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Abstract

Transmit channel side information (Tx-CSI), particularlg ttnean and covariance, helps
to increase MIMO wireless capacity. We formulate a dynamieCB®{ framework, using
outdated channel measurements and channel statisticegdte @n effective channel mean
and covariance and establish the capacity expression gwen Tx-CSI. We then derive
the asymptotic capacity-optimal input signal at low SNRs ahdracterize the asymptotic
capacity gains due to Tx-CSI at low and high SNRs. The optimaltirgignal and the
capacity gain in general depend on the relative number oftnit and receive antennas.
For systems with equal or fewer transmit than receive amrtgnwe study a lower bound
on the capacity. For systems with more transmit than recaitennas, we characterize the
conditions for mode dropping at high SNRs, using simplifiedncigh models. Numerical
examples are provided to show the impacts of channel paeasnet the optimal input signal
and the capacity gain with Tx-CSI.

I. INTRODUCTION

Transmit channel side information (Tx-CSI) can enhance MIMi@eless capacity. While
Tx-CSl can come in many forms, the statistical Tx-CSI compgsbf a mean and a
covariance is particularly interesting. Not only that #hesatistical quantities can be reliably
obtained, they also represent a broad class of Tx-CSI inwglehannel estimates and the
associated error covariance, obtained from outdated ehaneasurements and the channel
statistics. We establish an explicit formulation of such@Rl as a function of an estimate
quality, taking into account channel temporal variationgd dormulate the channel capacity
given this Tx-CSI.

The capacity optimal signaling for a MIMO channel with a reero mean and a non-
identity transmit covariance, however, is still an openbtem. Solutions exist for special
cases: uncorrelated non-zero mean channels [1], [2] andlategd zero-mean channels [3],
[4], where the eigenvectors of the input covariance arergivg the eigenvectors of the
associated channel parameter in each case. In this papeenve the asymptotic optimal
input covariance for general statistical Tx-CSI at low SNRx] eharacterize the asymptotic
capacity gains at both low and high SNRs. For other SNRs, thenapinput signal and the
capacity gain depend on the relative numbers of transmitraceive antennas. For systems
with equal or fewer transmit than receive antennas, wezatdi tight lower bound on capacity
based on the Jensen inequality. For systems with more tratisam receive antennas, we
derive the conditions for mode dropping at all SNRs for repnégtive channels with a high
K factor or strong transmit correlation. These conditionsvjafe intuition as to when it is
optimal to activate only a fraction of the available eigeae®s at all SNRs, given the Tx-
CSI. We then provide numerical examples of how the estimagditglaffects the channel
capacity in both system configurations.

The paper is organized as follows: We first discuss the MIM@nciel model in Section
Il, then establish a robust Tx-CSI framework involving a amalnestimate and its error
covariance in Section Ill. In Section 1V, we formulate thga@ulic capacity expression given



this Tx-CSI and review special cases optimal inputs. Sedfigmesents asymptotic capacity
results for low and high SNRs. Next, we characterize the dgpagptimal input signal in
Section VI, differentiating the two cases based on theivelatumber of antennas. We provide
numerical examples in Section VII and conclude in SectioH.VI

Il. CHANNEL MODEL

We consider a frequency flat, quasi-static block fading MIMannel with N transmit
and M receive antennas, represented by a random m&lriaf size M x N. We assume
that the channel is Gaussian distributed with a mBaand a covarianc®,, thusH can be
decomposed as .

H=H+H, (1)

whereH represents the zero-mean Gaussian component. The chanvaebaceR, of size
MN x MN is defined as -

R, = E[hh"], 2)
whereh = veqH). In other wordsh ~ CN'(h,R,), whereh = veqH) andh = vedH).
The ratio of the power in the channel mean to the average pow#re channel variable
component is the channé&{ factor, or the Rician factor, defined as

H 2
tr(Ro)
where||.||r is the matrix Frobenius norm, and iris the trace of a matrix. Often, the channel

covariance is assumed to have a Kronecker structure, esgneg separable transmit and
receive antenna correlations:

R) =R/ @R,, (4)

where R;, size N x N, and R,, size M x M, are the transmit and receive covariance,
respectively. The channel statistid¥,andR, (or R, andR,), can be obtained by averaging

instantaneous channel measurements over tens of charegkoge times; they remain valid

for periods of tens to hundreds coherence time, during whihchannel can be considered
as (short-term) stationary [5].

I11. A DYNAMIC TX-CSIFRAMEWORK

Transmit channel side information, or Tx-CSl, can be obthimgusing the reverse-channel
measurements, invoking the reciprocity principle, or \@adback from the receiver. In either
case, there is usually a delay from when the channel infooma$ obtained to when it is
used by the transmitter; for example, a scheduling or a faddelay. This delay may affect
the reliability of the Tx-CSI obtained. Instantaneous cleimeasurements provide the most
potential gain in system capacity; however, it is suscéptid channel variations because of
the delay. Channel statistics, on the other hand, change siaaler than the channel itself
and can be obtained reliably, but they provide less gain. goat here is to utilize both of
these forms to create a Tx-CSI framework that is robust to mélarariation, while optimally
capturing the potential gain.

Assume that we have at the transmitter a channel measurdeat time 0. We aim
to establish an estimate of the current chanHel at the transmit times. The channel
measurement is correlated with the current channel; thigledion is captured by the channel
auto-covariance, defined as o

R, = E[hOh:] ) (5)

whereh, = vedH)) andh, = ved H,). Due to stationarity, the auto-covarianBe depends
only on the time difference, but not on the absolute time. AgaiR,; can be obtained by
an averaging operation over instantaneous channel measote



Given the channel measuremddt and the statistic¥, R,, andR,, an estimate of the
channel at times follows from MMSE estimation theory [6] as

h, =E[h,hy] =h+R:Ry"[hy—h]

R., =cov[h,|hy] =Ry — R:R;'R,, (6)

whereh, = vec(PIs) is the estimated channel, aitl ; is the estimation error covariance at
time s. These become an effective mean and effective covarianitee @hannel, respectively.

The auto-covarianc®, captures both the channel antenna correlation and the tampo
correlation effects, whil®R, (2) represents the antenna correlation alone. If we asshate t
the MIMO temporal correlation is homogeneous, i.e., all ghalar channels between thé
transmit and thel/ receive antennas have the same temporal correlation fagttien we
can separate the temporal correlation from the antennalaton as

R, = psRo . (7)

The channel temporal correlatign is a function of the Doppler spreaf} and the delay
s. For example, in Jake’s model [7}, = Jo(27 f4s), where J, is the zeroth order Bessel
function of the first kind. In general, we assume that < p < 1, andp = 1 only at a
zero delay. Using simplified auto-covariance model (7), ¢channel estimate and its error
covariance become

H,=p,Hy+(1-p)H, R.,=(1-p*)Ry. (8)
For the Kronecker antenna correlation model (4), the estichehannel has effective antenna
correlations as:
Rt,s = (1 - pz) Ry ) Rr,s = (1 - Pg) R, . (9)

ps here acts as the estimate quality dependent on the time dekyr a short delayp, is
close to one; the estimate thus depends heavily on thelioltennel measurement, and the
error covariance is small. As the delay increasgs, will decrease to zero, reducing the
impact of the initial measurement. The estimate then mowesrd the channel meaH,
and the error covariance grows toward the channel covaiBc Therefore, the estimate
and its error covariance (8) constitute a form of Tx-CSl, ragdoetween perfect channel
knowledge (whenp = 1) and channel statistics (whem = 0). By taking into account
the channel temporal variation, this framework dynamycakptures the available channel
information and creates robust Tx-CSlI.

IV. CHANNEL ERGODIC CAPACITY FORMULATION

We study the ergodic capacity of a MIMO channel, assumindeperreceiver channel
knowledge and the dynamic Tx-CSI framework (8), given ameste qualityp,. The input
signal is subject to an average sum power constraint, sughtlie input covarianc&)
must satisfy Q) = 1. For each initial channel measuremdi} with the corresponding
Tx-CSI value {H;, R}, the average mutual information is maximized by a zero-mean
complex Gaussian input signal [8] with the covariance mats the solution of the following
optimization problem:

7,(Hy) = max F(Q) = Enllogde(I+yHQH")] (10)
st. Q) = 1,

where v is the SNR andh ~ CN (ﬁs,Re,s); i.e. the expectation is evaluated over the

effective channel statistics with me&h, and covarianc®. ;. The channel ergodic capacity,
given the estimate quality, (or R, in the general case) is then

C = En, [Z;(Ho)] , (11)



where, denotinghy = vedHy), hy ~ N(B,RO). Establishing the channel capacity with
the estimate Tx-CSI (8) thus essentially requires findingoghEmal input signal and mutual
information for a channel given the channel mean and caveeias formulated in (10).

Review of the optimal eigen-beam directions in special cases. The eigenvectors of the
optimal input covariance solution of problem (10) is anabty known in several special Tx-
CSI cases: (a) correlation Tx-CSl involving a zero effectiveam b, = 0) with a Kronecker
structured effective covariand®. ; = RZS®RT78; and (b) mean Tx-CSl involving an arbitrary
effective meart, with an identity covarianceR,. ; = I). Let the eigenvalue decomposition
of the input covariance be

Q =UAU", (12)

then the columns oU are the orthogonal eigen-beam directions (patterns) Aanepresents
the power allocation on these beams. In case (a)Rlet= U, ;A ,U; be the eigenvalue
decomposition o, ;, then the optimal beam directions dte= Uy ; [1] [2]. In case (b),
let H* = U,A, U* be the eigenvalue decomposition HFHS, then the optimal beam
dlrectlons areU = U [3], [4]. The optimal power allocatiom\ in both cases, however,
requires a numerical solution. The optimal input covar@aircthe general case (a non-zero
mean with a non-identity covariance) is so far not known wiclly.

Using the Kronecker correlation structure (4), we assuna tnly transmit antenna
correlationR; exists and is full-rank (i.eR, = I). Consider problem (10) for an arbitrary
effective meart; and an effective transmit covarianBg ; (9). We will examine the optimal
input covariance and the capacity gain asymptotically at &md high SNRs. From these
results, we characterize the capacity using a sub-optinpaitisolution based on the Jensen
inequality, and derive the optimal conditions for mode giog at all SNRs for simplified
Tx-CSI cases.

V. ASYMPTOTIC SNRCAPACITY RESULTS
A. Low SNR capacity results

Lemma 1. (Low SNR optimal input covarianceds the SNR ~ — 0, the optimal input
covariance of problem (10) converges to a unit-rank matrix with a unit eigenvalue and the
corresponding eigenvector given by the dominant eigenvalue of G, = H:H, + MR, ..

In other words, the optimal input at low SNRs becomes a single-mode beamforming signal
matched to the dominant eigenvector of G..

Proof: Using the Taylor series, the functiofi= log det(/ + vA), where A is a positive
semi-definite matrix, can be expanded as a polynomial a

f=1tr(A)y —tr(A%)H? +tr(A®)y3

Noting that Fy [logde{I + YHQH*)] = Ey[logde{I + yH*HQ)] and applying the above
expansion, at low SNRsy(— 0), the mutual information7(Q) in (10) approaches

F(Q) 'R Eu[r(H'HQ)y] = 7 tr (Bu[H'H|Q) = 7 1[G, Q] .

Maximizing the above expression with the constraifQtr = 1 results in the optimalQ

stated in Lemma 1. O

Lemma 2: (Low SNR capacity ratio gainds the SNR v — 0, the ratio between the optimal

mutual information in (10) and the value obtained by equi-power isotropic input approaches

N)\max(Gs)

= maxl s/ 13

T (G (13)

This ratio scales linearly with the number of transmit antennas and is related to the condition
of the channel correlation matrix G, = E[H*H].



Proof. From the proof of Lemma 1, the optimal mutual informatiorthw'x-CSl in (10) at
low SNRs approacheg, =5 YAmax(Gs). The mutual information with equi-power allocation,

on the other hand, equalp = +tr(G,). Taking the ratio between these two expressions,
r=17s/Zy , yields (13). O

B. High S\R capacity results

At high SNRs, we distinguish between two antenna configunatiovhen the number of
transmit antennas is equal or fewer than the number of re@itennas < M), and when
it is larger (V > M).

1) Systems with equal or fewer transmit than receive antennas. When N < M, the
asymptotic high SNR optimal input covariance of (10)%}5: SinceH*H is full-rank, the
mutual informationF(Q) at high SNRs can be decomposed as

y—00

F =~ FEnllogdet(YH'HQ)| = Ex [logdet(H*H)| + log det(vQ) . (14)

Maximizing the above expression, subject toQy = 1, leads toQ = I/N. In other words,
when N < M, the optimal input covariance at high SNRs approaches eguepin all
directions and is independent of the Tx-CSI. This is a wetwin result that, for these
systems, the capacity gain due to Tx-CSI diminishes at higR$SN

2) Systems with more transmit than receive antennas. When N > M, in contrary, Tx-CSI
provides capacity gain at all SNRs. The decomposition (148sdaot apply in this case,
and the optimal input covariance of (10) at high SNRs dependhe channel statistics, or
the Tx-CSI{H,, R, }. While an analytical optimal covariance for arbitrdd; andR, , is
still unknown, the capacity gain is maximum with perfect C&d (ﬂs =H,, R,; =0), in
which case this gain can be accurately quantified.

Lemma 3: (High SNR incremental capacity gai@f high SNRs, the incremental capacity
gain due to perfect Tx-CS (p = 1) over the mutual information obtained by equi-power
isotropic input equals

AC = Mlog(%) . (15)

This gain scales linearly with the number of receive antennas and depends on the ratio of
the number of transmit to receive antennas.

Proof: With perfect Tx-CSlI, the solution for (10) is standard wefting [8] on H{H,.
Let o7 be the eigenvalues ofi;H,, then the optimal eigenvalues dd are )\, =

(M— #L where i is chosen to satisfy) .\, = 1. The capacity (11) then becomes

C =M E,, [log (uyo?)], wheres? has the distribution of the underlying Wishart matrix
eigenvalues. Asy — oo, u — 57, and the capacity approaches

Y00

M
1
C '~ Mlog <M> + M log(vy) + Zlog(ai?) : (16)
=1

Assuming no Tx-CSI and using an equi-power isotropic inpuhvgovarianceQ = I/N,
the ergodic mutual information is given Igy = >° | E,, [log (1 + &~07?)]. At high SNRs,
this expression approaches

Y0

M

1

Co ~ Mlog (N) + Mlog(v) + Zlog(a?) : (17)
i=1

Subtracting (16) and (17) side-by-side yields the capagaty in (15). O



VI. CAPACITY CHARACTERIZATIONS
A. Systems with equal or fewer transmit than receive antennas

1) Jensen input covariance: To obtain a lower bound on the capacity, we explore the input
covariance that is optimal for Jensen’s bound [8] on the ay@mutual informationF in
(10). Due to the concavity af, this bound applies as

F(Q) = EnllogdetI + yQH'H)| < logdet(I + yQE[H*H]) .

Perform the eigenvalue decompositions @f = EF[H*H] = PI:PIS + MR, as G, =
UA, U, the optimal input eigen-directions and the power allaratihat maximize the
Jensen bound are

U=1, . Aiz(u— . ) (18)
/y/\s,i +

where); ; are diagonal values of;. Let A ;; = diag()\;), condition (18) results in the Jensen

input covariance ;s = U,A ; U?.

For all Tx-CSlI, this Jensen input covarian@g ; approaches the optimal input covariance
at low SNRs in Lemma 1. In the two special Tx-CSI cases, corogldix-CSl (zero effective
mean) and mean Tx-CSI (identity covariance), the beam dwext(18) coincide with the
optimal directions in each respective case for all SNRs; ¢indy optimal power allocation
is then approximated.

2) Alower bound capacity approximation: Using the above Jensen optimal input covariance
Q. s in the average mutual information expression results inlaevd; = F(Q,) such that
Js < I, in (10). AveragingJ, over the initial channel measurement distribution (11), we
obtain a lower bound approximation of the channel ergodpaciy as

C; = Eny [Ty - (19)

The tightness of this bound depends on the antenna configusat

For N < M, J, closely approximate$,: in this case, the Jensen input covariance solution
approaches the optimal solution at both low and high SNRs. diffigrence betwee(y, and
7, thus occurs only at a mid-range SNR and, as confirmed by siionga[9], is usually
negligible. Therefore, the Jensen input covaria@ge can be used in deriving a tight lower
bound on the channel capacity for < M.

B. Systems with more transmit than receive antennas

For N > M, the optimal input covariance, particularly the optimawgo allocation,
depends heavily on the channel effective mean and covariamatrices. If the channel
is uncorrelated with zero mean (i.e. an i.i.d Rayleigh fadatgnnel), then the optimal
input covariance is the identity matrix [10] (i.e. equi-pawallocation). However, if the
mean is strong, characterized by a high factor, or if the transmit antenna is strongly
correlated, the optimal power allocation may drop modes etehigh SNRs. This optimal
input covariance at high SNRs then differs from the Jensautisal which approaches equi-
power. To characterize effects of thé factor and the transmit antenna correlation on the
optimal power allocation, we study two simple channel med&ach model results in the
optimal allocation having only two distinct power levelsydawe examine the conditions
which lead to dropping the lower power level at all SNRs.

1) Effects of the K factor: Consider an uncorrelated channel with a m&hp such that

K

H.H =—I,, 20
mRK+T Y (20)
and with transmit covarianc®; = ﬁIN (assuming receive covariande, = I). For

convenience, lep = /K/(K +1), (0 < g < 1). The optimal power allocation for this



channel can be completely characterized byAh&actor or 3, representing the mean matrix,
and the SNR. Due to symmetry, this optimal solution contaimyg two different power levels:
A1 for the first M eigen-modes, corresponding to the non-zero eigen-modegk &i,,, and
Ao for the rest. We are interested in the condition resulting\in= ﬁ and \, = 0. The
mutual information optimization problem (10) becomes

M N
max B, |logdet (IM + A7) hihl 4 Ay Y hjh;>] (21)
1o i=1 j=M+1
st. MM+ (N—MM=1
A1 >0, A >0,

whereh; ~ N (v/Be;, (1 — 3)Iy), h; ~ N (0, (1 — 3)Iy), ande; is the vector with the™
element equals to 1 and the rest are zero. Since (21) is axcpnvBlem, to have the optimal

A1 as 4, it is sufficient and necessary th&f* 2 0 which can be simplified to
A=1/M

M —1

gl . N

tr Ehj (I + M ;(ﬁej + hj)(ﬁej + h]) ) < m . (22)
From this expression, a threshold far, above which mode dropping occurs, can be derived.
At high SNRs { — o), condition (22) becomes

o -1
tr Eh]. <Z(ﬁej + hj)(ﬂej + hj)*> < M . (23)

j=1

The matrix expression under the above expectation has tlesténl non-central complex
Wishart distribution. Since at higlk’ (3 — 1), the left-hand-side of (23) approachas,
mode-dropping at all SNRs occurs for this Tx-CSI onlyNif> M?2.

2) Effects of the transmit antenna correlation: Consider a zero-mean channel with a
transmit covariance matrix having only two distinct eigaimes:\; (R;) = ... = A\ (Ry) =
&,andAL 1 (Ry) = ... = An(Ry) = &, whereN > L > M (note thatN > M +2 here, for
a reason that will become clear later), ajd> &. The eigenvectors oR; have no effect
on the power allocation and hence are not considered harelaBy due to symmetry, the
optimal power allocation has only two levels; for the first L eigen-modes corresponding
to the L larger eigenvalues dR;, and \; for the rest. The mutual information optimization
problem (10) is now equivalent to

L N
max By, |logdet (IM +M& Y bl +yhas Y hih;‘>] (24)
j=1 j=L+1
S.t. LA\ + (N — L))\Q =1
A>0, A2>0,

whereh; ~ N (0,1I,,) are i.i.d. We are interested in the condition that results.in= 0,
which clearly depends on the condition numberRyf i.e. the ratiox = &; /..
Due to the concavity of the mutual information expressibe, dptimal\, = 0 is achieved

iff 2L < 0, which can be simplified to
2 Ao=0

-1
tr | B, <IM+7—§IZhh*) (vo+D| | <M.



At high SNRs { — o0), the above expression becomes

L - B
%tr Eh, (Z hihj> <M. (25)
1 =

Let B = Zle h;h7, then B is a complex central Wishart matrix with rank/ and L
degrees of freedonB ~ W¢, (L, 1,,). Using the first moment of an inverted Wishart matrix,
EB™' = A1) [11] [12], condition (25) translates to
S, L
& L—-M
SinceN > L > M, we havelL/(L — M) < N — 1, and a looser bound oR, condition
number for dropping the weaker eigen-modes at all SNRs carbtzened as

k>N-—1. 27)

Note that whenl = M, the minimum eigenvalue aB has the distributionf, . (\) =
M exp (—221) [13], thus E[1/ A\ is infinity for all M. This fact implies that (25) can not
hold for . = M; thus in that case, the optimal power allocation will adévall modes at
high SNRs. In other words, as the SNR approaches infinity, pienal power allocation for
this correlation Tx-CSI will always use more thar (at least) + 1) modes; hence mode
dropping at high SNRs occurs only ¥ > M + 2.

3) Remarks:. The two conditions (23) and (26), although specific to easpeaetive Tx-CSI
model, provide intuition on effects of the channel mean ddttansmit antenna correlation
on the optimal input power allocation. These conditionsdbannels with both a non-zero
mean and a transmit antenna correlation are likely to béndurtelaxed, such that mode
dropping occurs at all SNRs for even a lowEr factor or a lower correlation condition
number. Subsequently, channels with highor strong correlation tends to result in mode
dropping with statistical Tx-CSI at all SNRs.

(26)

VIl. NUMERICAL EXAMPLES
A. Systems with equal or fewer transmit than receive antennas

For these systems, Tx-CSI helps to increase the capacity ainlgw SNRs. Using the
lower bound approximation (19) at SNR = 4dB, we plot in Figurth& capacity (11) as a
function of the estimate quality for two 4 x 4 channels: an i.i.d channel and a zero-mean
correlated channel with the covariance matrix given in thmpdéndix. We observe that the
capacity increases with higher but this increment due to channel estimates is significant
only with relatively good estimates (> 0.6 in this case). Moreover, the range of capacity
increase due tp for an i.i.d channel is larger than that for a correlated clehr~or reference,
capacity of the correlated channel without Tx-CSlI is alsduded, illustrating that knowing
the channel statistics along € 0) can enhance the capacity over no Tx-CSlI.

B. Systems with more transmit than receive antennas

For systems with excess transmit antennas, mode droppmgazur at high SNRs for
mean and correlation Tx-CSl, depending on tiéactor or transmit antenna correlation. We
plot in Figure 2 theK factor threshold versus the SNR for mean Tx-CSlI in (22) fotesys
with 2 receive antennas and from 4 to 6 transmit antennas. \ifhenabove this threshold,
signifying a strong channel mean or a good channel estintaeoptimal power allocation
activates only two modes and dropping the rest at all SNRs.tfiteshold depends on the
number of transmit antennads; it decreases with largew.

We then examine the correlation Tx-CSI case in (24) and plbtgnre 3 the optimal power
allocation, using convex optimization numerical prografies a 4 x 2 zero-mean channel
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with transmit covariance eigenvalues [a225 1.25 1.25 0.25]. This covariance matrix has
the condition numbekr = 5 > 3, satisfying (26). The optimal power allocation therefore
only activates 3 modes, dropping 1 mode, at all SNRs.

Finally we plot in Figure 4 the capacity (11) at SNR = 4dB as filmection of p for two
4 x 2 channels: an i.i.d channel and a correlated Rician channkelthe mean and covariance
given in the Appendix. Due to the low SNR, the lower bound (E3jight and is again used
to approximate the optimal mutual informatid@n(H,) in (11). Besides similar observations
as those for Figure 1, this figure also shows that Rician atedlchannels can have higher
capacity than an i.i.d channel at low SNRs. Note that at higgfldRs, Tx-CSI results in
more capacity gain for these systems, of up to 2 bps/Hz (15).

VIll. CONCLUSION

We have formulated a dynamic Tx-CSI framework for MIMO wirgdein the form of an
effective channel mean and covariance, based on a chartimedtsand its error covariance
obtained from an outdated channel measurement and chaatistiss, and established the
capacity expression given such Tx-CSl. We derive the asytioptapacity-optimal input
signal at low SNRs and characterize the asymptotic capaaitysgvith CSIT at both low



and high SNRs. For systems with equal or fewer transmit the@ive antennas, the capacity
can be tightly approximated by a lower bound based on theedénmequality. For systems
with more transmit than receive antennas, we charactdizednditions for mode dropping
at all SNRs, using simplified channel models. Withtransmit antennas, a strong channel
mean (with a highK factor) or a strong transmit antenna correlation (with gdacondition
number) can lead to an optimal power allocation that acwdtwer than the maximuy
modes at all SNRs. Utilizing the dynamic Tx-CSI model, we desti@te numerically that the
capacity given the Tx-CSl increases with a better channehatt quality, and the increment
depends on the channel statistics — the means and the ttaosaiiance. Significant capacity
increase due to the channel estimate requires good estquatiy (roughlyp > 0.6), and
the increase is larger for i.i.d channels than for correlatkannels. In all cases, however,
Tx-CSI usually helps to increase the MIMO capacity over noCSk

APPENDIX

The channel parameters used in the simulations of Figurewl Yaare listed below.
The transmit covariance matrix is

0.8758 —0.0993 — 0.08777 —0.6648 — 0.0087:  0.5256 — 0.4355¢
R — —0.0993 + 0.0877:  0.9318 0.0926 + 0.3776:  —0.5061 — 0.3478:
7| —0.6648 +0.0087i  0.0926 — 0.3776i  1.0544 —0.6219 + 0.5966:

0.5256 + 0.4355¢ —0.5061 4 0.3478: —0.6219 — 0.5966:  1.1379

This matrix has the eigenvalués. 717, 0.997, 0.237, 0.049] and a condition number of
55.5. The transmit antennas therefore are quite strongly cigel
The mean for thel x 2 channel is

1 0.0749 — 0.1438:  0.0208 + 0.3040: —0.3356 + 0.0489: 0.2573 — 0.0792:
~ | 0.0173 —0.2796i —0.2336 — 0.25867  0.3157 +0.4079¢ 0.1183 4+ 0.1158; |~

The K factor here is 0.1.

H

ACKNOWLEDGMENT

Mai Vu would like to acknowledge the support of the Rambus fBrah Graduate
Fellowship and the Intel Foundation PhD Fellowship. Thiskwvas also supported in part
by NSF Contract DMS-0354674-001 and ONR Contract NOO014d880

REFERENCES

[1] E. Visotsky and U. Madhow, “Space-time transmit precodwith imperfect feedback,JEEE Trans. on Info. Theory, vol. 47, no. 6,
pp. 2632-2639, Sep. 2001.
[2] S. Jafar and A. Goldsmith, “Transmitter optimization andimality of beamforming for multiple antenna systemdZEE Trans. on
Wireless Comm.,, vol. 3, no. 4, pp. 1165-1175, July 2004.
[3] S. Venkatesan, S. Simon, and R. Valenzuela, “Capacity gaassian MIMO channel with nonzero meaRyoc. |EEE \ehicular
Tech. Conf., vol. 3, pp. 1767-1771, Oct. 2003.
[4] D. Hosli and A. Lapidoth, “The capacity of a MIMO Ricean chanrelmonotonic in the singular values of the meaprbc. 5th
Int'l ITG Conf. on Source and Channel Coding, Jan. 2004.
[5] A. Paulraj, R. Nabar, and D. Goréntroduction to Space-Time Wireless Communications. Cambridge, UK: Cambridge University
Press, 2003.
[6] T. Kailath, A. Sayed, and H. Hassilijnear Estimation. Prentice Hall, 2000.
[7] W. JakesMicrowave Mobile Communications. |IEEE Press, 1994.
[8] T. Cover and J. Thomag&lements of Information Theory. Wiley & Sons, Inc., 1991.
[9] M. Vu and A. Paulraj, “Capacity optimization for Rician melated MIMO wireless channelsProc. 39th Asilomar Conf. Sg., Sys.
and Comp., Nov. 2005.
[10] I. Telatar, “Capacity of multi-antenna gaussian chdsiheBell Laboratories Technical Memorandum, http://mars.bell-
labs.com/papers/proof/, Oct. 1995. [Online]. Availablépt/mars.bell-labs.com/papers/proof/
[11] D. Maiwald and D. Kraus, “Calculation of moments of compMishart and complex inverse Wishart distributed matricéSE
Proceedings Radar, Sonar and Navigation, no. 4, pp. 162-168, Aug. 2000.
[12] P. Graczyk, G. Letac, and H. Massam, “The complex Wishiattidution and the symmetric groupThe Annals of Satistics, vol. 31,
no. 1, pp. 287-309, Feb. 2003.
[13] A. Edelman,Eigenvalues and Condition Numbers of Random Matrices. MIT PhD Dissertation, 1989.



