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Abstract– We study the asymptotic capacity of MIMO wire-
less channels predicated on channel knowledge (or channel state
information - CSI) at the transmitter in the high SNR regime.
The transmitter CSI studied includes instantaneous and trans-
mit correlation types. The receiver is assumed to know the chan-
nel perfectly. Analytical expressions for the asymptotic ergodic
capacity are derived in each case, which closely match the simu-
lations. The results show that transmitter CSI in MIMO wireless
can have a strong influence on capacity.

1. INTRODUCTION

Recently channel knowledge at the transmitter in MIMO wire-
less have become a subject of interests due to its potential
practicality. Studies in MIMO wireless capacity have incor-
porating some transmitter CSI, either in instantaneous forms
or in long term statistics, and derive the transmission charac-
teristics to achieve this capacity [4, 5, 6, 7].

In this paper, we examine MIMO wireless capacity with
transmitter CSI and the effect of channel knowledge upon ca-
pacity in the high SNR regime. We study two types of chan-
nel state information at the transmitter: instantaneous CSI
and correlation CSI. In instantaneous CSI case, two extremes
of CSI, channel fully known and not known, are considered.
In the correlation CSI case, we use a simplified correlation
model where the transmit antennas exhibit the same correla-
tion to all the receive antennas. Again two extremes of the
correlation matrix Rt full-rank and rank-one are considered,
with Rt known and not known at the transmitter. The purpose
of studying these cases is to obtain the bound on the perfor-
mance in practical situations when Tx-CSI will lie between
these extremes.

In each case, asymptotic analytical formula for evaluating
the capacity are given, which matches closely with numerical
simulation results with a finite number of antennas at suffi-
ciently high SNRs (from above 15dB in most cases). It is
shown that in the instantaneous CSI case, there is a capac-
ity gain from channel knowledge if the number of transmit
antennas is larger than the number of receive antennas, and
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this gain grows linearly with the number of receive antennas
while keeping the antenna ratio constant. In the correlation
CSI case, a gain is obtained from knowing the transmit cor-
relation matrix if this matrix is rank-deficient. The formulae
also give some insights for the effect of transmit correlation
on channel capacity, which is detrimental in most cases. How-
ever, at low SNRs, transmit correlation can sometimes help to
increase the capacity over i.i.d channels without transmitter
CSI.

The paper is organized as follows: The next Section sets
up the channel models and the capacity framework. Section 3
presents analysis and simulation results for the instantaneous
CSI case. Correlation CSI is studied in Section 4. We close
with some concluding remarks in Section 5.

2. CHANNEL MODELS AND CAPACITY

2.1. Channel models

We consider frequency-flat Rayleigh fading MIMO wireless
channels with Mt transmit and Mr receive antennas. The
channel response can be represented by a matrix H of size
Mr ×Mt with random entries, which are zero mean complex
Gaussian distributed.

When no transmit correlation exists, the elements of H

are independent and identically distributed with variance nor-
malized to one, where the real and imaginary components are
independent and have equal variances.

When there is some transmit correlation given by a corre-
lation matrix Rt, the channel can be written as

H = HwR
1

2

t
, (1)

where Hw contains i.i.d complex Gaussian entries with zero
mean and unit variance. To enable comparison between dif-
ferent correlation structures, we normalize the total power in
the correlation matrix so that tr(Rt) = Mt.

We define here some quantities which will be used later:

M = max(Mt, Mr)

k = rank(Rt) (2)

r = min(k, Mr)

m = max(k, Mr) .

Note that 1 ≤ k ≤ Mt.
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2.2. Channel ergodic capacity

Assuming that the receiver always knows the channel per-
fectly. The channel ergodic capacity, under a total average
transmit power constraint, is then achieved by Gaussian input
signal with zero mean and a normalized covariance matrix Q

that is the solution of a optimization problem [1]. With vari-
ous assumptions of the transmitter CSI, the capacity is

C = max
Q

E[log det(I + γHQH∗)] (3)

s.t. tr(Q) = 1 , Q ≥ 0

transmitter CSI ,

where γ is the SNR.
Under the assumption of high SNR, the capacity expres-

sion can be approximated by

C ≈ max
Q

E[log det(γHQH∗)] . (4)

Note that this is always lower that the actual capacity and only
equals asymptotically (as γ → ∞). The valid range of SNR
for this assumption will be justified through numerical simu-
lations later. In most cases we found that the approximation
works well with a SNR from above 15dB.

3. INSTANTANEOUS TX-CSI

In this section, we will derive formulae and compare the chan-
nel capacity for two cases of Tx-CSI: full channel knowledge
and no channel knowledge at the transmitter. The underly-
ing channel is assumed to have no transmit correlation (i.e.
Rt = I).

3.1. Full Tx-CSI

When the transmitter knows the CSI fully, the instantaneous
capacity is given by the well-known water-filling algorithm.
This distributes the available transmit power over the eigen-
modes of the channel realization based on the eigenvalues
of the channel [3]. Since the channel is i.i.d, each realiza-
tion is full-rank and there will be r non-zero eigenvalues.
The ergodic capacity is then the expected value of the in-
stantaneous capacity over the channel eigenvalues. At suffi-
ciently high SNR, the optimum power allocation along chan-
nel eigenmodes are approximately equal, and the capacity can
be approximated by

C = Eλi

[

r
∑

i=1

log
(γ

r
λi

)

]

(5)

= r log(γ) + r log
(M

r

)

+ Eλi

[

r
∑

i=1

log
( λi

M

)]

,

where λi are the non-zero eigenvalues of HH∗.
To evaluate the last expectation term in (5), we use the

following result from random matrix theory. Suppose that the
number of transmit and receive antennas are very large such
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Fig. 1. Spectral distribution of eigenvalues of 1

4
HH

∗, where H

is a 2×4 random matrix with i.i.d Gaussian entries of zero mean
and unit variance.

that in the limit, the ratio between them limM→∞

r

M
= c is a

constant (note that c ≤ 1 in our setup here). Then the spectral
distribution of the eigenvalues of HH∗/M will converge to
a deterministic function, which can be given explicitly in this
case by Marcenko and Pastur [2] as

fλ(x) =

√

(

(1 +
√

c)2 − x
)(

x − (1 −√
c)2

)

2πxc
, (6)

where the support set of the eigenvalues is (1 −√
c)2 ≤ x ≤

(1 +
√

c)2.
It turns out that the p.d.f of an eigenvalue of HH∗/M

for finite antenna cases can be approximated quite closely by
this function. An example of the distribution for r = 2 and
M = 4 using Monte-Carlo simulation, is plotted in Fig. 1
together with the asymptotic distribution. The approximation
gets tighter as the number of antennas grows larger.

Thus using (6) as an approximation for the p.d.f of λi/M
in finite antenna cases, the capacity equation (5) can be eval-
uated analytically. The asymptotic calculations are plotted
together with simulation results in Fig. 2. Note that in the
simulations, we do not use the high SNR assumption (i.e.
we use equation (3)), and the instantaneous capacity calcula-
tion is exact using the water-filling algorithm. The asymptotic
calculation and the simulation results are indistinguishable at
SNRs from above 15dB. It is noticed that this SNR thresh-
old, above which the asymptotic calculation is the same as
simulation, changes with the number of antennas. The more
antennas used while keeping the transmit to receive antenna
ratio constant, the higher the SNR required.

3.2. No Tx-CSI

When the channel is not known at the transmitter, the opti-
mum transmit strategy is to send i.i.d Gaussian signals with
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Fig. 2. Capacity for full Tx-CSI i.i.d channels at a fixed transmit
to receive antenna ratio of 2, and the numbers of receive anten-
nas are [1, 2, 4], going from bottom to top pairs.

equal power in all directions [1]. The ergodic capacity at suf-
ficiently high SNR can be approximated as:

C = Eλi

[

r
∑

i=1

log
( γ

Mt

λi

)

]

(7)

= r log(γ) + r log
( M

Mt

)

+ Eλi

[

r
∑

i=1

log
( λi

M

)]

.

The only difference between (5) and (7) is in the num-
ber of modes that the transmit power is distributed, which
are r and Mt respectively. It can be inferred immediately
that if Mt ≤ Mr, there is no gain in instantaneous channel
knowledge at sufficiently high SNRs. However, if the num-
ber of transmit antennas is larger than the number of receive
antennas (Mt > Mr), there is an additional capacity gain of
Mr log(Mt/Mr) obtained from knowing the channel at the
transmitter. At a large number of antennas, this gain can be
quite substantial.

Cgain, inst CSI = max
{

Mr log
(Mt

Mr

)

, 0
}

. (8)

The capacity gain (8) is illustrated in Fig. 3, where it is
added to the simulation results for no Tx-CSI and then com-
pared with simulation results for full Tx-CSI. The plot shows
that the gain is exact at high SNRs (from above 15dB), but is
too optimistic at lower SNRs.

4. CORRELATION TX-CSI

In this part, we study the channel with some correlation struc-
ture between the transmit antennas. It is assumed that all re-
ceive antennas exhibit independent fading from each other,
whereas all transmit antennas exhibit the same correlation
structure to every receive antenna. The channel model (1)
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Fig. 3. Capacity gain (8) when added to no Tx-CSI i.i.d chan-
nel capacity simulation results. The transmit to receive antenna
ratio is 2, and the number of receive antennas are [1, 2, 4], going
from bottom to top groups.

hence applies here. Again we will consider two cases of Tx-
CSI: when the transmitter knows the correlation matrix Rt

and when it does not.

4.1. Transmit correlation known

In this case, it can be shown that the optimum transmit strat-
egy is to distribute power along the eigenmodes of the cor-
relation matrix [5, 7]. At sufficiently high SNR, the ergodic
capacity is given by

C ≈ max
Λ

EHω

[

log det
(

γHωΞΛH∗

ω

)

]

(9)

s.t. tr(Λ) = 1 , Λ ≥ 0 ,

where Ξ is the diagonal matrix of the non-zero eigenvalues
of Rt and Λ is the diagonal transmit power allocation on the
eigenmodes of Rt.

Case of k ≤ Mr

When the rank of the correlation matrix k is not larger than the
number of receive antennas Mr, the determinant expression
in (9) can be broken into a product of determinants. It can
then be shown that at high SNRs, distributing power equally
along all k available modes is asymptotically optimum, and
the capacity expression can be given explicitly as

C = k log(γ)Ξ) + k log
(m

k

)

+ Eλi

k
∑

i=1

log
(λi

m

)

. (10)

Again the last expectation term can be evaluated using the
approximate p.d.f in (6). Comparing to (5), and noting that
k = r here, expression (10) shows that at high SNRs, know-
ing only the antenna correlation can be as good as having the
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Fig. 4. Capacity of systems with 2 transmit antennas and full
rank transmit correlation which has eigenvalues [1.8 0.2]. The
receive to transmit antenna ratios are [2, 4] from bottom to top
groups. Simulation results of capacity for i.i.d channels with the
same antenna configurations but no Tx-CSI are superimposed
for comparison.

full channel knowledge when correlation exists (where m is
equivalent to M ). There is an additional term of log det(Ξ)
in capacity caused by the correlation at the transmitter. When
the transmit correlation matrix is full rank (k = Mt), this
term is always non-positive since tr(Ξ) = tr(Rt) = Mt, thus
represents a penalty in capacity due to transmit correlation. It
is zero only when Rt = I. When transmit correlation is not
full rank, the additional term can be positive. However, since
k ≤ Mr here, lower rank correlation matrix will reduce the
number of effective modes in the channel. At sufficiently high
SNRs, (which is usually much lower than the SNR required
for the asymptotic capacity equations to hold), this leads to a
reduction in capacity.

It is also interesting to compare capacity for known trans-
mit correlation (10) with capacity for an i.i.d channel with-
out transmitter CSI (7), where the latter may apply when the
channel is varying too fast to be known at the transmitter.
With a smaller number of transmit than receive antennas and
full rank correlation, (10) is always less than (7). This is il-
lustrated in Fig. 4, where simulation results for i.i.d channels
capacity are used for comparison instead of the asymptotic
capacity in (7) for a better accuracy. The simulated capacity
results for the correlated channels are exact using the opti-
mum transmit power distribution over the eigenvectors of Rt.
This optimum power distribution is found via numerical con-
vex optimization, however, it is very close to the approxima-
tion of water-filling over the eigenvalues of Rt with accuracy
improves at higher SNRs and more antennas. Again from Fig.
4, the asymptotic calculation for capacity with correlation Tx-
CSI matches well with the simulation results for SNRs from
above 15dB. The SNR required for the asymptotic results to
apply decreases as the number of transmit or receive antennas
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Fig. 5. Capacity of systems with 2 receive antennas and rank
one transmit correlation. The transmit to receive antenna ratios
are [1, 2, 4] from bottom to top groups. Simulation results of
capacity for i.i.d channels with the same antenna configurations
but no Tx-CSI are superimposed for comparison.

increases relative to the correlation rank.
With a larger number of transmit than receive antennas

and a rank-deficient transmit correlation, correlation may gain
capacity over i.i.d channels for some SNRs. Fig. 5 gives an
example of this case when the correlation is rank one. How-
ever, at sufficiently high SNRs, correlation will always reduce
the ergodic capacity regardless of the correlation rank.

Case of k > Mr

When the rank of the transmit correlation matrix Rt is more
than the number of receive antennas (k > Mr), it does not yet
appear that an explicit expression for the capacity can be ob-
tained. It is known that as the number of antennas grows large,
the spectral distribution of the eigenvalues of 1

k
HωΞDH∗

ω

will also converge to a deterministic function [2, 8]. Ob-
taining the explicit form of this distribution function involves
solving a polynomial equation of degree k + 1 analytically to
find the Stieltjes transform of the c.d.f, and then carrying out
the inverse transform. While distribution functions for k ≤ 3
may be obtained in closed form [9], no general solution ap-
pears to exist.

4.2. Transmit correlation unknown

When transmit correlation exists but is not known at the trans-
mitter, the best the transmitter can do is to distribute power
equally in all directions, that is Λ = I/Mt. In this case the
asymptotic capacity at sufficiently high SNRs is given by

C ≈ EHω

[

log det
( γ

Mt

HωΞH∗

ω

)

]

(11)

Again when k ≤ Mr, the capacity can be evaluated ex-
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Fig. 6. Capacity with rank one transmit correlation at SNR =
10dB. The transmit to receive antenna ratios are [1, 2] from bot-
tom to top pairs when Rt is known at the transmitter. The same
antenna configurations are used when Rt is unknown; however,
with rank one transmit correlation, more transmit antennas do
not gain capacity without the correlation knowledge.

plicitly as

C = k log(γ)+log det(Ξ)+k log(
m

Mt

)+Eλi

k
∑

i=1

log
(λi

m

)

.

(12)
Comparing (10) and (12), the gain in capacity obtained by
knowing the correlation at the transmitter is k log(Mt/k). This
gain is realized only when the correlation matrix is not full-
rank, that is k < Mt. Thus with k ≤ Mr, we have

Cgain, corr CSI = max
{

k log
Mt

k
, 0

}

. (13)

Fig. 6 illustrates the capacity gain in knowing transmit
correlation when the correlation matrix has rank one struc-
ture. The predicted gain is very accurate in this case, even
at 10dB SNR. The gain increases with increasing number of
transmit antennas, and is quite substantial at large number of
antennas.

5. CONCLUSION

We have analyzed MIMO wireless channel capacity with dif-
ferent transmitter CSI information at high SNRs. Asymp-
totic formulae for evaluating the capacity are given, which are
good approximations at finite number of antennas and suffi-
ciently high SNRs. The results show that channel state infor-
mation at the transmitter plays an important role in increasing
the channel capacity.
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