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Abstract

Transmit channel side information (Tx-CSI), particularly the mean and covariance, helps
to increase MIMO wireless capacity. We formulate a dynamic Tx-CSI framework, using
outdated channel measurements and channel statistics, to create an effective channel mean
and covariance and establish the capacity expression givensuch Tx-CSI. We then derive
the asymptotic capacity-optimal input signal at low SNRs andcharacterize the asymptotic
capacity gains due to Tx-CSI at low and high SNRs. The optimal input signal and the
capacity gain in general depend on the relative number of transmit and receive antennas.
For systems with equal or fewer transmit than receive antennas, we study a lower bound
on the capacity. For systems with more transmit than receiveantennas, we characterize the
conditions for mode dropping at high SNRs, using simplified channel models. Numerical
examples are provided to show the impacts of channel parameters on the optimal input signal
and the capacity gain with Tx-CSI.

I. INTRODUCTION

Transmit channel side information (Tx-CSI) can enhance MIMOwireless capacity. While
Tx-CSI can come in many forms, the statistical Tx-CSI comprising of a mean and a
covariance is particularly interesting. Not only that these statistical quantities can be reliably
obtained, they also represent a broad class of Tx-CSI involving channel estimates and the
associated error covariance, obtained from outdated channel measurements and the channel
statistics. We establish an explicit formulation of such Tx-CSI as a function of an estimate
quality, taking into account channel temporal variation, and formulate the channel capacity
given this Tx-CSI.

The capacity optimal signaling for a MIMO channel with a non-zero mean and a non-
identity transmit covariance, however, is still an open problem. Solutions exist for special
cases: uncorrelated non-zero mean channels [1], [2] and correlated zero-mean channels [3],
[4], where the eigenvectors of the input covariance are given by the eigenvectors of the
associated channel parameter in each case. In this paper, wederive the asymptotic optimal
input covariance for general statistical Tx-CSI at low SNRs, and characterize the asymptotic
capacity gains at both low and high SNRs. For other SNRs, the optimal input signal and the
capacity gain depend on the relative numbers of transmit andreceive antennas. For systems
with equal or fewer transmit than receive antennas, we utilize a tight lower bound on capacity
based on the Jensen inequality. For systems with more transmit than receive antennas, we
derive the conditions for mode dropping at all SNRs for representative channels with a high
K factor or strong transmit correlation. These conditions provide intuition as to when it is
optimal to activate only a fraction of the available eigen-modes at all SNRs, given the Tx-
CSI. We then provide numerical examples of how the estimate quality affects the channel
capacity in both system configurations.

The paper is organized as follows: We first discuss the MIMO channel model in Section
II, then establish a robust Tx-CSI framework involving a channel estimate and its error
covariance in Section III. In Section IV, we formulate the ergodic capacity expression given



this Tx-CSI and review special cases optimal inputs. SectionV presents asymptotic capacity
results for low and high SNRs. Next, we characterize the capacity optimal input signal in
Section VI, differentiating the two cases based on the relative number of antennas. We provide
numerical examples in Section VII and conclude in Section VIII.

II. CHANNEL MODEL

We consider a frequency flat, quasi-static block fading MIMOchannel withN transmit
and M receive antennas, represented by a random matrixH of size M × N . We assume
that the channel is Gaussian distributed with a meanH̄ and a covarianceR0, thusH can be
decomposed as

H = H̄ + H̃ , (1)

whereH̃ represents the zero-mean Gaussian component. The channel covarianceR0 of size
MN × MN is defined as

R0 = E[h̃h̃∗], (2)

whereh̃ = vec(H̃). In other words,h ∼ CN (h̄,R0), whereh = vec(H) and h̄ = vec(H̄).
The ratio of the power in the channel mean to the average powerin the channel variable
component is the channelK factor, or the Rician factor, defined as

K =
||H̄||2F
tr(R0)

, (3)

where||.||F is the matrix Frobenius norm, and tr(.) is the trace of a matrix. Often, the channel
covariance is assumed to have a Kronecker structure, representing separable transmit and
receive antenna correlations:

R0 = RT
t ⊗ Rr , (4)

where Rt, size N × N , and Rr, size M × M , are the transmit and receive covariance,
respectively. The channel statistics,H̄ andR0 (or Rt andRr), can be obtained by averaging
instantaneous channel measurements over tens of channel coherence times; they remain valid
for periods of tens to hundreds coherence time, during which, the channel can be considered
as (short-term) stationary [5].

III. A DYNAMIC TX-CSI FRAMEWORK

Transmit channel side information, or Tx-CSI, can be obtained by using the reverse-channel
measurements, invoking the reciprocity principle, or via feedback from the receiver. In either
case, there is usually a delay from when the channel information is obtained to when it is
used by the transmitter; for example, a scheduling or a feedback delay. This delay may affect
the reliability of the Tx-CSI obtained. Instantaneous channel measurements provide the most
potential gain in system capacity; however, it is susceptible to channel variations because of
the delay. Channel statistics, on the other hand, change muchslower than the channel itself
and can be obtained reliably, but they provide less gain. Ourgoal here is to utilize both of
these forms to create a Tx-CSI framework that is robust to channel variation, while optimally
capturing the potential gain.

Assume that we have at the transmitter a channel measurementH0 at time 0. We aim
to establish an estimate of the current channelHs at the transmit times. The channel
measurement is correlated with the current channel; this correlation is captured by the channel
auto-covariance, defined as

Rs = E[h̃0h̃
∗

s] , (5)

whereh̃0 = vec(H0) andh̃s = vec(Hs). Due to stationarity, the auto-covarianceRs depends
only on the time differences, but not on the absolute time. Again,Rs can be obtained by
an averaging operation over instantaneous channel measurements.



Given the channel measurementH0 and the statistics̄H, R0, andRs, an estimate of the
channel at times follows from MMSE estimation theory [6] as

ĥs = E
[

hs|h0

]

= h̄ + R∗

sR
−1
0

[

h0 − h̄
]

Re,s = cov
[

hs|h0

]

= R0 − R∗

sR
−1
0 Rs ,

(6)

whereĥs = vec
(

Ĥs

)

is the estimated channel, andRe,s is the estimation error covariance at
time s. These become an effective mean and effective covariance ofthe channel, respectively.

The auto-covarianceRs captures both the channel antenna correlation and the temporal
correlation effects, whileR0 (2) represents the antenna correlation alone. If we assume that
the MIMO temporal correlation is homogeneous, i.e., all thescalar channels between theN
transmit and theM receive antennas have the same temporal correlation factorρs, then we
can separate the temporal correlation from the antenna correlation as

Rs = ρsR0 . (7)

The channel temporal correlationρs is a function of the Doppler spreadfd and the delay
s. For example, in Jake’s model [7],ρs = J0(2πfds), whereJ0 is the zeroth order Bessel
function of the first kind. In general, we assume that−1 ≤ ρ ≤ 1, and ρ = 1 only at a
zero delay. Using simplified auto-covariance model (7), thechannel estimate and its error
covariance become

Ĥs = ρsH0 + (1 − ρs) H̄ , Re,s =
(

1 − ρ2
s

)

R0 . (8)

For the Kronecker antenna correlation model (4), the estimated channel has effective antenna
correlations as:

Rt,s =
(

1 − ρ2
s

)

Rt , Rr,s =
(

1 − ρ2
s

)

Rr . (9)

ρs here acts as the estimate quality dependent on the time delays. For a short delay,ρs is
close to one; the estimate thus depends heavily on the initial channel measurement, and the
error covariance is small. As the delay increases,|ρs| will decrease to zero, reducing the
impact of the initial measurement. The estimate then moves toward the channel mean̄H,
and the error covariance grows toward the channel covariance R0. Therefore, the estimate
and its error covariance (8) constitute a form of Tx-CSI, ranging between perfect channel
knowledge (whenρ = 1) and channel statistics (whenρ = 0). By taking into account
the channel temporal variation, this framework dynamically captures the available channel
information and creates robust Tx-CSI.

IV. CHANNEL ERGODIC CAPACITY FORMULATION

We study the ergodic capacity of a MIMO channel, assuming perfect receiver channel
knowledge and the dynamic Tx-CSI framework (8), given an estimate qualityρs. The input
signal is subject to an average sum power constraint, such that the input covarianceQ
must satisfy tr(Q) = 1. For each initial channel measurementH0 with the corresponding
Tx-CSI value {Ĥs,Rs}, the average mutual information is maximized by a zero-mean
complex Gaussian input signal [8] with the covariance matrix as the solution of the following
optimization problem:

Is(H0) = max
Q

F(Q) = EH

[

logdet(I + γHQH∗)
]

(10)

s.t. tr(Q) = 1 ,

where γ is the SNR andh ∼ CN
(

ĥs,Re,s

)

; i.e. the expectation is evaluated over the

effective channel statistics with mean̂Hs and covarianceRe,s. The channel ergodic capacity,
given the estimate qualityρs (or Rs in the general case) is then

C = EH0
[Is(H0)] , (11)



where, denotingh0 = vec(H0), h0 ∼ N
(

h̄,R0

)

. Establishing the channel capacity with
the estimate Tx-CSI (8) thus essentially requires finding theoptimal input signal and mutual
information for a channel given the channel mean and covariance as formulated in (10).

Review of the optimal eigen-beam directions in special cases: The eigenvectors of the
optimal input covariance solution of problem (10) is analytically known in several special Tx-
CSI cases: (a) correlation Tx-CSI involving a zero effective mean (̂hs = 0) with a Kronecker
structured effective covarianceRe,s = RT

t,s⊗Rr,s; and (b) mean Tx-CSI involving an arbitrary
effective meanĤs with an identity covariance (Re,s = I). Let the eigenvalue decomposition
of the input covariance be

Q = UΛU∗ , (12)

then the columns ofU are the orthogonal eigen-beam directions (patterns), andΛ represents
the power allocation on these beams. In case (a), letRt,s = Ut,sΛt,sU

∗

t,s be the eigenvalue
decomposition ofRt,s, then the optimal beam directions areU = Ut,s [1], [2]. In case (b),
let Ĥ∗

sĤs = ÛsΛ̂sÛ
∗

s be the eigenvalue decomposition ofĤ∗

sĤs, then the optimal beam
directions areU = Ûs [3], [4]. The optimal power allocationΛ in both cases, however,
requires a numerical solution. The optimal input covariance in the general case (a non-zero
mean with a non-identity covariance) is so far not known analytically.

Using the Kronecker correlation structure (4), we assume that only transmit antenna
correlationRt exists and is full-rank (i.e.Rr = I). Consider problem (10) for an arbitrary
effective mean̂Hs and an effective transmit covarianceRt,s (9). We will examine the optimal
input covariance and the capacity gain asymptotically at low and high SNRs. From these
results, we characterize the capacity using a sub-optimal input solution based on the Jensen
inequality, and derive the optimal conditions for mode dropping at all SNRs for simplified
Tx-CSI cases.

V. ASYMPTOTIC SNR CAPACITY RESULTS

A. Low SNR capacity results

Lemma 1: (Low SNR optimal input covariance)As the SNR γ → 0, the optimal input
covariance of problem (10) converges to a unit-rank matrix with a unit eigenvalue and the
corresponding eigenvector given by the dominant eigenvalue of Gs = Ĥ∗

sĤs + MRt,s.
In other words, the optimal input at low SNRs becomes a single-mode beamforming signal

matched to the dominant eigenvector of Gs.
Proof: Using the Taylor series, the functionf = log det(I + γA), whereA is a positive

semi-definite matrix, can be expanded as a polynomial ofγ as

f = tr(A)γ − tr(A2)γ2 + tr(A3)γ3 − . . .

Noting thatEH

[

logdet(I + γHQH∗)
]

= EH

[

logdet(I + γH∗HQ)
]

and applying the above
expansion, at low SNRs (γ → 0), the mutual informationF(Q) in (10) approaches

F(Q)
γ→0≈ EH[tr(H∗HQ)γ] = γ tr (EH[H∗H]Q) = γ tr [GsQ] .

Maximizing the above expression with the constraint tr(Q) = 1 results in the optimalQ
stated in Lemma 1. ¤

Lemma 2: (Low SNR capacity ratio gain)As the SNR γ → 0, the ratio between the optimal
mutual information in (10) and the value obtained by equi-power isotropic input approaches

r =
Nλmax(Gs)

tr(Gs)
. (13)

This ratio scales linearly with the number of transmit antennas and is related to the condition
of the channel correlation matrix Gs = E[H∗H].



Proof: From the proof of Lemma 1, the optimal mutual information with Tx-CSI in (10) at
low SNRs approachesIs

γ→0
= γλmax(Gs). The mutual information with equi-power allocation,

on the other hand, equalsI0
γ→0
= γ

N
tr(Gs). Taking the ratio between these two expressions,

r = Is/I0 , yields (13). ¤

B. High SNR capacity results

At high SNRs, we distinguish between two antenna configurations: when the number of
transmit antennas is equal or fewer than the number of receive antennas (N ≤ M ), and when
it is larger (N > M ).

1) Systems with equal or fewer transmit than receive antennas: When N ≤ M , the
asymptotic high SNR optimal input covariance of (10) is1

N
I: SinceH∗H is full-rank, the

mutual informationF(Q) at high SNRs can be decomposed as

F γ→∞≈ EH[log det(γH∗HQ)] = EH [log det(H∗H)] + log det(γQ) . (14)

Maximizing the above expression, subject to tr(Q) = 1, leads toQ = I/N . In other words,
when N ≤ M , the optimal input covariance at high SNRs approaches equi-power in all
directions and is independent of the Tx-CSI. This is a well-known result that, for these
systems, the capacity gain due to Tx-CSI diminishes at high SNRs.

2) Systems with more transmit than receive antennas: WhenN > M , in contrary, Tx-CSI
provides capacity gain at all SNRs. The decomposition (14) does not apply in this case,
and the optimal input covariance of (10) at high SNRs depends on the channel statistics, or
the Tx-CSI{Ĥs,Rt,s}. While an analytical optimal covariance for arbitrarŷHs andRt,s is
still unknown, the capacity gain is maximum with perfect Tx-CSI (Ĥs = H0, Rt,s = 0), in
which case this gain can be accurately quantified.

Lemma 3: (High SNR incremental capacity gain)At high SNRs, the incremental capacity
gain due to perfect Tx-CSI (ρ = 1) over the mutual information obtained by equi-power
isotropic input equals

∆C = M log
( N

M

)

. (15)

This gain scales linearly with the number of receive antennas and depends on the ratio of
the number of transmit to receive antennas.

Proof: With perfect Tx-CSI, the solution for (10) is standard water-filling [8] on H∗

0H0.
Let σ2

i be the eigenvalues ofH∗

0H0, then the optimal eigenvalues ofQ are λi =
(

µ − 1
γσ2

i

)

+
, where µ is chosen to satisfy

∑

i λi = 1. The capacity (11) then becomes

C =
∑M

i=1 Eσi
[log (µγσ2

i )], whereσ2
i has the distribution of the underlying Wishart matrix

eigenvalues. Asγ → ∞, µ → 1
M

, and the capacity approaches

C γ→∞≈ M log

(

1

M

)

+ M log(γ) +
M

∑

i=1

log(σ2
i ) . (16)

Assuming no Tx-CSI and using an equi-power isotropic input with covarianceQ = I/N ,
the ergodic mutual information is given byC0 =

∑M
i=1 Eσi

[

log
(

1 + 1
N

γσ2
i

)]

. At high SNRs,
this expression approaches

C0

γ→∞≈ M log

(

1

N

)

+ M log(γ) +
M

∑

i=1

log(σ2
i ) . (17)

Subtracting (16) and (17) side-by-side yields the capacitygain in (15). ¤



VI. CAPACITY CHARACTERIZATIONS

A. Systems with equal or fewer transmit than receive antennas

1) Jensen input covariance: To obtain a lower bound on the capacity, we explore the input
covariance that is optimal for Jensen’s bound [8] on the average mutual informationF in
(10). Due to the concavity ofF , this bound applies as

F(Q) = EH

[

logdet(I + γQH∗H)
]

≤ logdet(I + γQE[H∗H]) .

Perform the eigenvalue decompositions ofGs = E[H∗H] = Ĥ∗

sĤs + MRt,s as Gs =
UsΛsU

∗

s, the optimal input eigen-directions and the power allocation that maximize the
Jensen bound are

U = Us , λi =

(

µ − 1

γλs,i

)

+

(18)

whereλs,i are diagonal values ofΛs. Let ΛJ,s = diag(λi), condition (18) results in the Jensen
input covarianceQJ,s = UsΛJ,sU

∗

s.
For all Tx-CSI, this Jensen input covarianceQJ,s approaches the optimal input covariance

at low SNRs in Lemma 1. In the two special Tx-CSI cases, correlation Tx-CSI (zero effective
mean) and mean Tx-CSI (identity covariance), the beam directions (18) coincide with the
optimal directions in each respective case for all SNRs; onlythe optimal power allocation
is then approximated.

2) A lower bound capacity approximation: Using the above Jensen optimal input covariance
QJ,s in the average mutual information expression results in a value Js = F(QJ,s) such that
Js < Is in (10). AveragingJs over the initial channel measurement distribution (11), we
obtain a lower bound approximation of the channel ergodic capacity as

CJ = EH0
[Js] . (19)

The tightness of this bound depends on the antenna configurations.
For N ≤ M , Js closely approximatesIs: in this case, the Jensen input covariance solution

approaches the optimal solution at both low and high SNRs. Anydifference betweenJs and
Is thus occurs only at a mid-range SNR and, as confirmed by simulations [9], is usually
negligible. Therefore, the Jensen input covarianceQJ,s can be used in deriving a tight lower
bound on the channel capacity forN ≤ M .

B. Systems with more transmit than receive antennas

For N > M , the optimal input covariance, particularly the optimal power allocation,
depends heavily on the channel effective mean and covariance matrices. If the channel
is uncorrelated with zero mean (i.e. an i.i.d Rayleigh fadingchannel), then the optimal
input covariance is the identity matrix [10] (i.e. equi-power allocation). However, if the
mean is strong, characterized by a highK factor, or if the transmit antenna is strongly
correlated, the optimal power allocation may drop modes even at high SNRs. This optimal
input covariance at high SNRs then differs from the Jensen solution, which approaches equi-
power. To characterize effects of theK factor and the transmit antenna correlation on the
optimal power allocation, we study two simple channel models. Each model results in the
optimal allocation having only two distinct power levels, and we examine the conditions
which lead to dropping the lower power level at all SNRs.

1) Effects of the K factor: Consider an uncorrelated channel with a meanHm such that

HmH∗

m =
K

K + 1
IM , (20)

and with transmit covarianceRt = 1
K+1

IN (assuming receive covarianceRr = I). For
convenience, letβ =

√

K/(K + 1), (0 ≤ β ≤ 1). The optimal power allocation for this



channel can be completely characterized by theK factor orβ, representing the mean matrix,
and the SNR. Due to symmetry, this optimal solution contains only two different power levels:
λ1 for the firstM eigen-modes, corresponding to the non-zero eigen-modes ofH∗

mHm, and
λ2 for the rest. We are interested in the condition resulting inλ1 = 1

M
and λ2 = 0. The

mutual information optimization problem (10) becomes

max
λ1,λ2

Ehi,hj

[

log det

(

IM + λ1γ
M

∑

i=1

hih
∗

i + λ2γ
N

∑

j=M+1

hjh
∗

j

)]

(21)

s.t. Mλ1 + (N − M)λ2 = 1

λ1 ≥ 0, λ2 ≥ 0 ,

wherehi ∼ N
(√

βei, (1 − β)IM

)

, hj ∼ N (0, (1 − β)IM), andei is the vector with theith

element equals to 1 and the rest are zero. Since (21) is a convex problem, to have the optimal
λ1 as 1

M
, it is sufficient and necessary thatdg(λ1)

dλ1

∣

∣

∣

λ1=1/M
≥ 0, which can be simplified to

tr



Ehj





(

I +
γ

M

M
∑

j=1

(βej + hj)(βej + hj)
∗

)−1






 ≤ N

1 + γ
. (22)

From this expression, a threshold forK, above which mode dropping occurs, can be derived.
At high SNRs (γ → ∞), condition (22) becomes

tr



Ehj





(

M
∑

j=1

(βej + hj)(βej + hj)
∗

)−1






 ≤ N

M
. (23)

The matrix expression under the above expectation has the inverted non-central complex
Wishart distribution. Since at highK (β → 1), the left-hand-side of (23) approachesM ,
mode-dropping at all SNRs occurs for this Tx-CSI only ifN ≥ M2.

2) Effects of the transmit antenna correlation: Consider a zero-mean channel with a
transmit covariance matrix having only two distinct eigenvalues:λ1(Rt) = . . . = λL(Rt) =
ξ1, andλL+1(Rt) = . . . = λN(Rt) = ξ2, whereN > L > M (note thatN ≥ M +2 here, for
a reason that will become clear later), andξ1 > ξ2. The eigenvectors ofRt have no effect
on the power allocation and hence are not considered here. Similarly due to symmetry, the
optimal power allocation has only two levels:λ1 for the firstL eigen-modes corresponding
to theL larger eigenvalues ofRt, andλ2 for the rest. The mutual information optimization
problem (10) is now equivalent to

max
λ1,λ2

Ehi

[

log det

(

IM + γλ1ξ1

L
∑

j=1

hih
∗

i + γλ2ξ2

N
∑

j=L+1

hih
∗

i

)]

(24)

s.t. Lλ1 + (N − L)λ2 = 1

λ1 ≥ 0 , λ2 ≥ 0 ,

wherehi ∼ N (0, IM) are i.i.d. We are interested in the condition that results inλ2 = 0,
which clearly depends on the condition number ofRt, i.e. the ratioκ = ξ1/ξ2.

Due to the concavity of the mutual information expression, the optimalλ2 = 0 is achieved
iff ∂f

∂λ2

∣

∣

∣

λ2=0
≤ 0, which can be simplified to

tr



Ehi





(

IM +
γξ1

L

L
∑

j=1

hih
∗

i

)−1

(γξ2 + 1)







 ≤ M .



At high SNRs (γ → ∞), the above expression becomes

Lξ2

ξ1

tr



Ehi





(

L
∑

j=1

hih
∗

i

)−1






 ≤ M . (25)

Let B =
∑L

j=1 hih
∗

i , then B is a complex central Wishart matrix with rankM and L
degrees of freedom:B ∼ WC

M(L, IM). Using the first moment of an inverted Wishart matrix,
E[B−1] = 1

L−M
IM [11] [12], condition (25) translates to

ξ1

ξ2

≥ L

L − M
. (26)

SinceN > L > M , we haveL/(L − M) ≤ N − 1, and a looser bound onRt condition
number for dropping the weaker eigen-modes at all SNRs can be obtained as

κ ≥ N − 1 . (27)

Note that whenL = M , the minimum eigenvalue ofB has the distributionfλmin
(λ) =

M
2

exp
(

−λM
2

)

[13], thusE[1/λmin] is infinity for all M . This fact implies that (25) can not
hold for L = M ; thus in that case, the optimal power allocation will activate all modes at
high SNRs. In other words, as the SNR approaches infinity, the optimal power allocation for
this correlation Tx-CSI will always use more thanM (at leastM + 1) modes; hence mode
dropping at high SNRs occurs only ifN ≥ M + 2.

3) Remarks: The two conditions (23) and (26), although specific to each respective Tx-CSI
model, provide intuition on effects of the channel mean and the transmit antenna correlation
on the optimal input power allocation. These conditions forchannels with both a non-zero
mean and a transmit antenna correlation are likely to be further relaxed, such that mode
dropping occurs at all SNRs for even a lowerK factor or a lower correlation condition
number. Subsequently, channels with highK or strong correlation tends to result in mode
dropping with statistical Tx-CSI at all SNRs.

VII. NUMERICAL EXAMPLES

A. Systems with equal or fewer transmit than receive antennas

For these systems, Tx-CSI helps to increase the capacity onlyat low SNRs. Using the
lower bound approximation (19) at SNR = 4dB, we plot in Figure 1the capacity (11) as a
function of the estimate qualityρ for two 4 × 4 channels: an i.i.d channel and a zero-mean
correlated channel with the covariance matrix given in the Appendix. We observe that the
capacity increases with higherρ, but this increment due to channel estimates is significant
only with relatively good estimates (ρ ≥ 0.6 in this case). Moreover, the range of capacity
increase due toρ for an i.i.d channel is larger than that for a correlated channel. For reference,
capacity of the correlated channel without Tx-CSI is also included, illustrating that knowing
the channel statistics alone (ρ = 0) can enhance the capacity over no Tx-CSI.

B. Systems with more transmit than receive antennas

For systems with excess transmit antennas, mode dropping can occur at high SNRs for
mean and correlation Tx-CSI, depending on theK factor or transmit antenna correlation. We
plot in Figure 2 theK factor threshold versus the SNR for mean Tx-CSI in (22) for systems
with 2 receive antennas and from 4 to 6 transmit antennas. WhenK is above this threshold,
signifying a strong channel mean or a good channel estimate,the optimal power allocation
activates only two modes and dropping the rest at all SNRs. Thethreshold depends on the
number of transmit antennasN ; it decreases with largerN .

We then examine the correlation Tx-CSI case in (24) and plot inFigure 3 the optimal power
allocation, using convex optimization numerical programs, for a 4 × 2 zero-mean channel
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Fig. 4. The capacity (11) versus the estimate qualityρ for two
4 × 2 channels at SNR = 4dB.

with transmit covariance eigenvalues as[1.25 1.25 1.25 0.25]. This covariance matrix has
the condition numberκ = 5 > 3, satisfying (26). The optimal power allocation therefore
only activates 3 modes, dropping 1 mode, at all SNRs.

Finally we plot in Figure 4 the capacity (11) at SNR = 4dB as thefunction of ρ for two
4×2 channels: an i.i.d channel and a correlated Rician channel with the mean and covariance
given in the Appendix. Due to the low SNR, the lower bound (19) is tight and is again used
to approximate the optimal mutual informationIs(H0) in (11). Besides similar observations
as those for Figure 1, this figure also shows that Rician correlated channels can have higher
capacity than an i.i.d channel at low SNRs. Note that at higherSNRs, Tx-CSI results in
more capacity gain for these systems, of up to 2 bps/Hz (15).

VIII. CONCLUSION

We have formulated a dynamic Tx-CSI framework for MIMO wireless in the form of an
effective channel mean and covariance, based on a channel estimate and its error covariance
obtained from an outdated channel measurement and channel statistics, and established the
capacity expression given such Tx-CSI. We derive the asymptotic capacity-optimal input
signal at low SNRs and characterize the asymptotic capacity gains with CSIT at both low



and high SNRs. For systems with equal or fewer transmit than receive antennas, the capacity
can be tightly approximated by a lower bound based on the Jensen’s inequality. For systems
with more transmit than receive antennas, we characterize the conditions for mode dropping
at all SNRs, using simplified channel models. WithN transmit antennas, a strong channel
mean (with a highK factor) or a strong transmit antenna correlation (with a large condition
number) can lead to an optimal power allocation that activates fewer than the maximumN
modes at all SNRs. Utilizing the dynamic Tx-CSI model, we demonstrate numerically that the
capacity given the Tx-CSI increases with a better channel estimate quality, and the increment
depends on the channel statistics – the means and the transmit covariance. Significant capacity
increase due to the channel estimate requires good estimatequality (roughlyρ ≥ 0.6), and
the increase is larger for i.i.d channels than for correlated channels. In all cases, however,
Tx-CSI usually helps to increase the MIMO capacity over no Tx-CSI.

APPENDIX

The channel parameters used in the simulations of Figures 1 and 4 are listed below.
The transmit covariance matrix is

Rt =









0.8758 −0.0993 − 0.0877i −0.6648 − 0.0087i 0.5256 − 0.4355i
−0.0993 + 0.0877i 0.9318 0.0926 + 0.3776i −0.5061 − 0.3478i
−0.6648 + 0.0087i 0.0926 − 0.3776i 1.0544 −0.6219 + 0.5966i

0.5256 + 0.4355i −0.5061 + 0.3478i −0.6219 − 0.5966i 1.1379









.

This matrix has the eigenvalues[2.717 , 0.997 , 0.237 , 0.049] and a condition number of
55.5. The transmit antennas therefore are quite strongly correlated.

The mean for the4 × 2 channel is

H̄ =

[

0.0749 − 0.1438i 0.0208 + 0.3040i −0.3356 + 0.0489i 0.2573 − 0.0792i
0.0173 − 0.2796i −0.2336 − 0.2586i 0.3157 + 0.4079i 0.1183 + 0.1158i

]

.

The K factor here is 0.1.
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