ω1
g,k . . . ωKg,k]

T , (7.8)

Ωg,k , [ω1
L,k . . . ωML,k]

T . (7.9)

2The values of JL and DL can be obtained using systematic model identification methods at each
sub-station [49].

7.2. DISTRIBUTED ESTIMATION IN ELECTRIC POWER SYSTEMS 177

Then Pg,k and PL,k are related by

[
Pg,k+1

PL,k+1

]
=

[
Pg,k

PL,k

]
+ ∆TH

[
Ωg,k+1

ΩL,k+1

]
, (7.10)

where H is a J×J interconnection matrix. Equation (7.1), (7.3) and (7.10) complete

the cyber-physical description of the dynamics generated by a power system with K

steam-turbine generators and M arbitrary loads and can be written concisely as

an n−dimensional vector

xk+1 = Fxk + b− 1

JL
GLL̂k + uk, (7.11)

where

xk = [x1T
g,k . . . xKTg,k ΩT

L,k PT
g,k PT

L,k]
T , (7.12)

is the global state vector of the entire system and F,b,GL are the appropriate quan-

tities derived from (7.1),(7.3), (7.4), and (7.10). For more details, see [49]. We assume

the following global observation model,

yk = Hxk + wk, (7.13)

where: yk is the observation vector; H is the observation matrix; and wk ∼ N (0,R)

is a white noise vector. The noise sequences {u}k≥0 and {w}k≥0 and the initial

condition, x0, are all statistically independent.

In the next section, we will apply the distributed estimation algorithm of Chapter 6

to the model given by (7.11) and (7.13).

7.2 Distributed estimation in electric power sys-

tems

In this section, we present a distributed estimation scheme for electric power systems

based on its cyber-physical model (Section 7.1). We consider the global power system

178 CHAPTER 7. APPLICATIONS TO SMART GRIDS

model (7.11)-(7.13) as a union of several, possibly many, low dimensional sub-systems.

Each sub-system may represent a generating sub-station, a large aggregated load, or a

combination of both. A structurally robust and computationally efficient modeling of

the union of such sub-systems is where each sub-system has the knowledge of its own

dynamics exactly, but, treats the rest of the dynamical system as interactions among

its neighboring sub-systems. Such a scheme is robust to structural changes such that

if a sub-station or load is added/removed to/from the overall dynamical system, only

its neighboring sub-systems are to be updated. Further, this implementation does

not require, anywhere in the network, the knowledge of the complete description of

the entire large-scale dynamical system.

Treating the global power system model as a union of sub-systems lends itself to

a low order (observers) Information filter implementation at each sub-system where

each sub-system interacts only with neighboring sub-systems to achieve performance

close to the performance of the global Information filter. As shown in Chapter 6, the

local interacting Information filters have a computational complexity O(n4
l) (where nl

is the dimension of the lth sub-system), whereas the global Information filter has a

computational complexity of O(n3) (where n is the dimension of the entire system).

Clearly, by appropriate sub-system selection, we can make nl � n. Hence, the

resulting estimation scheme is computationally efficient, can be implemented in real-

time and remains practical, since it does not require any global knowledge or long

distance communication, but, relies only on local communication among neighboring

sub-systems.

After spatially decomposing the cyber-physical model,3 we implement local Infor-

mation filters on the sub-systems where each local filter preserves a Gauss-Markovian

structure on the error processes in the Information filter. This is achieved by ap-

proximating the information matrices (inverse of the error covariance) of the global

Information filter by L−banded positive-definite matrices. Hence, the performance

of the local filters is equivalent to the performance of the centralized filter with such

approximation.

3We may use the spatial decomposition based on cut-point sets (Section 6.3) or other spatial model
distribution techniques, for instance, ε-decomposition, overlapping ε-decompositions, and eigen-value
based methods [134, 155, 150].

7.2. DISTRIBUTED ESTIMATION IN ELECTRIC POWER SYSTEMS 179

Formulating local observers on sub-systems when these sub-systems are observable

is studied in [134]. The structure of such systems are studied in [155]. In [134],

the local observers are formulated with the assumption that the local observers are

observable and conditions are derived on the interactions (among the sub-systems)

under which the global system, as a whole, may lose observability. In our algorithm,

we do not assume any observability conditions on the local sub-systems, but require

the global system to be observable. Under such conditions, we propose cooperation

among the observers formulated at the sub-systems such that, after cooperation,

the resulting system remains observable. The scheme we present is computationally

efficient, the interactions and cooperation are always local and is robust to structural

changes in the dynamical system.

7.2.1 Local models

We spatially decompose the power system model as a union of N sub-systems, where

each sub-system measures a subset of the state variables (that are local to the sub-

system) of the power system model in (7.11). The local observation vector4 for the lth

sub-system is given by

y
(l)
k = Hlxk + w

(l)
k , (7.15)

where Hl is the local observation matrix with the white observation noise vector w
(l)
k ∼

N (0,Rl), related to the error covariance of the observation noise process as

R =

R1

R2

. . .

RN

. (7.16)

4We stack the local observations to get the global observation vector,

yk =

y(1)
k
...

y(N)
k

 , H =

H1

...
HN

 , wk =

w(1)
k
...

w(N)

 . (7.14)

180 CHAPTER 7. APPLICATIONS TO SMART GRIDS

At sub-system l, the dynamics after decomposing (6.6) can be written as an nl−dimensional

local dynamical sub-system as follows.

x
(l)
k+1 = F(l)x

(l)
k +

∑

j∈K(l)

F(lj)x
(j)
k + G(l)u

(l)
k , (7.17)

y
(l)
k = H(l)x

(l)
k + w

(l)
k , (7.18)

where: K(l) contains the neighboring sub-systems; F(lj) defines the interaction be-

tween the sub-system l and its jth neighbor; and H(l) is the local observation matrix

pertinent to the local state variables, x
(l)
k . Here we note that the interactions from the

neighboring sub-systems,
∑

j∈K(l) F(lj)x
(j)
k , can only be treated as deterministic inputs

if these states are available at the neighboring sub-systems exactly. Since, these states

are unavailable, we use their estimates,
∑

j∈K(l) F(lj)x̂
(j)
k|k, as the local interactions.

7.2.2 Remarks

We now give some important remarks.

(R1): We assume that the global state-space dynamical system (6.6) is (F,H)−observable.

It is clear from (R1) that we do not require any observability for the local sub-

systems and each local sub-systems may not be (F,Hl)−observable . In such cases, a

local Information filter implemented at sub-system, l, results into unstable local error

covariances, S
(l)
k|k, if it is not observable, i.e., the following limit

lim
k→∞

trace
(
S

(l)
k|k

)
(7.19)

does not exist and, further, the sequence is unbounded.

(R2): The coupling matrices of the entire dynamical system, F(lj) ∀ l, j, l 6= j, are

sparse.

(R3): The neighborhood, K(·), at each sub-system only contains neighboring sub-

systems.5

5It is worth mentioning here that the sparsity (R2) and the locality (R3) ensure local commu-
nication in the resulting algorithm.

7.2. DISTRIBUTED ESTIMATION IN ELECTRIC POWER SYSTEMS 181

(R4): Let the local information matrix at sensor l be given by Z
(l)
k|k. We assume that

the local information matrices, {Z(l)
k|k}l=1,...,N , preserve the L−band of the global L−banded

information matrix, ZL,k|k. Since these matrices are L−banded and if the following

condition (developed in Section 6.3.1: Equation (6.29))

nl ≥ L, ∀ l, (7.20)

holds then it can be shown that the approximated matrices can be preserved by the

sub-systems, i.e., (with a slight abuse of notation),

N⋃

l=1

Z
(l)
k|k = ZL,k|k. (7.21)

It is straightforward to show that (R4) requires the sub-systems to be overlapping.

Using the results of Chapter 6, it turns out that, by cooperation among the local

sub-systems and under the assumptions (R1)–(R4) with a choice of L such that L ≥
Lmin, the trace of the local error covariances, trace

(
S

(l)
k|k

)
, can be bounded, i.e., the

limit in (7.19) exists. The steady state error for the collection of local Information

filters implemented on the sub-systems is, thus, bounded and the bounded difference

from the optimal (minimum) steady state error,

trace

(
N⋃

l=1

S
(l)
k|k

)
− trace

(
Sk|k

)
< M <∞, (7.22)

(M ∈ R≥0) can be characterized by the information loss incurred by approximat-

ing the global information matrices, Zk|k and Zk|k−1, to be L−banded information

matrices, ZL,k|k and ZL,k|k−1, and is given by the divergence in (6.24).

Aggregating sub-systems: As mentioned before and elaborated in Section 6.3.1,

the dimension, nl, of the sub-systems should follow (7.20). Hence, if sub-systems

result in lower dimensional dynamical systems, aggregation is required on the sub-

systems, such that the dimensions of the resulting aggregated sub-systems follow (7.20).

182 CHAPTER 7. APPLICATIONS TO SMART GRIDS

G1 G2 G3

L4 L5

Figure 7.1: N = 5−bus system with K = 3 generators and M = 2 loads.

7.2.3 Illustration

We consider an M = 5 bus system with K = 3 generators and L = 2 loads, see

Figure 7.1. The large ovals represent the N = 3 sub-systems. Each generator is

considered to be a steam-turbine generator with the following parameters, inertia

constant, J = 1.26, damping coefficient,D = 2, time constant of the turbine, Tu = 0.2,

time constant of the generator, Tg = 0.25, coefficient of the valve position, eT = 0.15,

proportionality factor, KT = 0.95, r = 0.95 and the sampling interval is ∆T = 0.01s.

For the loads, we assume JL = 10 and DL = 1. The interconnection matrix, H,

represents the connectivity of the network, the non zero pattern is given by

H =

h11 h12 0 h14 0

h21 h22 0 0 h25

0 0 h33 0 h35

h41 h42 0 h44 0

0 0 h53 0 h55

. (7.23)

The power consumed at the loads is modeled as an AR process of order p = 2.

The load at bus 4 is taken from the New York ISO from the month of August 2006

and the load at bus 5 is taken from the New England ISO for the same month. For

7.2. DISTRIBUTED ESTIMATION IN ELECTRIC POWER SYSTEMS 183

simplicity of illustration, we assume the loads to be at the same time-scale as the

generators. The global observation model consists of the observations on the state

variables

ω1
g , ω

2
g , ω

3
g , P

1
g , P

2
g , P

3
g , P

4
L, P

5
L,

i.e., the diagonal global observation matrix, H, has non-zeros corresponding to the

aforementioned states. The global model, thus, consists of the K = 3 steam-turbine

generators with the above parameters, L = 2 loads (the power consumed for each

of which is modeled using an AR(2) process) and the power flow equation with

the M × M (5 × 5) interconnection matrix given above. The resulting model is

an n = 16−dimensional dynamical system that is observable with the above obser-

vations; the observability Grammian, Θg, has the largest singular value of 12.08 and

smallest singular value of 0.0108 and thus has rank n = 16.

We now formulate sub-systems on this network. Sub-system 1 has measurements

corresponding to the states ω1
g , P

1
g , P

4
L, sub-system 2 has measurements correspond-

ing to the states ω2
g , P

2
g , P

4
L, P

5
L and sub-system 3 has measurements corresponding to

the states ω3
g , P

3
g , P

5
L. It can be shown that each of the sub-systems is not observable

with this set of measurements.

We now formulate sub-system dynamics. TheN = 3 sub-systems has the following

state vectors,

x(1) = [x(1)T
g P 1

g ω
4
L P

4
L]T , (7.24)

x(2) = [x(2)T
g P 2

g ω
4
L P

4
L ω

5
L P

5
L]T , (7.25)

x(3) = [x(3)T
g P 3

g ω
5
L P

5
L]T . (7.26)

The results are shown in Figures 7.2, 7.3, and 7.4. Figure 7.2 shows the trace of the

local error covariance matrices at each sub-system without cooperation. Figure 7.3

shows the trace of the local error covariances at each sub-system when the DICI

algorithm (Chapter 5) is used to assimilate the local error covariances together. Fig-

ure 7.4 compares the performance of the aggregated (all 3 sub-systems combined)

Information filter with L = 5−banded approximation with the optimal Information

184 CHAPTER 7. APPLICATIONS TO SMART GRIDS

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3
x 10

13

Information filter iterations, k

tr
ac

e
(S

(l
)

k
|k

)

Sub−system 1
Sub−system 2
Sub−system 3

No Cooperation

Figure 7.2: Trace of the local error covariance matrices at the sub-systems when
no cooperation is employed with L = 5−banded approximation (on the information
matrices).

filter (with no approximation).

Notice that the time-scale of the DICI algorithm, t, is different from the time-scale

of the Information filter iterations, k. It is assumed that the communication is fast

enough such that the DICI algorithm has reached a pre-defined performance criterion,

between any two steps of the Information filter iterations. This is a safe assumption

as the communication is always local and it can be assumed to be relatively faster

than the evolution of the dynamical system.

7.2.4 Conclusions

In this section, we show that with the appropriate overlapping of the sub-systems and

using an assimilation procedure on the local error covariances, the un-observable sub-

systems can be made observable in the sense that the local error covariances remain

stable. Local Information filters are implemented on the sub-systems that guarantee

a Gauss-Markovian structure on the error processes. This is achieved by using an

assimilation procedure (DICI algorithm, Chapter 5) among the local error covariances

that preserves the Gauss-Markovian structure. The sum of the squared errors (trace of

the error covariance) thus remains bounded and the aggregated performance over all of

the sub-systems is equivalent to the Information filter with L−banded approximation

7.2. DISTRIBUTED ESTIMATION IN ELECTRIC POWER SYSTEMS 185

0 100 200 300 400
0

5

10

15

20

25

30

35

40

45

Information filter iterations, k

tr
ac

e
(S

(l
)

k
|k

)

Sub−system 1
Sub−system 2
Sub−system 3

With Cooperation

Figure 7.3: Trace of the local error covariance matrices at the sub-systems with
cooperation using the DICI algorithm with L = 5−banded approximation (on the
information matrices).

0 50 100 150 200 250 300
0

20

40

60

80

100

120

Information filter iterations, k

tr
ac

e
(S

k
|k

)

Optimal Information filter

Aggregated performance L = 5-banded

Figure 7.4: Aggregated performance of the sub-systems with L = 5−banded ap-
proximation (on the information matrices) and comparison with optimal Information
filter.

186 CHAPTER 7. APPLICATIONS TO SMART GRIDS

on its information matrices.

7.3 Distributed phase-angle estimation

In this section, we present a distributed inference algorithm for phase-angle estimation

in electric power systems, by deploying only a minimum number of phasor measure-

ment units (PMUs). We assume that the nodes with unknown phase-angles have

the knowledge of their relative phase-angles with their neighboring nodes and only a

few nodes, which we call anchor nodes, have the absolute knowledge of their phase-

angles, i.e., they are equipped with PMUs. By placing the PMUs strategically, it can

be shown that the minimum number of anchor nodes required is 2. The proposed

framework is robust to noisy measurements, noisy communication and link failures.

Phasor measurement units (PMUs) are highly accurate, but, expensive devices for

measuring the phase-angles. In a power grid, where we are interested in measuring

the phase-angles at all the nodes in the network, it is prohibitive to deploy a PMU

at each node. A natural question to ask is what is the least number of PMUs to

accurately estimate the phase-angles at every node and where should we deploy these

PMUs.

We study the two questions posed above and further assume that each node in

the network is equipped with an inexpensive measurement device that estimates the

relative phase between the nodes. This can be measured, e.g., by current measurement

devices that are relatively cheap. The difference in the current flowing between the

nodes provides an estimate for the relative phase between the nodes.

We apply the distributed sensor localization algorithm (Chapter 4 specialized

to m = 1-dimensions, since the phase-angles are one-dimensional quantities. To

recapitulate, we showed in Chapter 4 that only a minimal number of m + 1 anchor

nodes (with known locations, i.e., they are equipped with a GPS) are required for

the sensor nodes to compute, iteratively, their unknown locations. We extend this

to phase-angle estimation where a minimal number m + 1 of anchors (with known

phase-angles, i.e., they are equipped with PMUs) are required for the rest of the

nodes (that we call sensors) to compute, iteratively, their unknown phase-angles. We

7.3. DISTRIBUTED PHASE-ANGLE ESTIMATION 187

assume that

(i) the phase-angles at the sensors lie in the convex hull of the phase-angles at the

anchors;

(ii) the sensors form a connected network and each sensor can communicate to at

least m + 1 = 2 neighboring sensors such that the phase-angle of the sensor in

question lies in the convex hull of the phase-angles at the m+1 = 2 neighboring

nodes (the convex hull is determined under the relative phase-angle metric that

we define later); and

(iii) each anchor can communicate to at least one sensor.

The assumption (i) provides us with the locations where the PMUs should be placed.

Since we are only estimating the phase-angles, a scalar quantity, DILOC (Chapter 4)

can be employed to localize the phase-angles, and we only require to place m+ 1 = 2

PMUs to estimate these phase-angles, iteratively, provided that (a) the PMUs are

deployed so that the aforementioned assumptions (i)-(iii) are satisfied; and (b) all

the nodes know the relative phase-angle between them and their (at least m + 1 =

2) neighboring nodes. We are interested in implementing a distributed inference

algorithm to iteratively estimate the phase-angles at the nodes in an electric power

system. We summarize the requirements of the algorithm: (i) at each node, i, the

state update depends at most on the states of the neighboring nodes; (ii) the state

update is linear (convex); (iii) the coefficients of the linear state update are computed

locally; (iv) only local communication within the neighborhood is allowed.

7.3.1 Notation and algorithm

Consider an electric power network with N nodes. Our algorithm entails two types of

networks: (i) the electric network or the physical network; and (ii) the communication

network or the information network. We term the interconnections in the physical

network as the physical links and the interconnections in the information network as

the information links. We denote the phase-angle at the ith node by δi. If node j is

188 CHAPTER 7. APPLICATIONS TO SMART GRIDS

connected to node i in the physical network, we represent their phase difference by

δij = δi − δj. (7.27)

The phase difference between node i and node j can be computed from the following

expression,

δij ∝
yij
zij
, (7.28)

where yij and zij is the current and impedance of the bus between node i and node j,

respectively. Let K(i) denote the physical neighbors of the ith node, i.e., the set of

nodes connected to node i in the electric network.

A node, i, is said to be a boundary node if its phase-angle is such that

δi > δj, ∀j ∈ K(i), (7.29)

or,

δi < δj, ∀j ∈ K(i). (7.30)

where we let B to denote the set of boundary nodes.

A source node, s, is the boundary node that has the largest phase-angle among all

the nodes in B and a sink node, s, is a boundary node that has the smallest phase-

angle among all the boundary nodes. The set of the source node and the sink node

is the set of anchors, denoted by κ, i.e., κ = {s, s}.
A non-boundary node is a node which is not a boundary node, where we let Ω to be

the set of non-boundary nodes. Here, we assume that at each non-boundary node, i ∈
Ω, there are at least two non-boundary and/or anchors nodes, j, k ∈ K(i) ∩ (Ω ∪ κ),

such that for node i, either

δj ≤ δi ≤ δk, (7.31)

or

δj ≥ δi ≥ δk, (7.32)

is true. The set of nodes, {j, k}, is said to be the triangulation set, Θi, of node i.

If Θi 6⊂ Ω ∪ κ, then we include that ith node in the set of boundary nodes, B, also.

7.3. DISTRIBUTED PHASE-ANGLE ESTIMATION 189

The set of all the nodes in the network is denoted by Θ = Ω ∪ B. We make the

following assumption.

(A1) Each node, i, knows its phase difference, δij, with each of its neighbors, j ∈ K(i),

in the physical network. This can be computed from (7.28).

(A2) There is a PMU deployed at the source and the sink node.

(A3) In the physical network, there is a path from the non-boundary nodes to each

(boundary or non-boundary) node in the network.

(A4) Each non-boundary node has an information link to the nodes in its triangu-

lation set. In the communication network, there is a path from the non-boundary

nodes to each node in the network.

Algorithm: We now implement an iterative algorithm for phase-angle estimation

at all the non-source and non-sink nodes in the network. We assume that each node

maintains a state, its phase-angle estimate, which is updated as a linear (convex)

combination of the states at the neighboring nodes. Let cm(t),m ∈ Θ, denote the

state of an arbitrary node at time t. Let u1(t) and u2(t) denote the state of the source

node and the sink node, respectively, at time t. Let xj(t), j ∈ Θ, denote the state

of the jth non-boundary nodes at time t, and let rl(t), l ∈ B \ κ, denote the state

of the lth boundary node that is neither source nor sink, at time t. The iterative

algorithm is given by

ui(t+ 1) = ui(t), i ∈ κ,
xj(t+ 1) =

∑
m∈Θj

υjmcm(t), j ∈ Ω,

rl(t+ 1) = cn(t+ 1) + δln, n ∈ K(l), l ∈ B \ κ,
(7.33)

where

υjm =
|δjl|∑
i∈Θj
|δji|

, l = Θj \ {m}, (7.34)

and \ denotes the set difference. It can be easily verified that

υim ∈ [0, 1], and
∑

m∈Θi

υim = 1, (7.35)

and that υim are the barycentric coordinates in 1-d space (see Section 4.2.2).

190 CHAPTER 7. APPLICATIONS TO SMART GRIDS

For the purpose of analysis, we now write the above algorithm in matrix form.

Let I2 denote the 2× 2 identity matrix and let u(t), x(t), and r(t) denote the vectors

of the states at the nodes in κ, Ω, and B \ κ, respectively. We have

u(t+ 1)

x(t+ 1)

r(t+ 1)

 =

I2 0 0

B P 0

Br Pr Ar

u(t)

x(t)

r(t)

+

0

0

∆

 , (7.36)

where ∆ represents the appropriate vector of δ(·)(·) added to rl in (7.33). The vec-

tor, u(t + 1), denotes the state of the anchors (source/sink) that are not updated

because they are equipped with a PMU, by assumption (A2). Convergence: No-

tice that the top right 2× 2 sub-matric in (7.33) is reminiscent of the DILOC matrix

form (Chapter 4). Since P is the collection of barycentric coordinates (in m = 1

dimensions) of non-boundary nodes (sensors in Chapter 4), we have ρ(P) < 1 and

lim
t→∞

x(t+ 1) = (I−P)−1Bu. (7.37)

That (I−P)−1Bu(0) are the actual phases at the non0boundary nodes can be es-

tablished from the fixed point of (7.33), along the lines of Lemma 20 or Lemma 22.

The convergence of the non-anchor boundary nodes, i.e., nodes in B \ κ, is guaran-

teed, if the states of the non-boundary nodes converge, since each non-boundary node

has a path to every node in the network (by (A4)). The convergence at these non-

anchor boundary nodes is not governed by the geometric rate of the HDC. Instead,

it depends on their distance (in the number of network hops) from the anchors and

non-boundary nodes. If the density of such non-anchor boundary nodes is large, the

convergence at these nodes may be slow.

7.3.2 Generalizations

We briefly consider some generalizations.

• PMU placement: We require to place the PMUs only at the maximum phase-

angle and the minimum phase-angle nodes in the network. When the network

7.3. DISTRIBUTED PHASE-ANGLE ESTIMATION 191

is dynamic, we may find the set of nodes such that the set always contains the

maximum and minimum phase-angle nodes and place PMUs at all such nodes.

This may increase the number of PMUs required. Nevertheless, if the max

and min nodes do not change for the entire network operation, then we only

require 2.

• Random environments: Each node may only be able to measure a noisy version

of the phase difference (as assumed in (A1)). Mathematically, node i may

measure the following quantity,

δ̃ij = δij + δij, (7.38)

where δij is a random noise term with the following properties.

E
[
δij
]

= 0, (7.39)

E
[
δ

2

ij

]
< ∞. (7.40)

In addition, the communication may suffer from communication noise and ran-

dom link failures. In such cases, we modify the phase-angle estimation algorithm

in (7.33) using a stochastic approximation. We provided discussion and details

on such modifications in Section 3.5 and Section 4.7. Such modifications directly

apply here.

7.3.3 Simulations

We apply the distributed phase-angle estimation algorithm to the IEEE 30-bus system

shown in Fig. 7.5(a). We translate this system into a graphical representation in

Fig. 7.5(b). The boundary nodes are encircled, whereas, the nodes with maximum

and minimum phase-angles are shown with a lightning symbol. The rest are the

non-boundary nodes. We provide the simulation results in Fig. 7.6(a)–Fig. 7.6(c).

192 CHAPTER 7. APPLICATIONS TO SMART GRIDS

1

2

3

45

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

2526

2728

29
30

~

~

~

~

~

(a)

1

2

3

45

6

7

9

10

11

12

13

14

16

17

18

19

20

21

22

23

24

2526

27
28

29 30

8

15

(b)

Figure 7.5: (a) IEEE 30-bus system and its (b) graphical representation.

7.3. DISTRIBUTED PHASE-ANGLE ESTIMATION 193

0 500 1000 1500
−5

−4

−3

−2

−1

0

1

2

Iterations, t

P
ha

se
-a

ng
le

es
ti
m

at
es

(a)

0 10 20 30
−5

−4

−3

−2

−1

0

1

Iterations, t

P
ha

se
-a

ng
le

es
ti
m

at
es

(b)

0 10 20 30
−4

−3

−2

−1

0

1

2

Iterations, t

P
ha

se
-a

ng
le

es
ti
m

at
es

(c)

Figure 7.6: Distributed phase-angel algorithm: Estimates for (a) anchors, (b) non-
anchor boundary nodes, and (c) non-boundary nodes.

Chapter 8

Epilogue

In this chapter, we revisit our contributions in this thesis (presented earlier in Sec-

tion 1.1).

In this thesis, we developed the theory of High Dimensional Consensus (HDC) in

large-scale networks. We further show the significance of HDC in relevant practical

applications. We now provide a brief list of the results developed in this thesis.

• High Dimensional Consensus (HDC): We proposed a new class of dis-

tributed algorithms that we call High Dimensional Consensus (HDC). HDC

includes several existing well-known algorithms as special cases, e.g., Jacobi al-

gorithm [58], and linear average-consensus [17], and is not restricted to linear

updates with convex or non-negative coefficients. In our formulation of HDC,

we studied analysis and synthesis problems.

– Analysis: Convergence in the linear-case. In Section 3.3, we established

appropriate conditions for the convergence of HDC in the linear case, and

derived the limiting state of the network, and the convergence rate of the

HDC.

– Synthesis: Design in the linear case. In Section 3.6, we designed the up-

dating functions such that we achieve a desired limiting state, an arbitrary

linear combination of the initial anchor states. Our solution results into

updating matrices that are not necessarily stochastic or non-negative. We

194

195

have formulated this design problem as learning in large-scale networks,

which we solve using multi-objective optimization. We cast the solutions

to this MOP in the context of Pareto-optimality and have shown that the

optimal solution of the learning problem is Pareto-optimal. In Section 3.8,

we have studied the trade-offs between the performance of HDC versus its

convergence speed.

– Random environments: In Section 3.5, we studied the behavior and per-

formance of HDC in random environments (communication noise, data

packet drops, and imperfect knowledge of the underlying system). We

have proposed a modification to HDC such that it is robust to the random

phenomena.

– Classes of HDC: We showed that HDC generalizes a large class of problems,

including Jacobi algorithm [58], average-consensus [17], leader-follower (Chap-

ter 3) algorithm, sensor localization (Chapter 4), banded matrix inversion

(Chapter 5), and distributed estimation (Chapter 6).

• Analysis and synthesis of non-linear average-consensus: In Chapter 2,

we studied the non-linear distributed average-consensus algorithms. In Sec-

tion 2.3, we characterized the non-linear updating functions that guarantee

average-consensus. We then carried out the synthesis problem in Section 2.4,

where we have designed the non-linear average-consensus using sinusoidal up-

dating functions.

• Distributed sensor localization: In Chapter 4, we provided a detailed study

of distributed sensor localization that is a special case of HDC. In this context,

we proposed DILOC in Section 4.2. DILOC requires a minimal number of known

locations to localize an arbitrary number of sensors. DILOC uses the barycentric

coordinates as coefficients of the linear combination that constitutes the state

update at each sensor. This linear combination is convex so the resulting up-

dating matrices are stochastic. Hence, the convergence of DILOC can be tied to

the steady state distribution of an absorbing Markov chain. Although, we also

prove convergence using fixed point arguments. Using a Poisson distribution on

196 CHAPTER 8. EPILOGUE

the sensor deployment, we provided probabilistic bounds on the sensor density

and the communication radius required for DILOC. In Section 4.5, we consid-

ered several enhancements to DILOC by relaxing some of the assumptions. In

Section 4.6, we studied localization in networks of mobile agents, whereas, in

Section 4.7, we studied distributed sensor localization in random environments.

• Distributed Kalman filter: In Chapter 6, we provided a distributed estima-

tion algorithm based on spatial decomposition of large-scale dynamical systems

into low-dimensional sub-systems. At the heart of our estimation algorithm

lies a distributed banded matrix inversion algorithm that we term Distributed

Iterated Collapse Inversion (DICI) algorithm (Chapter 5). DICI is a special

case of HDC (appended with a non-linear collapse operator) that assimilates

the local error covariances among the sub-systems in a computationally efficient

and completely decentralized fashion.

• Applications to electric power grids: In Chapter 7, we showed the signif-

icance of HDC in the context of distributed estimation and inference in large-

scale power systems. We specifically addressed the following problems.

– Estimation and modeling: In Section 7.2, we explored the practical sig-

nificance of the distributed Kalman filter of Chapter 6 in the context of

a structure-preserving model of the electric power system that we term

as cyber-physical model. We provided the cyber-physical model in Sec-

tion 7.1. We showed that cooperation among the (potentially unobserv-

able) sub-systems, derived from the cyber-physical model, leads to the

observability of the overall system.

– Phase-angle estimation: In Section 7.3, we provided a distributed inference

algorithm for phase-angle estimation that is based on the HDC algorithm

and borrows some concepts from our distributed localization algorithm.

In this context, we studied the minimal number of Phasor Measurement

Units (PMUs) and their optimal placement.

197

In addition, we conducted a detailed literature review for comparisons and con-

trasts with our work. This review is provided in each chapter. We further provided

an extensive set of experimental results in each of the chapters.

Appendix A

High dimensional consensus

A.1 Important results

Lemma 25: If a matrix P is such that

ρ(P) < 1,

then

lim
t→∞

Pt+1 = 0, (A.1)

lim
t→∞

t∑

k=0

Pk = (I−P)−1 . (A.2)

Proof: The proof is straightforward.

Lemma 26: Let rQ be the rank of the M ×M matrix (I−P)−1, and rB the rank

of the M × n matrix B, then

rank(I−P)−1B ≤ min(rQ, rB), (A.3)

rank(I−P)−1B ≥ rQ + rB −M. (A.4)

Proof: The proof is available on pages 95− 96 in [156].

198

A.2. NECESSARY CONDITION 199

A.2 Necessary condition

Below, we provide a necessary condition required for the existence of an exact solution

of the Learning Problem.

Lemma 27: Let ρ(P) < 1, K < M , and let rW denote the rank of a matrix W.

A necessary condition for (I−P)−1B = W to hold is

rB = rW. (A.5)

Proof: Note that the matrix I−P is invertible since ρ(P) < 1. Let Q = (I−P)−1,

then rQ = M . From Lemma 26 in Appendix A.1 and since by hypothesis K < M ,

rank(QB) ≤ rB, (A.6)

rank(QB) ≥ M + rB −M = rB. (A.7)

The condition (A.5) now follows, since from (3.41), we also have

rank(QB) = rW. (A.8)

Appendix B

Localization in sensor networks

B.1 Convex hull inclusion test

We now give an algorithm that tests if a given sensor, l ∈ Rm, lies in the convex

hull of m + 1 nodes in a set, κ, using only the mutual distance information among

these m+ 2 nodes (κ∪ {l}). Let κ denote the set of m+ 1 nodes and let C(κ) denote

the convex hull formed by the nodes in κ. Clearly, if l ∈ C(κ), then the convex hull

formed by the nodes in κ is the same as the convex hull formed by the nodes in κ∪{l},
i.e.,

C(κ) = C(κ ∪ {l}), if l ∈ C(κ). (B.1)

With the above equation, we can see that, if l ∈ C(κ), then the generalized volumes

of the two convex sets, C(κ) and C(κ ∪ {l}), should be equal. Let Aκ denote the

generalized volume of C(κ) and let Aκ∪{l} denote the generalized volume of C(κ∪{l}),
we have

Aκ = Aκ∪{l},

=
∑

k∈κ

Aκ∪{l}\{k}, if l ∈ C(κ). (B.2)

200

B.2. CAYLEY-MENGER DETERMINANT 201

(a) (b)

Figure B.1: Convex Hull Inclusion Test (m = 3): The sensor l is shown by a ‘◦’,
whereas, the anchors in κ are shown by ‘∇’. (a) l ∈ C(κ) ⇒ Aκ = Aκ∪{l}, (b) l /∈
C(κ)⇒ Aκ < Aκ∪{l}.

Hence, the test becomes

l ∈ C(κ), if
∑

k∈κ

Aκ∪{l}\{k} = Aκ, (B.3)

l /∈ C(κ), if
∑

k∈κ

Aκ∪{l}\{k} > Aκ. (B.4)

This is also shown in Figure B.1. The above inclusion test is based entirely on the

generalized volumes, which can be calculated using only the distance information in

the Cayley-Menger determinants.

B.2 Cayley-Menger determinant

The Cayley-Menger determinant [86] is the determinant of an m + 2 ×m + 2 (sym-

metric) matrix that relates to the generalized volume, AΘl , of the convex hull, C(Θl),

of the m + 1 points in Rm through an integer sequence, sm+1. Let 1m+1 denote a

column vector of m+ 1 1s, the Cayley-Menger determinant is given by

A2
Θl

=
1

sm+1

∣∣∣∣∣
0 1Tm+1

1m+1 Y

∣∣∣∣∣ , (B.5)

202 APPENDIX B. LOCALIZATION IN SENSOR NETWORKS

where Y = {d2
lj}, l, j ∈ Θl, is the matrix of squared distances, dlj, among the m + 1

points in Θl and

sm =
2m(m!)2

(−1)m+1
, m = {0, 1, 2, . . .}. (B.6)

Appendix C

Distributed estimation

C.1 L-banded inversion theorem

Let Z = S−1 be L-banded. We apply the algorithm, given in [120], to obtain Z from

the sub-matrices in the L-band of S. We use the following notation, in (C.1), to

partition matrix addition and subtraction in terms of its constituent sub-matrices.

Also Sij represents the principal submatrix of S spanning rows i through j, and

columns i through j.

a1 a2 0

a3 x+ y + z a4

0 a5 a6

 =

a1 a2

a3 x + y + z a4

a5 a5

 (C.1)

The inverse of S, when Z = S−1 is L-banded, is given by (C.2), taken from [120],

in terms of the L-banded sub-matrices of S. Note that, to compute a principal

submatrix in Z, we do not need the entire S, or even all the L-banded sub-matrices

in S. Instead, we only require neighboring sub-matrices in the L-band of S. For

proofs and further details, the interested reader can refer to [120].

203

204 APPENDIX C. DISTRIBUTED ESTIMATION

Z =

S1
L+1

−1

− S2
L+1

−1

+
S2

L+2

−1

−
·
·
·

+
SN−L−1

N−1

−1

− SN−L
N−1

−1

+
SN−L

N

−1

0

0

(C.2)

Bibliography

[1] E. Cuthill J. McKee, “Reducing the bandwidth of sparse symmetric matrices,”

in Proceedings of the 24th National Conference, New York, 1969, pp. 157–172.

[2] R. R. Tenney and Jr. N. R. Sandell, “Detection with distributed sensors,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 17, no. 4, pp. 501–510,

1981.

[3] J. N. Tsitsiklis, Problems in Decentralized Decision Making and Computation,

Ph.D., Massachusetts Institute of Technology, Cambridge, MA, 1984.

[4] J. N. Tsitsiklis, “Decentralized detection by a large number of sensors,” Math-

ematics of Control, Signals, and Systems, vol. 1, no. 2, pp. 167–182, 1988.

[5] Pramod K. Varshney, Distributed Detection and Data Fusion, Springer-Verlag,

Secaucus, NJ, 1996.

[6] J.-F. Chamberland and V. V. Veeravalli, “Decentralized detection in sensor

networks,” vol. 51, pp. 407–416, Feb. 2003.

[7] S. Aldosari and J. M. F. Moura, “Detection in sensor networks: The saddlepoint

approximation,” IEEE Transactions on Signal Processing, vol. 55, no. 1, pp.

327–340, January 2007.

[8] J. N. Tsitsiklis and M. Athans, “On the complexity of decentralized decision

making and detection problems,” IEEE Transactions on Automatic Control,

vol. AC-30, no. 5, pp. 440–446, May 1985.

205

206 BIBLIOGRAPHY

[9] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous

deterministic and stochastic gradient optimization algorithms,” vol. AC-31, no.

9, pp. 803–812, September 1986.

[10] H. J. Kushner and G. Yin, “Asymptotic properties of distributed and commu-

nicating stochastic approximation algorithms,” Siam J. Control and Optimiza-

tion, vol. 25, no. 5, pp. 1266–1290, Sept. 1987.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed

consensus with one faulty process,” Journal of the Association for Computing

Machinery, vol. 32, no. 2, pp. 374–382, April 1985.

[12] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, Inc., San

Francisco, CA, 1997.

[13] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile

autonomous agents using nearest neighbor rules,” vol. AC-48, no. 6, pp. 988–

1001, June 2003.

[14] C. Reynolds, “Flocks, birds, and schools: A distributed behavioral model,”

Computer Graphics, vol. 21, pp. 25–34, 1987.

[15] T. Vicsek, A. Czirok, E. Ben Jacob, I. Cohen, and O. Schochet, “Novel type of

phase transitions in a system of self-driven particles,” Physical Review Letters,

vol. 75, pp. 1226–1229, 1995.

[16] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents

with switching topology and time-delays,” IEEE Trans. Automat. Contr., vol.

49, no. 9, pp. 1520–1533, Sept. 2004.

[17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems

and Controls Letters, vol. 53, no. 1, pp. 65–78, Apr. 2004.

[18] S. Kar and José M. F. Moura, “Topology for global average consensus,” in 40th

Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA,

Oct. 2006.

BIBLIOGRAPHY 207

[19] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems

in multi-agent coordination,” in American Control Conference, Portland, OR,

June 2005, pp. 1859–1864.

[20] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in

networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp.

215–233, Jan. 2007.

[21] Y. Hatano, A. K. Das, and M. Mesbahi, “Agreement in presence of noise:

pseudogradients on random geometric networks,” in 44th IEEE Conference on

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC

’05, Seville, Spain, December 2005.

[22] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo-

rithms,” IEEE Transactions on Information Theory, vol. 52, pp. 2508 – 2530,

June 2006.

[23] M. E. Yildiz and A. Scaglione, “Differential nested lattice encoding for con-

sensus problems,” in ACM/IEEE Information Processing in Sensor Networks,

Cambridge, MA, April 2007.

[24] A. T. Salehi and A. Jadbabaie, “On consensus in random networks,” in

The Allerton Conference on Communication, Control, and Computing, Allerton

House, IL, September 2006.

[25] M. Porfiri and D. J. Stilwell, “Stochastic consensus over weighted directed

networks,” in Proceedings of the 2007 American Control Conference, New York

City, USA, July 11-13 2007.

[26] S. Kar and José M. F. Moura, “Distributed consensus algorithms in sensor

networks: Link failures and channel noise,” IEEE Transactions on Signal Pro-

cessing, 2008, Accepted for publication, 30 pages.

[27] A. Kashyap, T. Basar, and R. Srikant, “Quantized consensus,” Automatica,

vol. 43, pp. 1192–1203, July 2007.

208 BIBLIOGRAPHY

[28] T. C. Aysal, M. J. Coates, and M. G. Rabbat, “Distributed average consensus

with dithered quantization,” To appear in the IEEE Transactions of Signal

Processing, 2008.

[29] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sen-

sor networks: Quantized data,” Submitted for publication, 30 pages, see

http://arxiv.org/abs/0712.1609, November 2007.

[30] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed

averaging algorithms and quantization effects,” Technical Report 2778, LIDS-

MIT, Nov. 2007.

[31] P. Frasca, R. Carli, F. Fagnani, and S. Zampieri, “Average consensus on net-

works with quantized communication,” Submitted to the Int. J. Robust and

Nonlinear Control, 2008.

[32] M. Huang and J. H. Manton, “Stochastic approximation for consensus seeking:

mean square and almost sure convergence,” in Proceedings of the 46th IEEE

Conference on Decision and Control, New Orleans, LA, USA, Dec. 12-14 2007.

[33] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and

theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401–420,

2006.

[34] H. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching

networks,” IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 863–

868, 2007.

[35] Usman A. Khan and José M. F. Moura, “Distributing the Kalman filters for

large-scale systems,” IEEE Transactions on Signal Processing, vol. 56(1), no.

10, pp. 4919–4935, Oct. 2008.

[36] I. D. Schizas, A. Ribeiro, , and G. B. Giannakis, “Consensus-based distributed

parameter estimation in ad hoc wireless sensor networks with noisy links,” in

BIBLIOGRAPHY 209

Proc. of Intl. Conf. on Acoustics, Speech and Signal Processing, Honolulu, HI,

2007, pp. 849–852.

[37] R. Olfati-Saber, “Distributed Kalman filters with embedded consensus filters,”

in 44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 2005,

pp. 8179 – 8184.

[38] M. Alanyali and V. Saligrama, “Distributed tracking in multi-hop networks

with communication delays and packet losses,” in 13th IEEE Workshop on

Statistical Sig. Proc., Bordeaux, France, Jul. 2005, pp. 1190–1195.

[39] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter estimation in

sensor networks: Nonlinear observation models and imperfect communication,”

Submitted for publication, see also http://arxiv.org/abs/0809.0009, Aug. 2008.

[40] A. Rahmani and M. Mesbahi, “Pulling the strings on agreement: Anchoring,

controllability, and graph automorphism,” in American Control Conference,

New York City, NY, July 11-13 2007, pp. 2738–2743.

[41] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Distributed sensor

localization in random environments using minimalnumber of anchor nodes,”

IEEE Transactions on Signal Processing, vol. 57, no. 5, pp. 2000–2016, May

2009.

[42] M. D. Ilić, L. Xie, U. A. Khan, and J. M. F. Moura, “Modeling, sensing,

and control of future cyber-physical energy systems,” IEEE Transactions on

Systems, Man and Cybernetics: Special Issue on Engineering Cyber-Physical

Ecosystems, Jul. 2008, accepted for publication.

[43] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Higher dimensional

consensus: Learning in large-scale networks,” IEEE Transactions on Signal

Processing, Apr. 2009, submitted.

[44] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Sensor localization

with noisy distance measurements,” IEEE Transactions on Signal Processing,

May 2009, submitted.

210 BIBLIOGRAPHY

[45] Usman A. Khan, Soummya Kar, and José M. F. Mour, “Distributed algorithms

in sensor networks,” in Handbook on sensor and array processing, Simon Haykin

and K. J. Ray Liu, Eds. Wily-Interscience, New York, NY, 2009, to appear.

[46] Usman A. Khan and José M. F. Moura, “Distributed Kalman filters in sensor

networks: Bipartite fusion graphs,” in 15th IEEE Workshop on Statistical

Signal Processing, Madison, WI, Aug. 2007, pp. 700–704.

[47] Usman A. Khan and José M. F. Moura, “Model distribution for distributed

Kalman filters: A graph theoretic approach,” in 41st Asilomar Conference on

Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2007, pp. 611–615.

[48] Usman A. Khan and José M. F. Moura, “Distributed Iterate-Collapse inversion

(DICI) algorithm for L−banded matrices,” in 33rd International Conference

on Acoustics, Speech, and Signal Processing, Las Vegas, NV, Mar. 2008, pp.

2529–2532.

[49] Marija D. Ilić, Le Xie, Usman A. Khan, and José M. F. Moura, “Modelling

future cyber-physical energy systems,” in IEEE Power and Energy Society,

General Meeting, Pittsburgh, PA, Jul. 2008, pp. 1–9.

[50] Usman A. Khan, Soummya Kar, Bruno Sinopoli, and José M. F. Moura, “Dis-

tributed sensor localization in Euclidean spaces: Dynamic environments,” in

46th Allerton Conference On Communication, Control, and Computing, Mon-

ticello, IL, Sep. 2008, pp. 361–366.

[51] Usman A. Khan, Soummya Kar, and José M. F. Moura, “A linear distributed

algorithm for sensor localization,” in 42nd Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, Oct. 2008, pp. 1160–1164.

[52] Usman A. Khan, Marija D. Ilić, and José M. F. Moura, “Cooperation for aggre-

gating complex electric power networks to ensure system observability,” in 1st

International Conference on Infrastructure Systems, Rotterdam, Netherlands,

Nov. 2008.

BIBLIOGRAPHY 211

[53] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Higher dimensional

consensus algorithms in sensor networks,” in 34th IEEE International Confer-

ence on Acoustics, Speech, and Signal Processing, Taipei, Taiwan, Apr. 2009,

pp. 2857–2860.

[54] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Distributed local-

ization in networks of mobile agents,” in 47th Allerton Conference On Com-

munication, Control, and Computing, Monticello, IL, Sep. 2009, accepted for

publication.

[55] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Distributed average

consensus: Beyond the realm of linearity,” in 43rd Asilomar Conference on

Signals, Systems, and Computers, Pacific Grove, CA, Nov. 2009, accepted for

publication.

[56] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Asymptotic noise

analysis of high-dimensional consensus,” in 43rd Asilomar Conference on Sig-

nals, Systems, and Computers, Pacific Grove, CA, Nov. 2009, accepted for

publication.

[57] Usman A. Khan, Soummya Kar, and José M. F. Moura, “Distributed sensor

localization using barycentric coordinates,” in 3rd International Workshop on

Computational Advances in Multi-Sensor Adaptive Processing, Aruba, Dutch

Antilles, Dec. 2009, submitted.

[58] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computations, Prentice

Hall, Englewood Cliffs, NJ, 1989.

[59] F. R. K. Chung, Spectral Graph Theory, Providence, RI : American Mathe-

matical Society, 1997.

[60] Y. Kuramoto, “Cooperative dynamics of oscillator community,” Progress of

Theoretical Physics Suppl., vol. 79, pp. 223–240, 1984.

212 BIBLIOGRAPHY

[61] C. W. Wu and L. O. Chua, “Synchronization in an array of linearly coupled

dynamical systems,” IEEE Transactions on Circuits Systems I, vol. 42, pp.

430–447, Aug. 1995.

[62] A. Jadbabaie, N. Motee, and M. Barahona, “On the stability of the Kuramoto

model of coupled non-linear oscillators,” in American Control Conference, Jul.

2004, vol. 5, pp. 296–4301.

[63] N Chopra and M. W. Spong, “On synchronization of kuramoto oscillators,” in

44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 2005, pp.

3916–3922.

[64] A. Mauroy and R. Sepulchre, “Clustering behaviors in networks of integrate-

and-fire oscillators,” Chaos: Special issue on Synchronization in Complex Net-

works, vol. 18, no. 3, pp. 037122–037122–8, 2008.

[65] N. Varanese, O. Simeone, U. Spagnolini, and Y. Bar-Ness, “Distributed

frequency-locked loops for wireless networks,” in 10th IEEE International Sym-

posium on Spread Spectrum Techniques and Applications, Bologna, Italy, Aug.

2008, pp. 400–404.

[66] A. Bergen and D. Hill, “A structure preserving model for power system stability

analysis,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, no. 1,

pp. 25–35, Jan. 1981.

[67] F. R. Gantmacher, Matrix Theory (Volume I), Chelsea Publishing Co., USA,

1959.

[68] P. Denantes, F. Benezit, P. Thiran, and M. Vetterli, “Which distributed averag-

ing algorithm should I choose for my sensor network,” in INFOCOM, Phoenix,

AZ, Mar. 2008, pp. 986–994.

[69] V. Chankong and Y. Y. Haimes, Multiobective decision making: Theory and

methodology, North-Holland series in system sciences and engineering, 1983.

BIBLIOGRAPHY 213

[70] V. V. Kolpakov, “Matrix seminorms and related inequalities,” Journal

of Mathematical Sciences, vol. 23, no. 1, pp. 2094–2106, Sep. 1983, DOI:

10.1007/BF01093289.

[71] C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathe-

matical Society, 1997.

[72] A. Daghighi, “The Dirichlet problem for certain discrete structures,” Tech.

Rep. 4, Department of Mathematics, Uppsala University, Apr. 2005.

[73] F. Chung and S. T. Yau, “Discrete Green’s functions,” Journal of Combinatorial

Theory, Series A, pp. 191–214, July 2000.

[74] L. S. Zurlo, P. E. Mercado, and C. E. de la Vega, “Parallelization of the linear

load flow equations,” Power Tech Proceedings, 2001 IEEE Porto, vol. 3, 2001.

[75] L. Schenato and G. Gamba, “A distributed consensus protocol for clock syn-

chronization in wireless sensor network,” 46th IEEE Conference on Decision

and Control, pp. 2289–2294, Dec. 2007.

[76] G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins Univer-

sity Press, Baltimore, MD, 1996.

[77] H. G. Tanner, G. J. Pappas, and V. Kumar, “Leader-to-formation stability,”

IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 433–455,

Jun. 2004.

[78] H. G. Tanner, “On the controllability of nearest neighbor interconnections,”

in 43rd IEEE Conference on Decision and Control, New York City, NY, Dec.

14-17 2004, pp. 2467–2472.

[79] R. Simmons, D. Apfelbaum, D. Fox, R. P. Goldman, K. Z. Haigh, D. J. Musliner,

M. Pelican, and S. Thrun, “Coordinated deployment of multiple, heterogeneous

robots,” in Intelligent Robots and Systems, 2000. (IROS 2000). Proceedings.

2000 IEEE/RSJ International Conference on, 2000, vol. 3, pp. 2254–2260 vol-

ume.3.

214 BIBLIOGRAPHY

[80] E. Jones, B. Browning, M. B. Dias, B. Argall, M. M. Veloso, and A. Stentz, “Dy-

namically formed heterogeneous robot teams performing tightly-coordinated

tasks,” in International Conference on Robotics and Automation, May 2006,

pp. 570 – 575.

[81] J. Wang and M. Lewis, “Assessing cooperation in human control of heteroge-

neous robots,” in Proceedings of the 3rd ACM/IEEE international conference

on Human robot interaction, New York, NY, USA, 2008, pp. 9–16, ACM.

[82] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University

Press, New York, NY, USA, 2004.

[83] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, NJ,

1970. Reprint: 1997.

[84] G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA,

1957.

[85] J. Hocking and G. Young, Topology, Addison-Wesley, MA, 1961.

[86] M. J. Sippl and H. A. Scheraga, “Cayley–Menger coordinates,” Proceedings of

the National Academy of Sciences of U.S.A., vol. 83, no. 8, pp. 2283–2287, Apr.

1986.

[87] R. L. Moses, D. Krishnamurthy, and R. Patterson, “A self-localization method

for wireless sensor networks,” EURASIP Journal on Applied Signal Processing,

, no. 4, pp. 348–358, Mar. 2003.

[88] N. Patwari, A. O. Hero III, M. Perkins, N. Correal, and R. J. ODea, “Rela-

tive location estimation in wireless sensor networks,” IEEE Trans. on Signal

Processing, vol. 51, no. 8, pp. 2137–2148, Aug. 2003.

[89] Y. Shang, W. Ruml, Y. Zhang, and M. Fromherz, “Localization from mere con-

nectivity,” in 4th ACM international symposium on mobile ad-hoc networking

and computing, Annapolis, MD, Jun. 2003, pp. 201–212.

BIBLIOGRAPHY 215

[90] Y. Shang and W. Ruml, “Improved MDS-based localization,” in IEEE Infocom,

Hong Kong, Mar. 2004, pp. 2640–2651.

[91] F. Thomas and L. Ros, “Revisiting trilateration for robot localization,” IEEE

Transactions on Robotics, vol. 21, no. 1, pp. 93–101, Feb. 2005.

[92] M. Cao, B. D. O. Anderson, and A. S. Morse, “Localization with imprecise

distance information in sensor networks,” Sevilla, Spain, Dec. 2005, pp. 2829–

2834.

[93] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by local

linear embedding,” Science, vol. 290, pp. 2323–2326, Dec. 2000.

[94] N. Patwari and A. O. Hero III, “Manifold learning algorithms for localization

in wireless sensor networks,” in IEEE ICASSP, Montreal, Canada, Mar. 2004,

pp. 857–860.

[95] D. Niculescu and B. Nath, “Ad-hoc positioning system,” in IEEE Globecom,

Apr. 2001, pp. 2926–2931.

[96] A. Savvides, C. C. Han, and M. B. Srivastava, “Dynamic fine-grained localiza-

tion in ad-hoc networks of sensors,” in IEEE Mobicom, Rome, Italy, Jul. 2001,

pp. 166–179.

[97] A. Savvides, H. Park, and M. B. Srivastava, “The bits and flops of the n-hop

multilateration primitive for node localization problems,” in Intl. Workshop on

Sensor Networks and Applications, Atlanta, GA, Sep. 2002, pp. 112–121.

[98] R. Nagpal, H. Shrobe, and J. Bachrach, “Organizing a global coordinate system

from local information on an ad-hoc sensor network,” in 2nd Intl. Workshop

on Information Processing in Sensor Networks, Palo Alto, CA, Apr. 2003, pp.

333–348.

[99] J. J. Caffery, Wireless Location in CDMA Cellular Radio Systems, Kluwer

Academic Publishers, Norwell, MA, 1999.

216 BIBLIOGRAPHY

[100] J. A. Costa, N. Patwari, and III A. O. Hero, “Distributed weighted-

multidimensional scaling for node localization in sensor networks,” ACM Trans-

actions on Sensor Networks, vol. 2, no. 1, pp. 39–64, 2006.

[101] J. Albowicz, A. Chen, and L. Zhang, “Recursive position estimation in sensor

networks,” in IEEE Int. Conf. on Network Protocols, Riverside, CA, Nov. 2001,

pp. 35–41.

[102] C. Savarese, J. M. Rabaey, and J. Beutel, “Locationing in distributed ad-hoc

wireless sensor networks,” in IEEE ICASSP, Salt Lake City, UA, May 2001,

pp. 2037–2040.

[103] S. Čapkun, M. Hamdi, , and J. P. Hubaux, “GPS-free positioning in mobile

ad-hoc networks,” in 34th IEEE Hawaii Int. Conf. on System Sciences, Wailea

Maui, HI, Jan. 2001.

[104] A. T. Ihler, J. W. Fisher III, R. L. Moses, and A. S. Willsky, “Nonparametric

belief propagation for self-calibration in sensor networks,” in IEEE ICASSP,

Montreal, Canada, May 2004.

[105] L. Hu and D. Evans, “Localization for mobile sensor networks,” in IEEE

Mobicom, Philadelphia, PA, Sep. 2004, pp. 45–57.

[106] M. Coates, “Distributed particle filters for sensor networks,” in IEEE Infor-

mation Processing in Sensor Networks, Berkeley, CA, Apr. 2004, pp. 99–107.

[107] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no.

3, pp. 52–57, Mar. 2002.

[108] A. Arora, S. Bapat P. Dutta, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,

H. Cao, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. A. M. Nesterenko,

A. Vora, and M. Miyashita, “Line in the sand: A wireless sensor network for

target detection, classification, and tracking,” in Report OSU-CISRC-12/03-

TR71, Ohio State University, 2003.

BIBLIOGRAPHY 217

[109] R. J. Orr and G. D. Abowd, “The smart floor: a mechanism for natural user

identification and tracking,” in CHI 00 extended abstracts on Human factors

in computing systems, New York, NY, 2000, pp. 275–276.

[110] A. Chakraborty N. B. Priyantha and H. Balakrishnan, “The cricket location-

support system,” in Proceedings of the 6th annual international conference on

Mobile computing and networking, New York, NY, 2000, pp. 32–43.

[111] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user location

and tracking system,” in INFOCOM ’00, 2000, p. 775784.

[112] D. Moore, J. Leonard, D. Rus, and S. Teller, “Robust distributed network

localization with noisy range measurementsh,” in Proceedings of the Second

ACM Conference on Embedded Networked Sensor Systems, Baltimore, MD,

Nov. 3-5 2004, pp. 50–61.

[113] A. Smith, H. Balakrishnan, M. Goraczko, and N. Priyantha, “Tracking moving

devices with the cricket location system,” in Proceedings of the 2nd international

conference on Mobile systems, applications, and services, New York, NY, 2004,

p. 190202.

[114] K. Lorincz and M. Welsh, “Motetrack: A robust, decentralized approach to

rf-based location tracking,” in Proceedings of the International Workshop on

Location and Context- Awareness, May 2005.

[115] N. Patwari, Location estimation in sensor networks, Ph.D., University of

Michigan–Ann arbor, 2005.

[116] P. Hall, Introduction to the theory of coverage processes, John Wiley and Sons

Inc., Chichester, UK, 1988.

[117] Y. Sung, L. Tong, and A. Swami, “Asymptotic locally optimal detector for

large-scale sensor networks under the poisson regime,” IEEE Transactions on

Signal Processing, vol. 53, no. 6, pp. 2005–2017, Jun. 2005.

218 BIBLIOGRAPHY

[118] T. S. Rappaport, Wireless communications: Principles and practice, Prentice

Hall Inc., New Jersey, 1996.

[119] N. Balram and José M. F. Moura, “Noncausal Gauss Markov random fields:

Parameter structure and estimation,” IEEE Trans. on Information Theory,

vol. 39, no. 4, pp. 1333–1355, Jul. 1993.

[120] A. Kavcic and José M. F. Moura, “Matrices with banded inverses: Inversion

algorithms and factorization of Gauss-Markov processes,” IEEE Trans. on In-

formation Theory, vol. 46, no. 4, pp. 1495–1509, Jul. 2000.

[121] A. Asif and José M. F. Moura, “Inversion of block matrices with L-block banded

inverse,” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 630–642,

Feb. 2005.

[122] F. R. Gantmacher and M. G. Krein, “Sur les matrices complètement non

négatives et oscillatoires,” Compositio Mathematica, vol. 4, pp. 445–476, 1937.

[123] R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi, “A bibliography

on semiseparable matrices,” Calcolo, vol. 43, no. 3-4, pp. 249–270, 2005.

[124] R. Kalman, “A new approach to linear filtering and prediction problems,”

Trans. of the ASME - Journal of Basic Engineering, vol. 82, no. 2, pp. 35–45,

1960.

[125] R. Kalman and R.Bucy, “New results in linear filtering and prediction theory,”

ASME Journal of Basic Engineering, vol. 83, pp. 95–108, 1961.

[126] B. Rao and H. Durrant-Whyte, “Fully decentralized algorithm for multisensor

Kalman filtering,” IEE Proceedings-Control Theory and Applications, vol. 138,

pp. 413–420, Sep. 1991.

[127] V. Saligrama and D. Castanon, “Reliable distributed estimation with intermit-

tent communications,” in 45th IEEE Conference on Decision and Control, San

Diego, CA, Dec. 2006, pp. 6763–6768.

BIBLIOGRAPHY 219

[128] T. Chung, V. Gupta, J. Burdick, and R. Murray, “On a decentralized active

sensing strategy using mobile sensor platforms in a network,” in 43rd IEEE

Conference on Decision and Control, Paradise Island, Bahamas, Dec. 2004,

vol. 2, pp. 1914–1919.

[129] H. Hashemipour, S. Roy, and A. Laub, “Decentralized structures for parallel

Kalman filtering,” IEEE Trans. on Automatic Control, vol. 33, no. 1, pp. 88–94,

Jan. 1988.

[130] R. Olfati-Saber and J. Shamma, “Consensus filters for sensor networks and

distributed sensor fusion,” in 44th IEEE Conference on Decision and Control,

Seville, Spain, Dec. 2005, pp. 6698 – 6703.

[131] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. Jordan, and S. Sastry,

“Kalman filter with intermittent observations,” IEEE Trans. on Automatic

Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[132] T. Berg and H. Durrant-Whyte, “Model distribution in decentralized multi-

sensor data fusion,” Tech. Rep., University of Oxford, 1990.

[133] A. Mutambara, Decentralized estimation and control for multisensor systems,

CRC Press, Boca Raton, FL, 1998.

[134] Dragoslav Šiljak, Decentralized control of complex systems, Academic Press

Inc., Boston, MA, 1991.

[135] R. Grone, C. Johnson, E. Sa, and H. Wolkowicz, “Positive definite completions

of partial Hermitian matrices,” Linear Algebra and its Applications, vol. 58,

pp. 109–124, Apr. 1984.

[136] A. B. Frakt, H. Lev-Ari, and A. S. Willsky, “A generalized Levinson algorithm

for covariance extension with application to multiscale autoregressive model-

ing,” IEEE Transactions on Information Theory, vol. 49, no. 2, pp. 411–424,

Feb. 2003.

220 BIBLIOGRAPHY

[137] B. Anderson and J. Moore, Optimal filtering, Prentice Hall, Englewood Cliffs,

NJ, 1979.

[138] W. Ledsham and D. Staelin, “An extended Kalman-Bucy filter for atmospheric

temperature profile retrieval with a passive microwave sounder,” Journal of

Applied Meteorology, vol. 17, pp. 1023–1033, Jul. 1978.

[139] R. Brammer, “Estimation of the ocean geoid near the Blake Escarpment using

Geos-3 satellite altimetry data,” Journal of Geophysical Research, vol. 84, no.

B8, pp. 3843–3852, Jul. 1979.

[140] J. Galantowicz, D. Entekhabi, and E. Njoku, “Tests of sequential data assimila-

tion for retrieving profile soil moisture and temperature from observed L-band

radiobrightness,” IEEE Trans. on Geoscience and Remote Sensing, vol. 37, no.

4, pp. 1860–1870, Jul. 1999.

[141] M. Buehner and P. Malanotte-Rizzoli, “Reduced-rank Kalman filters applied to

an idealized model of the wind-driven ocean circulation,” Journal of Geophysical

Research, vol. 108, no. C6, pp. 3192, 2003.

[142] M. Buehner, P. Malanotte-Rizzoli, A. Busalacchi, and T. Inui, “Estimation

of the tropical Atlantic circulation from altimetry data using a reduced-rank

stationary Kalman filter,” Interhemispheric water exchanges in the Atlantic

Ocean, Elsevier Oceanographic Series, vol. 68, no. 9, pp. 49–92, 2003.

[143] A. Graham, Kronecker Products and Matrix Calculus with Applications, Ellis

Horwood, Chichester, UK, 1981.

[144] N. Motee and A. Jadbabaie, “Optimally control of spatially distributed sys-

tems,” in American Control Conference, New York, NY, Jul. 2007, pp. 778–783.

[145] J. Brailean and A. Katsaggelos, “Simultaneous recursive displacement estima-

tion and restoration of noisy-blurred image sequences,” IEEE Trans. on Image

Processing, vol. 4, no. 9, pp. 1236–1251, Sep. 1995.

BIBLIOGRAPHY 221

[146] F. Khellah, P. Fieguth, M. Murray, and M. Allen, “Statistical processing of

large image sequences,” IEEE Trans. on Image Processing, vol. 14, no. 1, pp.

80–93, Jan. 2005.

[147] M. Ilic, E. Allen, J. Chapman, C. King, J. Lang, and E. Litvinov, “Preventing

future blackouts by means of enhanced electric power systems control: From

complexity to order,” Proceedings of the IEEE, vol. 93, no. 11, pp. 1920–1941,

Nov. 2005.

[148] T. Chin, W. Karl, and A. Willsky, “Sequential filtering for multi-frame visual

reconstruction,” Special Issue on Multidimensional Signal Processing, vol. 28,

no. 3, pp. 311–333, 1992.

[149] W. W. Barrett and P. J. Feinsilver, “Gaussian families and a theorem on

patterned matrices,” Journal of Applied Probability, vol. 15, no. 3, pp. 514–522,

Sep. 1978.

[150] H. Zhang, José M. F. Moura, and B. Krogh, “Estimation in sensor networks:

A graph approach,” in 4th International Symposium on Information Processing

in Sensor Networks, Los Angeles, CA, Apr. 2005, pp. 203–209.

[151] Béla Bollobás, Modern graph theory, Springer, New York, NY, 1998.

[152] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed kalman fil-

tering based on consensus strategies,” Tech. Rep., Department of Information

Engineering, University of Padova, 2007.

[153] Soummya Kar, Saeed Aldosari, and Jos M. F. Moura, “Topology for distributed

inference on graphs,” IEEE Transactions on Signal Processing, vol. 56, no. 6,

pp. 2609–2613, June 2008.

[154] M. D. Ilić and J. Zaborszky, Dynamics and Control of Large Electric Power

Systems, Wiley Interscience, New York, NY, 2000.

[155] Dragoslav Šiljak, Large-scale Dynamic Systems: Stability and Structure, North-

Holland, New York, 1978.

222 BIBLIOGRAPHY

[156] G. E. Shilov and R. A. Silverman, Linear Algebra, Courier Dover Publications,

1977.

